// Copyright 2009 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #pragma once #include <memory> #include <utility> #include <vector> #include "Common/CommonTypes.h" #include "Common/GL/GLUtil.h" #include "VideoBackends/OGL/ProgramShaderCache.h" #include "VideoBackends/OGL/Render.h" #include "VideoCommon/FramebufferManagerBase.h" // On the GameCube, the game sends a request for the graphics processor to // transfer its internal EFB (Embedded Framebuffer) to an area in GameCube RAM // called the XFB (External Framebuffer). The size and location of the XFB is // decided at the time of the copy, and the format is always YUYV. The video // interface is given a pointer to the XFB, which will be decoded and // displayed on the TV. // // There are two ways for Dolphin to emulate this: // // Real XFB mode: // // Dolphin will behave like the GameCube and encode the EFB to // a portion of GameCube RAM. The emulated video interface will decode the data // for output to the screen. // // Advantages: Behaves exactly like the GameCube. // Disadvantages: Resolution will be limited. // // Virtual XFB mode: // // When a request is made to copy the EFB to an XFB, Dolphin // will remember the RAM location and size of the XFB in a Virtual XFB list. // The video interface will look up the XFB in the list and use the enhanced // data stored there, if available. // // Advantages: Enables high resolution graphics, better than real hardware. // Disadvantages: If the GameCube CPU writes directly to the XFB (which is // possible but uncommon), the Virtual XFB will not capture this information. // There may be multiple XFBs in GameCube RAM. This is the maximum number to // virtualize. namespace OGL { struct XFBSource : public XFBSourceBase { XFBSource(GLuint tex, int layers) : texture(tex), m_layers(layers) {} ~XFBSource(); void CopyEFB(float Gamma) override; void DecodeToTexture(u32 xfbAddr, u32 fbWidth, u32 fbHeight) override; const GLuint texture; const int m_layers; }; class FramebufferManager : public FramebufferManagerBase { public: FramebufferManager(int targetWidth, int targetHeight, int msaaSamples, bool enable_stencil_buffer); ~FramebufferManager(); // To get the EFB in texture form, these functions may have to transfer // the EFB to a resolved texture first. static GLuint GetEFBColorTexture(const EFBRectangle& sourceRc); static GLuint GetEFBDepthTexture(const EFBRectangle& sourceRc); static void ResolveEFBStencilTexture(); static GLuint GetEFBFramebuffer(unsigned int layer = 0) { return (layer < m_EFBLayers) ? m_efbFramebuffer[layer] : m_efbFramebuffer.back(); } static GLuint GetXFBFramebuffer() { return m_xfbFramebuffer; } // Resolved framebuffer is only used in MSAA mode. static GLuint GetResolvedFramebuffer(); static void SetFramebuffer(GLuint fb); static void FramebufferTexture(GLenum target, GLenum attachment, GLenum textarget, GLuint texture, GLint level); // If in MSAA mode, this will perform a resolve of the specified rectangle, and return the resolve // target as a texture ID. // Thus, this call may be expensive. Don't repeat it unnecessarily. // If not in MSAA mode, will just return the render target texture ID. // After calling this, before you render anything else, you MUST bind the framebuffer you want to // draw to. static GLuint ResolveAndGetRenderTarget(const EFBRectangle& rect); // Same as above but for the depth Target. // After calling this, before you render anything else, you MUST bind the framebuffer you want to // draw to. static GLuint ResolveAndGetDepthTarget(const EFBRectangle& rect); // Convert EFB content on pixel format change. // convtype=0 -> rgb8->rgba6, convtype=2 -> rgba6->rgb8 static void ReinterpretPixelData(unsigned int convtype); static void PokeEFB(EFBAccessType type, const EfbPokeData* points, size_t num_points); static bool HasStencilBuffer(); private: GLuint CreateTexture(GLenum texture_type, GLenum internal_format, GLenum pixel_format, GLenum data_type); void BindLayeredTexture(GLuint texture, const std::vector<GLuint>& framebuffers, GLenum attachment, GLenum texture_type); std::unique_ptr<XFBSourceBase> CreateXFBSource(unsigned int target_width, unsigned int target_height, unsigned int layers) override; std::pair<u32, u32> GetTargetSize() const override; void CopyToRealXFB(u32 xfbAddr, u32 fbStride, u32 fbHeight, const EFBRectangle& sourceRc, float Gamma) override; static int m_targetWidth; static int m_targetHeight; static int m_msaaSamples; static GLenum m_textureType; static std::vector<GLuint> m_efbFramebuffer; static GLuint m_xfbFramebuffer; static GLuint m_efbColor; static GLuint m_efbDepth; static GLuint m_efbColorSwap; // will be hot swapped with m_efbColor when reinterpreting EFB pixel formats static bool m_enable_stencil_buffer; // Only used in MSAA mode, TODO: try to avoid them static std::vector<GLuint> m_resolvedFramebuffer; static GLuint m_resolvedColorTexture; static GLuint m_resolvedDepthTexture; // For pixel format draw static SHADER m_pixel_format_shaders[2]; // For EFB pokes static GLuint m_EfbPokes_VBO; static GLuint m_EfbPokes_VAO; static SHADER m_EfbPokes; }; } // namespace OGL