// Copyright (C) 2003 Dolphin Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official Git repository and contact information can be found at // http://code.google.com/p/dolphin-emu/ #include "Hash.h" #if _M_SSE >= 0x402 #include "CPUDetect.h" #include #endif static u64 (*ptrHashFunction)(const u8 *src, int len, u32 samples) = &GetMurmurHash3; // uint32_t // WARNING - may read one more byte! // Implementation from Wikipedia. u32 HashFletcher(const u8* data_u8, size_t length) { const u16* data = (const u16*)data_u8; /* Pointer to the data to be summed */ size_t len = (length + 1) / 2; /* Length in 16-bit words */ u32 sum1 = 0xffff, sum2 = 0xffff; while (len) { size_t tlen = len > 360 ? 360 : len; len -= tlen; do { sum1 += *data++; sum2 += sum1; } while (--tlen); sum1 = (sum1 & 0xffff) + (sum1 >> 16); sum2 = (sum2 & 0xffff) + (sum2 >> 16); } // Second reduction step to reduce sums to 16 bits sum1 = (sum1 & 0xffff) + (sum1 >> 16); sum2 = (sum2 & 0xffff) + (sum2 >> 16); return(sum2 << 16 | sum1); } // Implementation from Wikipedia // Slightly slower than Fletcher above, but slighly more reliable. #define MOD_ADLER 65521 // data: Pointer to the data to be summed; len is in bytes u32 HashAdler32(const u8* data, size_t len) { u32 a = 1, b = 0; while (len) { size_t tlen = len > 5550 ? 5550 : len; len -= tlen; do { a += *data++; b += a; } while (--tlen); a = (a & 0xffff) + (a >> 16) * (65536 - MOD_ADLER); b = (b & 0xffff) + (b >> 16) * (65536 - MOD_ADLER); } // It can be shown that a <= 0x1013a here, so a single subtract will do. if (a >= MOD_ADLER) { a -= MOD_ADLER; } // It can be shown that b can reach 0xfff87 here. b = (b & 0xffff) + (b >> 16) * (65536 - MOD_ADLER); if (b >= MOD_ADLER) { b -= MOD_ADLER; } return((b << 16) | a); } // Stupid hash - but can't go back now :) // Don't use for new things. At least it's reasonably fast. u32 HashEctor(const u8* ptr, int length) { u32 crc = 0; for (int i = 0; i < length; i++) { crc ^= ptr[i]; crc = (crc << 3) | (crc >> 29); } return(crc); } #ifdef _M_X64 //----------------------------------------------------------------------------- // Block read - if your platform needs to do endian-swapping or can only // handle aligned reads, do the conversion here inline u64 getblock(const u64 * p, int i) { return p[i]; } //---------- // Block mix - combine the key bits with the hash bits and scramble everything inline void bmix64(u64 & h1, u64 & h2, u64 & k1, u64 & k2, u64 & c1, u64 & c2) { k1 *= c1; k1 = _rotl64(k1,23); k1 *= c2; h1 ^= k1; h1 += h2; h2 = _rotl64(h2,41); k2 *= c2; k2 = _rotl64(k2,23); k2 *= c1; h2 ^= k2; h2 += h1; h1 = h1*3+0x52dce729; h2 = h2*3+0x38495ab5; c1 = c1*5+0x7b7d159c; c2 = c2*5+0x6bce6396; } //---------- // Finalization mix - avalanches all bits to within 0.05% bias inline u64 fmix64(u64 k) { k ^= k >> 33; k *= 0xff51afd7ed558ccd; k ^= k >> 33; k *= 0xc4ceb9fe1a85ec53; k ^= k >> 33; return k; } u64 GetMurmurHash3(const u8 *src, int len, u32 samples) { const u8 * data = (const u8*)src; const int nblocks = len / 16; u32 Step = (len / 8); if(samples == 0) samples = max(Step, 1u); Step = Step / samples; if(Step < 1) Step = 1; u64 h1 = 0x9368e53c2f6af274; u64 h2 = 0x586dcd208f7cd3fd; u64 c1 = 0x87c37b91114253d5; u64 c2 = 0x4cf5ad432745937f; //---------- // body const u64 * blocks = (const u64 *)(data); for(int i = 0; i < nblocks; i+=Step) { u64 k1 = getblock(blocks,i*2+0); u64 k2 = getblock(blocks,i*2+1); bmix64(h1,h2,k1,k2,c1,c2); } //---------- // tail const u8 * tail = (const u8*)(data + nblocks*16); u64 k1 = 0; u64 k2 = 0; switch(len & 15) { case 15: k2 ^= u64(tail[14]) << 48; case 14: k2 ^= u64(tail[13]) << 40; case 13: k2 ^= u64(tail[12]) << 32; case 12: k2 ^= u64(tail[11]) << 24; case 11: k2 ^= u64(tail[10]) << 16; case 10: k2 ^= u64(tail[ 9]) << 8; case 9: k2 ^= u64(tail[ 8]) << 0; case 8: k1 ^= u64(tail[ 7]) << 56; case 7: k1 ^= u64(tail[ 6]) << 48; case 6: k1 ^= u64(tail[ 5]) << 40; case 5: k1 ^= u64(tail[ 4]) << 32; case 4: k1 ^= u64(tail[ 3]) << 24; case 3: k1 ^= u64(tail[ 2]) << 16; case 2: k1 ^= u64(tail[ 1]) << 8; case 1: k1 ^= u64(tail[ 0]) << 0; bmix64(h1,h2,k1,k2,c1,c2); }; //---------- // finalization h2 ^= len; h1 += h2; h2 += h1; h1 = fmix64(h1); h2 = fmix64(h2); h1 += h2; return h1; } // CRC32 hash using the SSE4.2 instruction u64 GetCRC32(const u8 *src, int len, u32 samples) { #if _M_SSE >= 0x402 u64 h = len; u32 Step = (len / 8); const u64 *data = (const u64 *)src; const u64 *end = data + Step; if(samples == 0) samples = max(Step, 1u); Step = Step / samples; if(Step < 1) Step = 1; while(data < end) { h = _mm_crc32_u64(h, data[0]); data += Step; } const u8 *data2 = (const u8*)end; return _mm_crc32_u64(h, u64(data2[0])); #else return 0; #endif } /* * NOTE: This hash function is used for custom texture loading/dumping, so * it should not be changed, which would require all custom textures to be * recalculated for their new hash values. If the hashing function is * changed, make sure this one is still used when the legacy parameter is * true. */ u64 GetHashHiresTexture(const u8 *src, int len, u32 samples) { const u64 m = 0xc6a4a7935bd1e995; u64 h = len * m; const int r = 47; u32 Step = (len / 8); const u64 *data = (const u64 *)src; const u64 *end = data + Step; if(samples == 0) samples = max(Step, 1u); Step = Step / samples; if(Step < 1) Step = 1; while(data < end) { u64 k = data[0]; data+=Step; k *= m; k ^= k >> r; k *= m; h ^= k; h *= m; } const u8 * data2 = (const u8*)end; switch(len & 7) { case 7: h ^= u64(data2[6]) << 48; case 6: h ^= u64(data2[5]) << 40; case 5: h ^= u64(data2[4]) << 32; case 4: h ^= u64(data2[3]) << 24; case 3: h ^= u64(data2[2]) << 16; case 2: h ^= u64(data2[1]) << 8; case 1: h ^= u64(data2[0]); h *= m; }; h ^= h >> r; h *= m; h ^= h >> r; return h; } #else // CRC32 hash using the SSE4.2 instruction u64 GetCRC32(const u8 *src, int len, u32 samples) { #if _M_SSE >= 0x402 u32 h = len; u32 Step = (len/4); const u32 *data = (const u32 *)src; const u32 *end = data + Step; if(samples == 0) samples = max(Step, 1u); Step = Step / samples; if(Step < 1) Step = 1; while(data < end) { h = _mm_crc32_u32(h, data[0]); data += Step; } const u8 *data2 = (const u8*)end; return (u64)_mm_crc32_u32(h, u32(data2[0])); #else return 0; #endif } //----------------------------------------------------------------------------- // Block read - if your platform needs to do endian-swapping or can only // handle aligned reads, do the conversion here inline u32 getblock(const u32 * p, int i) { return p[i]; } //---------- // Finalization mix - force all bits of a hash block to avalanche // avalanches all bits to within 0.25% bias inline u32 fmix32(u32 h) { h ^= h >> 16; h *= 0x85ebca6b; h ^= h >> 13; h *= 0xc2b2ae35; h ^= h >> 16; return h; } inline void bmix32(u32 & h1, u32 & h2, u32 & k1, u32 & k2, u32 & c1, u32 & c2) { k1 *= c1; k1 = _rotl(k1,11); k1 *= c2; h1 ^= k1; h1 += h2; h2 = _rotl(h2,17); k2 *= c2; k2 = _rotl(k2,11); k2 *= c1; h2 ^= k2; h2 += h1; h1 = h1*3+0x52dce729; h2 = h2*3+0x38495ab5; c1 = c1*5+0x7b7d159c; c2 = c2*5+0x6bce6396; } //---------- u64 GetMurmurHash3(const u8* src, int len, u32 samples) { const u8 * data = (const u8*)src; u32 out[2]; const int nblocks = len / 8; u32 Step = (len / 4); if(samples == 0) samples = max(Step, 1u); Step = Step / samples; if(Step < 1) Step = 1; u32 h1 = 0x8de1c3ac; u32 h2 = 0xbab98226; u32 c1 = 0x95543787; u32 c2 = 0x2ad7eb25; //---------- // body const u32 * blocks = (const u32 *)(data + nblocks*8); for(int i = -nblocks; i < 0; i+=Step) { u32 k1 = getblock(blocks,i*2+0); u32 k2 = getblock(blocks,i*2+1); bmix32(h1,h2,k1,k2,c1,c2); } //---------- // tail const u8 * tail = (const u8*)(data + nblocks*8); u32 k1 = 0; u32 k2 = 0; switch(len & 7) { case 7: k2 ^= tail[6] << 16; case 6: k2 ^= tail[5] << 8; case 5: k2 ^= tail[4] << 0; case 4: k1 ^= tail[3] << 24; case 3: k1 ^= tail[2] << 16; case 2: k1 ^= tail[1] << 8; case 1: k1 ^= tail[0] << 0; bmix32(h1,h2,k1,k2,c1,c2); }; //---------- // finalization h2 ^= len; h1 += h2; h2 += h1; h1 = fmix32(h1); h2 = fmix32(h2); h1 += h2; h2 += h1; out[0] = h1; out[1] = h2; return *((u64 *)&out); } /* * FIXME: The old 32-bit version of this hash made different hashes than the * 64-bit version. Until someone can make a new version of the 32-bit one that * makes identical hashes, this is just a c/p of the 64-bit one. */ u64 GetHashHiresTexture(const u8 *src, int len, u32 samples) { const u64 m = 0xc6a4a7935bd1e995ULL; u64 h = len * m; const int r = 47; u32 Step = (len / 8); const u64 *data = (const u64 *)src; const u64 *end = data + Step; if(samples == 0) samples = max(Step, 1u); Step = Step / samples; if(Step < 1) Step = 1; while(data < end) { u64 k = data[0]; data+=Step; k *= m; k ^= k >> r; k *= m; h ^= k; h *= m; } const u8 * data2 = (const u8*)end; switch(len & 7) { case 7: h ^= u64(data2[6]) << 48; case 6: h ^= u64(data2[5]) << 40; case 5: h ^= u64(data2[4]) << 32; case 4: h ^= u64(data2[3]) << 24; case 3: h ^= u64(data2[2]) << 16; case 2: h ^= u64(data2[1]) << 8; case 1: h ^= u64(data2[0]); h *= m; }; h ^= h >> r; h *= m; h ^= h >> r; return h; } #endif u64 GetHash64(const u8 *src, int len, u32 samples) { return ptrHashFunction(src, len, samples); } // sets the hash function used for the texture cache void SetHash64Function(bool useHiresTextures) { if (useHiresTextures) { ptrHashFunction = &GetHashHiresTexture; } #if _M_SSE >= 0x402 else if (cpu_info.bSSE4_2 && !useHiresTextures) // sse crc32 version { ptrHashFunction = &GetCRC32; } #endif else { ptrHashFunction = &GetMurmurHash3; } }