// Copyright 2016 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #include "VideoBackends/Vulkan/ShaderCache.h" #include #include #include #include #include "Common/Assert.h" #include "Common/CommonFuncs.h" #include "Common/LinearDiskCache.h" #include "Common/MsgHandler.h" #include "Core/ConfigManager.h" #include "Core/Host.h" #include "VideoBackends/Vulkan/FramebufferManager.h" #include "VideoBackends/Vulkan/ShaderCompiler.h" #include "VideoBackends/Vulkan/StreamBuffer.h" #include "VideoBackends/Vulkan/Util.h" #include "VideoBackends/Vulkan/VertexFormat.h" #include "VideoBackends/Vulkan/VulkanContext.h" #include "VideoCommon/AsyncShaderCompiler.h" #include "VideoCommon/GeometryShaderGen.h" #include "VideoCommon/Statistics.h" #include "VideoCommon/UberShaderPixel.h" #include "VideoCommon/UberShaderVertex.h" #include "VideoCommon/VertexLoaderManager.h" namespace Vulkan { std::unique_ptr g_shader_cache; ShaderCache::ShaderCache() { } ShaderCache::~ShaderCache() { DestroyPipelineCache(); DestroyShaderCaches(); DestroySharedShaders(); } bool ShaderCache::Initialize() { if (g_ActiveConfig.bShaderCache) { LoadShaderCaches(); if (!LoadPipelineCache()) return false; } else { if (!CreatePipelineCache()) return false; } if (!CompileSharedShaders()) return false; m_async_shader_compiler = std::make_unique(); if (g_ActiveConfig.GetShaderCompilerThreads() > 0) m_async_shader_compiler->StartWorkerThreads(g_ActiveConfig.GetShaderCompilerThreads()); return true; } void ShaderCache::Shutdown() { if (m_async_shader_compiler) { m_async_shader_compiler->StopWorkerThreads(); m_async_shader_compiler->RetrieveWorkItems(); } } static bool IsStripPrimitiveTopology(VkPrimitiveTopology topology) { return topology == VK_PRIMITIVE_TOPOLOGY_LINE_STRIP || topology == VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP || topology == VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY || topology == VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY; } static VkPipelineRasterizationStateCreateInfo GetVulkanRasterizationState(const RasterizationState& state) { return { VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO, // VkStructureType sType nullptr, // const void* pNext 0, // VkPipelineRasterizationStateCreateFlags flags state.depth_clamp, // VkBool32 depthClampEnable VK_FALSE, // VkBool32 rasterizerDiscardEnable VK_POLYGON_MODE_FILL, // VkPolygonMode polygonMode state.cull_mode, // VkCullModeFlags cullMode VK_FRONT_FACE_CLOCKWISE, // VkFrontFace frontFace VK_FALSE, // VkBool32 depthBiasEnable 0.0f, // float depthBiasConstantFactor 0.0f, // float depthBiasClamp 0.0f, // float depthBiasSlopeFactor 1.0f // float lineWidth }; } static VkPipelineMultisampleStateCreateInfo GetVulkanMultisampleState(const RasterizationState& rs_state) { return { VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO, // VkStructureType sType nullptr, // const void* pNext 0, // VkPipelineMultisampleStateCreateFlags flags rs_state.samples, // VkSampleCountFlagBits rasterizationSamples rs_state.per_sample_shading, // VkBool32 sampleShadingEnable 1.0f, // float minSampleShading nullptr, // const VkSampleMask* pSampleMask; VK_FALSE, // VkBool32 alphaToCoverageEnable VK_FALSE // VkBool32 alphaToOneEnable }; } static VkPipelineDepthStencilStateCreateInfo GetVulkanDepthStencilState(const DepthStencilState& state) { return { VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO, // VkStructureType sType nullptr, // const void* pNext 0, // VkPipelineDepthStencilStateCreateFlags flags state.test_enable, // VkBool32 depthTestEnable state.write_enable, // VkBool32 depthWriteEnable state.compare_op, // VkCompareOp depthCompareOp VK_FALSE, // VkBool32 depthBoundsTestEnable VK_FALSE, // VkBool32 stencilTestEnable {}, // VkStencilOpState front {}, // VkStencilOpState back 0.0f, // float minDepthBounds 1.0f // float maxDepthBounds }; } static VkPipelineColorBlendAttachmentState GetVulkanAttachmentBlendState(const BlendingState& state) { VkPipelineColorBlendAttachmentState vk_state = {}; vk_state.blendEnable = static_cast(state.blendenable); vk_state.colorBlendOp = state.subtract ? VK_BLEND_OP_REVERSE_SUBTRACT : VK_BLEND_OP_ADD; vk_state.alphaBlendOp = state.subtractAlpha ? VK_BLEND_OP_REVERSE_SUBTRACT : VK_BLEND_OP_ADD; if (state.usedualsrc && g_vulkan_context->SupportsDualSourceBlend()) { static constexpr std::array src_factors = { {VK_BLEND_FACTOR_ZERO, VK_BLEND_FACTOR_ONE, VK_BLEND_FACTOR_DST_COLOR, VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR, VK_BLEND_FACTOR_SRC1_ALPHA, VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA, VK_BLEND_FACTOR_DST_ALPHA, VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA}}; static constexpr std::array dst_factors = { {VK_BLEND_FACTOR_ZERO, VK_BLEND_FACTOR_ONE, VK_BLEND_FACTOR_SRC_COLOR, VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR, VK_BLEND_FACTOR_SRC1_ALPHA, VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA, VK_BLEND_FACTOR_DST_ALPHA, VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA}}; vk_state.srcColorBlendFactor = src_factors[state.srcfactor]; vk_state.srcAlphaBlendFactor = src_factors[state.srcfactoralpha]; vk_state.dstColorBlendFactor = dst_factors[state.dstfactor]; vk_state.dstAlphaBlendFactor = dst_factors[state.dstfactoralpha]; } else { static constexpr std::array src_factors = { {VK_BLEND_FACTOR_ZERO, VK_BLEND_FACTOR_ONE, VK_BLEND_FACTOR_DST_COLOR, VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR, VK_BLEND_FACTOR_SRC_ALPHA, VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA, VK_BLEND_FACTOR_DST_ALPHA, VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA}}; static constexpr std::array dst_factors = { {VK_BLEND_FACTOR_ZERO, VK_BLEND_FACTOR_ONE, VK_BLEND_FACTOR_SRC_COLOR, VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR, VK_BLEND_FACTOR_SRC_ALPHA, VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA, VK_BLEND_FACTOR_DST_ALPHA, VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA}}; vk_state.srcColorBlendFactor = src_factors[state.srcfactor]; vk_state.srcAlphaBlendFactor = src_factors[state.srcfactoralpha]; vk_state.dstColorBlendFactor = dst_factors[state.dstfactor]; vk_state.dstAlphaBlendFactor = dst_factors[state.dstfactoralpha]; } if (state.colorupdate) { vk_state.colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT; } else { vk_state.colorWriteMask = 0; } if (state.alphaupdate) vk_state.colorWriteMask |= VK_COLOR_COMPONENT_A_BIT; return vk_state; } static VkPipelineColorBlendStateCreateInfo GetVulkanColorBlendState(const BlendingState& state, const VkPipelineColorBlendAttachmentState* attachments, uint32_t num_attachments) { static constexpr std::array vk_logic_ops = { {VK_LOGIC_OP_CLEAR, VK_LOGIC_OP_AND, VK_LOGIC_OP_AND_REVERSE, VK_LOGIC_OP_COPY, VK_LOGIC_OP_AND_INVERTED, VK_LOGIC_OP_NO_OP, VK_LOGIC_OP_XOR, VK_LOGIC_OP_OR, VK_LOGIC_OP_NOR, VK_LOGIC_OP_EQUIVALENT, VK_LOGIC_OP_INVERT, VK_LOGIC_OP_OR_REVERSE, VK_LOGIC_OP_COPY_INVERTED, VK_LOGIC_OP_OR_INVERTED, VK_LOGIC_OP_NAND, VK_LOGIC_OP_SET}}; VkBool32 vk_logic_op_enable = static_cast(state.logicopenable); if (vk_logic_op_enable && !g_vulkan_context->SupportsLogicOps()) { // At the time of writing, Adreno and Mali drivers didn't support logic ops. // The "emulation" through blending path has been removed, so just disable it completely. // These drivers don't support dual-source blend either, so issues are to be expected. vk_logic_op_enable = VK_FALSE; } VkLogicOp vk_logic_op = vk_logic_op_enable ? vk_logic_ops[state.logicmode] : VK_LOGIC_OP_CLEAR; VkPipelineColorBlendStateCreateInfo vk_state = { VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO, // VkStructureType sType nullptr, // const void* pNext 0, // VkPipelineColorBlendStateCreateFlags flags vk_logic_op_enable, // VkBool32 logicOpEnable vk_logic_op, // VkLogicOp logicOp num_attachments, // uint32_t attachmentCount attachments, // const VkPipelineColorBlendAttachmentState* pAttachments {1.0f, 1.0f, 1.0f, 1.0f} // float blendConstants[4] }; return vk_state; } VkPipeline ShaderCache::CreatePipeline(const PipelineInfo& info) { // Declare descriptors for empty vertex buffers/attributes static const VkPipelineVertexInputStateCreateInfo empty_vertex_input_state = { VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO, // VkStructureType sType nullptr, // const void* pNext 0, // VkPipelineVertexInputStateCreateFlags flags 0, // uint32_t vertexBindingDescriptionCount nullptr, // const VkVertexInputBindingDescription* pVertexBindingDescriptions 0, // uint32_t vertexAttributeDescriptionCount nullptr // const VkVertexInputAttributeDescription* pVertexAttributeDescriptions }; // Vertex inputs const VkPipelineVertexInputStateCreateInfo& vertex_input_state = info.vertex_format ? info.vertex_format->GetVertexInputStateInfo() : empty_vertex_input_state; // Input assembly VkPipelineInputAssemblyStateCreateInfo input_assembly_state = { VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO, // VkStructureType sType nullptr, // const void* pNext 0, // VkPipelineInputAssemblyStateCreateFlags flags info.primitive_topology, // VkPrimitiveTopology topology VK_FALSE // VkBool32 primitiveRestartEnable }; // See Vulkan spec, section 19: // If topology is VK_PRIMITIVE_TOPOLOGY_POINT_LIST, VK_PRIMITIVE_TOPOLOGY_LINE_LIST, // VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY, // VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY or VK_PRIMITIVE_TOPOLOGY_PATCH_LIST, // primitiveRestartEnable must be VK_FALSE if (g_ActiveConfig.backend_info.bSupportsPrimitiveRestart && IsStripPrimitiveTopology(info.primitive_topology)) { input_assembly_state.primitiveRestartEnable = VK_TRUE; } // Shaders to stages VkPipelineShaderStageCreateInfo shader_stages[3]; uint32_t num_shader_stages = 0; if (info.vs != VK_NULL_HANDLE) { shader_stages[num_shader_stages++] = {VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, nullptr, 0, VK_SHADER_STAGE_VERTEX_BIT, info.vs, "main"}; } if (info.gs != VK_NULL_HANDLE) { shader_stages[num_shader_stages++] = {VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, nullptr, 0, VK_SHADER_STAGE_GEOMETRY_BIT, info.gs, "main"}; } if (info.ps != VK_NULL_HANDLE) { shader_stages[num_shader_stages++] = {VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, nullptr, 0, VK_SHADER_STAGE_FRAGMENT_BIT, info.ps, "main"}; } // Fill in Vulkan descriptor structs from our state structures. VkPipelineRasterizationStateCreateInfo rasterization_state = GetVulkanRasterizationState(info.rasterization_state); VkPipelineMultisampleStateCreateInfo multisample_state = GetVulkanMultisampleState(info.rasterization_state); VkPipelineDepthStencilStateCreateInfo depth_stencil_state = GetVulkanDepthStencilState(info.depth_stencil_state); VkPipelineColorBlendAttachmentState blend_attachment_state = GetVulkanAttachmentBlendState(info.blend_state); VkPipelineColorBlendStateCreateInfo blend_state = GetVulkanColorBlendState(info.blend_state, &blend_attachment_state, 1); // This viewport isn't used, but needs to be specified anyway. static const VkViewport viewport = {0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f}; static const VkRect2D scissor = {{0, 0}, {1, 1}}; static const VkPipelineViewportStateCreateInfo viewport_state = { VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO, nullptr, 0, // VkPipelineViewportStateCreateFlags flags; 1, // uint32_t viewportCount &viewport, // const VkViewport* pViewports 1, // uint32_t scissorCount &scissor // const VkRect2D* pScissors }; // Set viewport and scissor dynamic state so we can change it elsewhere. static const VkDynamicState dynamic_states[] = {VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR}; static const VkPipelineDynamicStateCreateInfo dynamic_state = { VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO, nullptr, 0, // VkPipelineDynamicStateCreateFlags flags static_cast(ArraySize(dynamic_states)), // uint32_t dynamicStateCount dynamic_states // const VkDynamicState* pDynamicStates }; // Combine to full pipeline info structure. VkGraphicsPipelineCreateInfo pipeline_info = { VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO, nullptr, // VkStructureType sType 0, // VkPipelineCreateFlags flags num_shader_stages, // uint32_t stageCount shader_stages, // const VkPipelineShaderStageCreateInfo* pStages &vertex_input_state, // const VkPipelineVertexInputStateCreateInfo* pVertexInputState &input_assembly_state, // const VkPipelineInputAssemblyStateCreateInfo* pInputAssemblyState nullptr, // const VkPipelineTessellationStateCreateInfo* pTessellationState &viewport_state, // const VkPipelineViewportStateCreateInfo* pViewportState &rasterization_state, // const VkPipelineRasterizationStateCreateInfo* pRasterizationState &multisample_state, // const VkPipelineMultisampleStateCreateInfo* pMultisampleState &depth_stencil_state, // const VkPipelineDepthStencilStateCreateInfo* pDepthStencilState &blend_state, // const VkPipelineColorBlendStateCreateInfo* pColorBlendState &dynamic_state, // const VkPipelineDynamicStateCreateInfo* pDynamicState info.pipeline_layout, // VkPipelineLayout layout info.render_pass, // VkRenderPass renderPass 0, // uint32_t subpass VK_NULL_HANDLE, // VkPipeline basePipelineHandle -1 // int32_t basePipelineIndex }; VkPipeline pipeline; VkResult res = vkCreateGraphicsPipelines(g_vulkan_context->GetDevice(), m_pipeline_cache, 1, &pipeline_info, nullptr, &pipeline); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkCreateGraphicsPipelines failed: "); return VK_NULL_HANDLE; } return pipeline; } VkPipeline ShaderCache::GetPipeline(const PipelineInfo& info) { return GetPipelineWithCacheResult(info).first; } std::pair ShaderCache::GetPipelineWithCacheResult(const PipelineInfo& info) { auto iter = m_pipeline_objects.find(info); if (iter != m_pipeline_objects.end()) { // If it's background compiling, ignore it, and recompile it synchronously. if (!iter->second.second) return std::make_pair(iter->second.first, true); else m_pipeline_objects.erase(iter); } VkPipeline pipeline = CreatePipeline(info); m_pipeline_objects.emplace(info, std::make_pair(pipeline, false)); _assert_(pipeline != VK_NULL_HANDLE); return {pipeline, false}; } std::pair, bool> ShaderCache::GetPipelineWithCacheResultAsync(const PipelineInfo& info) { auto iter = m_pipeline_objects.find(info); if (iter != m_pipeline_objects.end()) return std::make_pair(iter->second, true); // Kick a job off. m_async_shader_compiler->QueueWorkItem( m_async_shader_compiler->CreateWorkItem(info)); m_pipeline_objects.emplace(info, std::make_pair(static_cast(VK_NULL_HANDLE), true)); return std::make_pair(std::make_pair(static_cast(VK_NULL_HANDLE), true), false); } VkPipeline ShaderCache::CreateComputePipeline(const ComputePipelineInfo& info) { VkComputePipelineCreateInfo pipeline_info = {VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO, nullptr, 0, {VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, nullptr, 0, VK_SHADER_STAGE_COMPUTE_BIT, info.cs, "main", nullptr}, info.pipeline_layout, VK_NULL_HANDLE, -1}; VkPipeline pipeline; VkResult res = vkCreateComputePipelines(g_vulkan_context->GetDevice(), VK_NULL_HANDLE, 1, &pipeline_info, nullptr, &pipeline); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkCreateComputePipelines failed: "); return VK_NULL_HANDLE; } return pipeline; } VkPipeline ShaderCache::GetComputePipeline(const ComputePipelineInfo& info) { auto iter = m_compute_pipeline_objects.find(info); if (iter != m_compute_pipeline_objects.end()) return iter->second; VkPipeline pipeline = CreateComputePipeline(info); m_compute_pipeline_objects.emplace(info, pipeline); return pipeline; } void ShaderCache::ClearPipelineCache() { // TODO: Stop any async compiling happening. for (const auto& it : m_pipeline_objects) { if (it.second.first != VK_NULL_HANDLE) vkDestroyPipeline(g_vulkan_context->GetDevice(), it.second.first, nullptr); } m_pipeline_objects.clear(); for (const auto& it : m_compute_pipeline_objects) { if (it.second != VK_NULL_HANDLE) vkDestroyPipeline(g_vulkan_context->GetDevice(), it.second, nullptr); } m_compute_pipeline_objects.clear(); } class PipelineCacheReadCallback : public LinearDiskCacheReader { public: PipelineCacheReadCallback(std::vector* data) : m_data(data) {} void Read(const u32& key, const u8* value, u32 value_size) override { m_data->resize(value_size); if (value_size > 0) memcpy(m_data->data(), value, value_size); } private: std::vector* m_data; }; class PipelineCacheReadIgnoreCallback : public LinearDiskCacheReader { public: void Read(const u32& key, const u8* value, u32 value_size) override {} }; bool ShaderCache::CreatePipelineCache() { // Vulkan pipeline caches can be shared between games for shader compile time reduction. // This assumes that drivers don't create all pipelines in the cache on load time, only // when a lookup occurs that matches a pipeline (or pipeline data) in the cache. m_pipeline_cache_filename = GetDiskShaderCacheFileName(APIType::Vulkan, "Pipeline", false, true); VkPipelineCacheCreateInfo info = { VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO, // VkStructureType sType nullptr, // const void* pNext 0, // VkPipelineCacheCreateFlags flags 0, // size_t initialDataSize nullptr // const void* pInitialData }; VkResult res = vkCreatePipelineCache(g_vulkan_context->GetDevice(), &info, nullptr, &m_pipeline_cache); if (res == VK_SUCCESS) return true; LOG_VULKAN_ERROR(res, "vkCreatePipelineCache failed: "); return false; } bool ShaderCache::LoadPipelineCache() { // We have to keep the pipeline cache file name around since when we save it // we delete the old one, by which time the game's unique ID is already cleared. m_pipeline_cache_filename = GetDiskShaderCacheFileName(APIType::Vulkan, "Pipeline", false, true); std::vector disk_data; LinearDiskCache disk_cache; PipelineCacheReadCallback read_callback(&disk_data); if (disk_cache.OpenAndRead(m_pipeline_cache_filename, read_callback) != 1) disk_data.clear(); if (!disk_data.empty() && !ValidatePipelineCache(disk_data.data(), disk_data.size())) { // Don't use this data. In fact, we should delete it to prevent it from being used next time. File::Delete(m_pipeline_cache_filename); return CreatePipelineCache(); } VkPipelineCacheCreateInfo info = { VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO, // VkStructureType sType nullptr, // const void* pNext 0, // VkPipelineCacheCreateFlags flags disk_data.size(), // size_t initialDataSize disk_data.data() // const void* pInitialData }; VkResult res = vkCreatePipelineCache(g_vulkan_context->GetDevice(), &info, nullptr, &m_pipeline_cache); if (res == VK_SUCCESS) return true; // Failed to create pipeline cache, try with it empty. LOG_VULKAN_ERROR(res, "vkCreatePipelineCache failed, trying empty cache: "); return CreatePipelineCache(); } // Based on Vulkan 1.0 specification, // Table 9.1. Layout for pipeline cache header version VK_PIPELINE_CACHE_HEADER_VERSION_ONE // NOTE: This data is assumed to be in little-endian format. #pragma pack(push, 4) struct VK_PIPELINE_CACHE_HEADER { u32 header_length; u32 header_version; u32 vendor_id; u32 device_id; u8 uuid[VK_UUID_SIZE]; }; #pragma pack(pop) // TODO: Remove the #if here when GCC 5 is a minimum build requirement. #if defined(__GNUC__) && !defined(__clang__) && __GNUC__ < 5 static_assert(std::has_trivial_copy_constructor::value, "VK_PIPELINE_CACHE_HEADER must be trivially copyable"); #else static_assert(std::is_trivially_copyable::value, "VK_PIPELINE_CACHE_HEADER must be trivially copyable"); #endif bool ShaderCache::ValidatePipelineCache(const u8* data, size_t data_length) { if (data_length < sizeof(VK_PIPELINE_CACHE_HEADER)) { ERROR_LOG(VIDEO, "Pipeline cache failed validation: Invalid header"); return false; } VK_PIPELINE_CACHE_HEADER header; std::memcpy(&header, data, sizeof(header)); if (header.header_length < sizeof(VK_PIPELINE_CACHE_HEADER)) { ERROR_LOG(VIDEO, "Pipeline cache failed validation: Invalid header length"); return false; } if (header.header_version != VK_PIPELINE_CACHE_HEADER_VERSION_ONE) { ERROR_LOG(VIDEO, "Pipeline cache failed validation: Invalid header version"); return false; } if (header.vendor_id != g_vulkan_context->GetDeviceProperties().vendorID) { ERROR_LOG(VIDEO, "Pipeline cache failed validation: Incorrect vendor ID (file: 0x%X, device: 0x%X)", header.vendor_id, g_vulkan_context->GetDeviceProperties().vendorID); return false; } if (header.device_id != g_vulkan_context->GetDeviceProperties().deviceID) { ERROR_LOG(VIDEO, "Pipeline cache failed validation: Incorrect device ID (file: 0x%X, device: 0x%X)", header.device_id, g_vulkan_context->GetDeviceProperties().deviceID); return false; } if (std::memcmp(header.uuid, g_vulkan_context->GetDeviceProperties().pipelineCacheUUID, VK_UUID_SIZE) != 0) { ERROR_LOG(VIDEO, "Pipeline cache failed validation: Incorrect UUID"); return false; } return true; } void ShaderCache::DestroyPipelineCache() { ClearPipelineCache(); vkDestroyPipelineCache(g_vulkan_context->GetDevice(), m_pipeline_cache, nullptr); m_pipeline_cache = VK_NULL_HANDLE; } void ShaderCache::SavePipelineCache() { size_t data_size; VkResult res = vkGetPipelineCacheData(g_vulkan_context->GetDevice(), m_pipeline_cache, &data_size, nullptr); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkGetPipelineCacheData failed: "); return; } std::vector data(data_size); res = vkGetPipelineCacheData(g_vulkan_context->GetDevice(), m_pipeline_cache, &data_size, data.data()); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkGetPipelineCacheData failed: "); return; } // Delete the old cache and re-create. File::Delete(m_pipeline_cache_filename); // We write a single key of 1, with the entire pipeline cache data. // Not ideal, but our disk cache class does not support just writing a single blob // of data without specifying a key. LinearDiskCache disk_cache; PipelineCacheReadIgnoreCallback callback; disk_cache.OpenAndRead(m_pipeline_cache_filename, callback); disk_cache.Append(1, data.data(), static_cast(data.size())); disk_cache.Close(); } // Cache inserter that is called back when reading from the file template struct ShaderCacheReader : public LinearDiskCacheReader { ShaderCacheReader(std::map>& shader_map) : m_shader_map(shader_map) { } void Read(const Uid& key, const u32* value, u32 value_size) override { // We don't insert null modules into the shader map since creation could succeed later on. // e.g. we're generating bad code, but fix this in a later version, and for some reason // the cache is not invalidated. VkShaderModule module = Util::CreateShaderModule(value, value_size); if (module == VK_NULL_HANDLE) return; m_shader_map.emplace(key, std::make_pair(module, false)); } std::map>& m_shader_map; }; void ShaderCache::LoadShaderCaches() { ShaderCacheReader vs_reader(m_vs_cache.shader_map); m_vs_cache.disk_cache.OpenAndRead(GetDiskShaderCacheFileName(APIType::Vulkan, "VS", true, true), vs_reader); ShaderCacheReader ps_reader(m_ps_cache.shader_map); m_ps_cache.disk_cache.OpenAndRead(GetDiskShaderCacheFileName(APIType::Vulkan, "PS", true, true), ps_reader); if (g_vulkan_context->SupportsGeometryShaders()) { ShaderCacheReader gs_reader(m_gs_cache.shader_map); m_gs_cache.disk_cache.OpenAndRead(GetDiskShaderCacheFileName(APIType::Vulkan, "GS", true, true), gs_reader); } ShaderCacheReader uber_vs_reader(m_uber_vs_cache.shader_map); m_uber_vs_cache.disk_cache.OpenAndRead( GetDiskShaderCacheFileName(APIType::Vulkan, "UberVS", false, true), uber_vs_reader); ShaderCacheReader uber_ps_reader(m_uber_ps_cache.shader_map); m_uber_ps_cache.disk_cache.OpenAndRead( GetDiskShaderCacheFileName(APIType::Vulkan, "UberPS", false, true), uber_ps_reader); SETSTAT(stats.numPixelShadersCreated, static_cast(m_ps_cache.shader_map.size())); SETSTAT(stats.numPixelShadersAlive, static_cast(m_ps_cache.shader_map.size())); SETSTAT(stats.numVertexShadersCreated, static_cast(m_vs_cache.shader_map.size())); SETSTAT(stats.numVertexShadersAlive, static_cast(m_vs_cache.shader_map.size())); } template static void DestroyShaderCache(T& cache) { cache.disk_cache.Sync(); cache.disk_cache.Close(); for (const auto& it : cache.shader_map) { if (it.second.first != VK_NULL_HANDLE) vkDestroyShaderModule(g_vulkan_context->GetDevice(), it.second.first, nullptr); } cache.shader_map.clear(); } void ShaderCache::DestroyShaderCaches() { DestroyShaderCache(m_vs_cache); DestroyShaderCache(m_ps_cache); if (g_vulkan_context->SupportsGeometryShaders()) DestroyShaderCache(m_gs_cache); DestroyShaderCache(m_uber_vs_cache); DestroyShaderCache(m_uber_ps_cache); SETSTAT(stats.numPixelShadersCreated, 0); SETSTAT(stats.numPixelShadersAlive, 0); SETSTAT(stats.numVertexShadersCreated, 0); SETSTAT(stats.numVertexShadersAlive, 0); } VkShaderModule ShaderCache::GetVertexShaderForUid(const VertexShaderUid& uid) { auto it = m_vs_cache.shader_map.find(uid); if (it != m_vs_cache.shader_map.end()) { // If it's pending, compile it synchronously. if (!it->second.second) return it->second.first; else m_vs_cache.shader_map.erase(it); } // Not in the cache, so compile the shader. ShaderCompiler::SPIRVCodeVector spv; VkShaderModule module = VK_NULL_HANDLE; ShaderCode source_code = GenerateVertexShaderCode(APIType::Vulkan, ShaderHostConfig::GetCurrent(), uid.GetUidData()); if (ShaderCompiler::CompileVertexShader(&spv, source_code.GetBuffer().c_str(), source_code.GetBuffer().length())) { module = Util::CreateShaderModule(spv.data(), spv.size()); // Append to shader cache if it created successfully. if (module != VK_NULL_HANDLE) { m_vs_cache.disk_cache.Append(uid, spv.data(), static_cast(spv.size())); INCSTAT(stats.numVertexShadersCreated); INCSTAT(stats.numVertexShadersAlive); } } // We still insert null entries to prevent further compilation attempts. m_vs_cache.shader_map.emplace(uid, std::make_pair(module, false)); return module; } VkShaderModule ShaderCache::GetGeometryShaderForUid(const GeometryShaderUid& uid) { _assert_(g_vulkan_context->SupportsGeometryShaders()); auto it = m_gs_cache.shader_map.find(uid); if (it != m_gs_cache.shader_map.end()) { // If it's pending, compile it synchronously. if (!it->second.second) return it->second.first; else m_gs_cache.shader_map.erase(it); } // Not in the cache, so compile the shader. ShaderCompiler::SPIRVCodeVector spv; VkShaderModule module = VK_NULL_HANDLE; ShaderCode source_code = GenerateGeometryShaderCode(APIType::Vulkan, ShaderHostConfig::GetCurrent(), uid.GetUidData()); if (ShaderCompiler::CompileGeometryShader(&spv, source_code.GetBuffer().c_str(), source_code.GetBuffer().length())) { module = Util::CreateShaderModule(spv.data(), spv.size()); // Append to shader cache if it created successfully. if (module != VK_NULL_HANDLE) m_gs_cache.disk_cache.Append(uid, spv.data(), static_cast(spv.size())); } // We still insert null entries to prevent further compilation attempts. m_gs_cache.shader_map.emplace(uid, std::make_pair(module, false)); return module; } VkShaderModule ShaderCache::GetPixelShaderForUid(const PixelShaderUid& uid) { auto it = m_ps_cache.shader_map.find(uid); if (it != m_ps_cache.shader_map.end()) { // If it's pending, compile it synchronously. if (!it->second.second) return it->second.first; else m_ps_cache.shader_map.erase(it); } // Not in the cache, so compile the shader. ShaderCompiler::SPIRVCodeVector spv; VkShaderModule module = VK_NULL_HANDLE; ShaderCode source_code = GeneratePixelShaderCode(APIType::Vulkan, ShaderHostConfig::GetCurrent(), uid.GetUidData()); if (ShaderCompiler::CompileFragmentShader(&spv, source_code.GetBuffer().c_str(), source_code.GetBuffer().length())) { module = Util::CreateShaderModule(spv.data(), spv.size()); // Append to shader cache if it created successfully. if (module != VK_NULL_HANDLE) { m_ps_cache.disk_cache.Append(uid, spv.data(), static_cast(spv.size())); INCSTAT(stats.numPixelShadersCreated); INCSTAT(stats.numPixelShadersAlive); } } // We still insert null entries to prevent further compilation attempts. m_ps_cache.shader_map.emplace(uid, std::make_pair(module, false)); return module; } VkShaderModule ShaderCache::GetVertexUberShaderForUid(const UberShader::VertexShaderUid& uid) { auto it = m_uber_vs_cache.shader_map.find(uid); if (it != m_uber_vs_cache.shader_map.end()) { // If it's pending, compile it synchronously. if (!it->second.second) return it->second.first; else m_uber_vs_cache.shader_map.erase(it); } // Not in the cache, so compile the shader. ShaderCompiler::SPIRVCodeVector spv; VkShaderModule module = VK_NULL_HANDLE; ShaderCode source_code = UberShader::GenVertexShader( APIType::Vulkan, ShaderHostConfig::GetCurrent(), uid.GetUidData()); if (ShaderCompiler::CompileVertexShader(&spv, source_code.GetBuffer().c_str(), source_code.GetBuffer().length())) { module = Util::CreateShaderModule(spv.data(), spv.size()); // Append to shader cache if it created successfully. if (module != VK_NULL_HANDLE) { m_uber_vs_cache.disk_cache.Append(uid, spv.data(), static_cast(spv.size())); INCSTAT(stats.numVertexShadersCreated); INCSTAT(stats.numVertexShadersAlive); } } // We still insert null entries to prevent further compilation attempts. m_uber_vs_cache.shader_map.emplace(uid, std::make_pair(module, false)); return module; } VkShaderModule ShaderCache::GetPixelUberShaderForUid(const UberShader::PixelShaderUid& uid) { auto it = m_uber_ps_cache.shader_map.find(uid); if (it != m_uber_ps_cache.shader_map.end()) { // If it's pending, compile it synchronously. if (!it->second.second) return it->second.first; else m_uber_ps_cache.shader_map.erase(it); } // Not in the cache, so compile the shader. ShaderCompiler::SPIRVCodeVector spv; VkShaderModule module = VK_NULL_HANDLE; ShaderCode source_code = UberShader::GenPixelShader(APIType::Vulkan, ShaderHostConfig::GetCurrent(), uid.GetUidData()); if (ShaderCompiler::CompileFragmentShader(&spv, source_code.GetBuffer().c_str(), source_code.GetBuffer().length())) { module = Util::CreateShaderModule(spv.data(), spv.size()); // Append to shader cache if it created successfully. if (module != VK_NULL_HANDLE) { m_uber_ps_cache.disk_cache.Append(uid, spv.data(), static_cast(spv.size())); INCSTAT(stats.numPixelShadersCreated); INCSTAT(stats.numPixelShadersAlive); } } // We still insert null entries to prevent further compilation attempts. m_uber_ps_cache.shader_map.emplace(uid, std::make_pair(module, false)); return module; } void ShaderCache::RecompileSharedShaders() { DestroySharedShaders(); if (!CompileSharedShaders()) PanicAlert("Failed to recompile shared shaders."); } void ShaderCache::ReloadShaderAndPipelineCaches() { m_async_shader_compiler->WaitUntilCompletion(); m_async_shader_compiler->RetrieveWorkItems(); SavePipelineCache(); DestroyShaderCaches(); DestroyPipelineCache(); if (g_ActiveConfig.bShaderCache) { LoadShaderCaches(); LoadPipelineCache(); } else { CreatePipelineCache(); } if (g_ActiveConfig.CanPrecompileUberShaders()) PrecompileUberShaders(); } std::string ShaderCache::GetUtilityShaderHeader() const { std::stringstream ss; if (g_ActiveConfig.iMultisamples > 1) { ss << "#define MSAA_ENABLED 1" << std::endl; ss << "#define MSAA_SAMPLES " << g_ActiveConfig.iMultisamples << std::endl; if (g_ActiveConfig.bSSAA) ss << "#define SSAA_ENABLED 1" << std::endl; } u32 efb_layers = (g_ActiveConfig.iStereoMode != STEREO_OFF) ? 2 : 1; ss << "#define EFB_LAYERS " << efb_layers << std::endl; return ss.str(); } // Comparison operators for PipelineInfos // Since these all boil down to POD types, we can just memcmp the entire thing for speed // The is_trivially_copyable check fails on MSVC due to BitField. // TODO: Can we work around this any way? #if defined(__GNUC__) && !defined(__clang__) && __GNUC__ < 5 && !defined(_MSC_VER) static_assert(std::has_trivial_copy_constructor::value, "PipelineInfo is trivially copyable"); #elif !defined(_MSC_VER) static_assert(std::is_trivially_copyable::value, "PipelineInfo is trivially copyable"); #endif std::size_t PipelineInfoHash::operator()(const PipelineInfo& key) const { return static_cast(XXH64(&key, sizeof(key), 0)); } bool operator==(const PipelineInfo& lhs, const PipelineInfo& rhs) { return std::memcmp(&lhs, &rhs, sizeof(lhs)) == 0; } bool operator!=(const PipelineInfo& lhs, const PipelineInfo& rhs) { return !operator==(lhs, rhs); } bool operator<(const PipelineInfo& lhs, const PipelineInfo& rhs) { return std::memcmp(&lhs, &rhs, sizeof(lhs)) < 0; } bool operator>(const PipelineInfo& lhs, const PipelineInfo& rhs) { return std::memcmp(&lhs, &rhs, sizeof(lhs)) > 0; } bool operator==(const SamplerState& lhs, const SamplerState& rhs) { return lhs.bits == rhs.bits; } bool operator!=(const SamplerState& lhs, const SamplerState& rhs) { return !operator==(lhs, rhs); } bool operator>(const SamplerState& lhs, const SamplerState& rhs) { return lhs.bits > rhs.bits; } bool operator<(const SamplerState& lhs, const SamplerState& rhs) { return lhs.bits < rhs.bits; } std::size_t ComputePipelineInfoHash::operator()(const ComputePipelineInfo& key) const { return static_cast(XXH64(&key, sizeof(key), 0)); } bool operator==(const ComputePipelineInfo& lhs, const ComputePipelineInfo& rhs) { return std::memcmp(&lhs, &rhs, sizeof(lhs)) == 0; } bool operator!=(const ComputePipelineInfo& lhs, const ComputePipelineInfo& rhs) { return !operator==(lhs, rhs); } bool operator<(const ComputePipelineInfo& lhs, const ComputePipelineInfo& rhs) { return std::memcmp(&lhs, &rhs, sizeof(lhs)) < 0; } bool operator>(const ComputePipelineInfo& lhs, const ComputePipelineInfo& rhs) { return std::memcmp(&lhs, &rhs, sizeof(lhs)) > 0; } bool ShaderCache::CompileSharedShaders() { static const char PASSTHROUGH_VERTEX_SHADER_SOURCE[] = R"( layout(location = 0) in vec4 ipos; layout(location = 5) in vec4 icol0; layout(location = 8) in vec3 itex0; layout(location = 0) out vec3 uv0; layout(location = 1) out vec4 col0; void main() { gl_Position = ipos; uv0 = itex0; col0 = icol0; } )"; static const char PASSTHROUGH_GEOMETRY_SHADER_SOURCE[] = R"( layout(triangles) in; layout(triangle_strip, max_vertices = EFB_LAYERS * 3) out; layout(location = 0) in vec3 in_uv0[]; layout(location = 1) in vec4 in_col0[]; layout(location = 0) out vec3 out_uv0; layout(location = 1) out vec4 out_col0; void main() { for (int j = 0; j < EFB_LAYERS; j++) { for (int i = 0; i < 3; i++) { gl_Layer = j; gl_Position = gl_in[i].gl_Position; out_uv0 = vec3(in_uv0[i].xy, float(j)); out_col0 = in_col0[i]; EmitVertex(); } EndPrimitive(); } } )"; static const char SCREEN_QUAD_VERTEX_SHADER_SOURCE[] = R"( layout(location = 0) out vec3 uv0; void main() { /* * id &1 &2 clamp(*2-1) * 0 0,0 0,0 -1,-1 TL * 1 1,0 1,0 1,-1 TR * 2 0,2 0,1 -1,1 BL * 3 1,2 1,1 1,1 BR */ vec2 rawpos = vec2(float(gl_VertexID & 1), clamp(float(gl_VertexID & 2), 0.0f, 1.0f)); gl_Position = vec4(rawpos * 2.0f - 1.0f, 0.0f, 1.0f); uv0 = vec3(rawpos, 0.0f); } )"; static const char SCREEN_QUAD_GEOMETRY_SHADER_SOURCE[] = R"( layout(triangles) in; layout(triangle_strip, max_vertices = EFB_LAYERS * 3) out; layout(location = 0) in vec3 in_uv0[]; layout(location = 0) out vec3 out_uv0; void main() { for (int j = 0; j < EFB_LAYERS; j++) { for (int i = 0; i < 3; i++) { gl_Layer = j; gl_Position = gl_in[i].gl_Position; out_uv0 = vec3(in_uv0[i].xy, float(j)); EmitVertex(); } EndPrimitive(); } } )"; std::string header = GetUtilityShaderHeader(); m_screen_quad_vertex_shader = Util::CompileAndCreateVertexShader(header + SCREEN_QUAD_VERTEX_SHADER_SOURCE); m_passthrough_vertex_shader = Util::CompileAndCreateVertexShader(header + PASSTHROUGH_VERTEX_SHADER_SOURCE); if (m_screen_quad_vertex_shader == VK_NULL_HANDLE || m_passthrough_vertex_shader == VK_NULL_HANDLE) { return false; } if (g_ActiveConfig.iStereoMode != STEREO_OFF && g_vulkan_context->SupportsGeometryShaders()) { m_screen_quad_geometry_shader = Util::CompileAndCreateGeometryShader(header + SCREEN_QUAD_GEOMETRY_SHADER_SOURCE); m_passthrough_geometry_shader = Util::CompileAndCreateGeometryShader(header + PASSTHROUGH_GEOMETRY_SHADER_SOURCE); if (m_screen_quad_geometry_shader == VK_NULL_HANDLE || m_passthrough_geometry_shader == VK_NULL_HANDLE) { return false; } } return true; } void ShaderCache::DestroySharedShaders() { auto DestroyShader = [this](VkShaderModule& shader) { if (shader != VK_NULL_HANDLE) { vkDestroyShaderModule(g_vulkan_context->GetDevice(), shader, nullptr); shader = VK_NULL_HANDLE; } }; DestroyShader(m_screen_quad_vertex_shader); DestroyShader(m_passthrough_vertex_shader); DestroyShader(m_screen_quad_geometry_shader); DestroyShader(m_passthrough_geometry_shader); } void ShaderCache::CreateDummyPipeline(const UberShader::VertexShaderUid& vuid, const GeometryShaderUid& guid, const UberShader::PixelShaderUid& puid) { PortableVertexDeclaration vertex_decl; std::memset(&vertex_decl, 0, sizeof(vertex_decl)); PipelineInfo pinfo; pinfo.vertex_format = static_cast(VertexLoaderManager::GetUberVertexFormat(vertex_decl)); pinfo.pipeline_layout = g_object_cache->GetPipelineLayout( g_ActiveConfig.bBBoxEnable && g_ActiveConfig.BBoxUseFragmentShaderImplementation() ? PIPELINE_LAYOUT_BBOX : PIPELINE_LAYOUT_STANDARD); pinfo.vs = GetVertexUberShaderForUid(vuid); pinfo.gs = (!guid.GetUidData()->IsPassthrough() && g_vulkan_context->SupportsGeometryShaders()) ? GetGeometryShaderForUid(guid) : VK_NULL_HANDLE; pinfo.ps = GetPixelUberShaderForUid(puid); pinfo.render_pass = FramebufferManager::GetInstance()->GetEFBLoadRenderPass(); pinfo.rasterization_state.bits = Util::GetNoCullRasterizationState().bits; pinfo.depth_stencil_state.bits = Util::GetNoDepthTestingDepthStencilState().bits; pinfo.blend_state.hex = Util::GetNoBlendingBlendState().hex; switch (guid.GetUidData()->primitive_type) { case PRIMITIVE_POINTS: pinfo.primitive_topology = VK_PRIMITIVE_TOPOLOGY_POINT_LIST; break; case PRIMITIVE_LINES: pinfo.primitive_topology = VK_PRIMITIVE_TOPOLOGY_LINE_LIST; break; case PRIMITIVE_TRIANGLES: pinfo.primitive_topology = g_ActiveConfig.backend_info.bSupportsPrimitiveRestart ? VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP : VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST; break; } GetPipelineWithCacheResultAsync(pinfo); } void ShaderCache::PrecompileUberShaders() { UberShader::EnumerateVertexShaderUids([&](const UberShader::VertexShaderUid& vuid) { UberShader::EnumeratePixelShaderUids([&](const UberShader::PixelShaderUid& puid) { // UIDs must have compatible texgens, a mismatching combination will never be queried. if (vuid.GetUidData()->num_texgens != puid.GetUidData()->num_texgens) return; EnumerateGeometryShaderUids([&](const GeometryShaderUid& guid) { if (guid.GetUidData()->numTexGens != vuid.GetUidData()->num_texgens) return; CreateDummyPipeline(vuid, guid, puid); }); }); }); WaitForBackgroundCompilesToComplete(); } void ShaderCache::WaitForBackgroundCompilesToComplete() { m_async_shader_compiler->WaitUntilCompletion([](size_t completed, size_t total) { Host_UpdateProgressDialog(GetStringT("Compiling shaders...").c_str(), static_cast(completed), static_cast(total)); }); m_async_shader_compiler->RetrieveWorkItems(); Host_UpdateProgressDialog("", -1, -1); } void ShaderCache::RetrieveAsyncShaders() { m_async_shader_compiler->RetrieveWorkItems(); } std::pair ShaderCache::GetVertexShaderForUidAsync(const VertexShaderUid& uid) { auto it = m_vs_cache.shader_map.find(uid); if (it != m_vs_cache.shader_map.end()) return it->second; // Kick a compile job off. m_async_shader_compiler->QueueWorkItem( m_async_shader_compiler->CreateWorkItem(uid)); m_vs_cache.shader_map.emplace(uid, std::make_pair(static_cast(VK_NULL_HANDLE), true)); return std::make_pair(VK_NULL_HANDLE, true); } std::pair ShaderCache::GetPixelShaderForUidAsync(const PixelShaderUid& uid) { auto it = m_ps_cache.shader_map.find(uid); if (it != m_ps_cache.shader_map.end()) return it->second; // Kick a compile job off. m_async_shader_compiler->QueueWorkItem( m_async_shader_compiler->CreateWorkItem(uid)); m_ps_cache.shader_map.emplace(uid, std::make_pair(static_cast(VK_NULL_HANDLE), true)); return std::make_pair(VK_NULL_HANDLE, true); } bool ShaderCache::VertexShaderCompilerWorkItem::Compile() { ShaderCode code = GenerateVertexShaderCode(APIType::Vulkan, ShaderHostConfig::GetCurrent(), m_uid.GetUidData()); if (!ShaderCompiler::CompileVertexShader(&m_spirv, code.GetBuffer().c_str(), code.GetBuffer().length())) return true; m_module = Util::CreateShaderModule(m_spirv.data(), m_spirv.size()); return true; } void ShaderCache::VertexShaderCompilerWorkItem::Retrieve() { auto it = g_shader_cache->m_vs_cache.shader_map.find(m_uid); if (it == g_shader_cache->m_vs_cache.shader_map.end()) { g_shader_cache->m_vs_cache.shader_map.emplace(m_uid, std::make_pair(m_module, false)); g_shader_cache->m_vs_cache.disk_cache.Append(m_uid, m_spirv.data(), static_cast(m_spirv.size())); return; } // The main thread may have also compiled this shader. if (!it->second.second) { if (m_module != VK_NULL_HANDLE) vkDestroyShaderModule(g_vulkan_context->GetDevice(), m_module, nullptr); return; } // No longer pending. it->second.first = m_module; it->second.second = false; g_shader_cache->m_vs_cache.disk_cache.Append(m_uid, m_spirv.data(), static_cast(m_spirv.size())); } bool ShaderCache::PixelShaderCompilerWorkItem::Compile() { ShaderCode code = GeneratePixelShaderCode(APIType::Vulkan, ShaderHostConfig::GetCurrent(), m_uid.GetUidData()); if (!ShaderCompiler::CompileFragmentShader(&m_spirv, code.GetBuffer().c_str(), code.GetBuffer().length())) return true; m_module = Util::CreateShaderModule(m_spirv.data(), m_spirv.size()); return true; } void ShaderCache::PixelShaderCompilerWorkItem::Retrieve() { auto it = g_shader_cache->m_ps_cache.shader_map.find(m_uid); if (it == g_shader_cache->m_ps_cache.shader_map.end()) { g_shader_cache->m_ps_cache.shader_map.emplace(m_uid, std::make_pair(m_module, false)); g_shader_cache->m_ps_cache.disk_cache.Append(m_uid, m_spirv.data(), static_cast(m_spirv.size())); return; } // The main thread may have also compiled this shader. if (!it->second.second) { if (m_module != VK_NULL_HANDLE) vkDestroyShaderModule(g_vulkan_context->GetDevice(), m_module, nullptr); return; } // No longer pending. it->second.first = m_module; it->second.second = false; g_shader_cache->m_ps_cache.disk_cache.Append(m_uid, m_spirv.data(), static_cast(m_spirv.size())); } bool ShaderCache::PipelineCompilerWorkItem::Compile() { m_pipeline = g_shader_cache->CreatePipeline(m_info); return true; } void ShaderCache::PipelineCompilerWorkItem::Retrieve() { auto it = g_shader_cache->m_pipeline_objects.find(m_info); if (it == g_shader_cache->m_pipeline_objects.end()) { g_shader_cache->m_pipeline_objects.emplace(m_info, std::make_pair(m_pipeline, false)); return; } // The main thread may have also compiled this shader. if (!it->second.second) { if (m_pipeline != VK_NULL_HANDLE) vkDestroyPipeline(g_vulkan_context->GetDevice(), m_pipeline, nullptr); return; } // No longer pending. it->second.first = m_pipeline; it->second.second = false; } }