// Copyright (C) 2003 Dolphin Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official Git repository and contact information can be found at // http://code.google.com/p/dolphin-emu/ #include "Common.h" #include "MathUtil.h" #include #include namespace MathUtil { u32 ClassifyDouble(double dvalue) { // TODO: Optimize the below to be as fast as possible. IntDouble value; value.d = dvalue; u64 sign = value.i & DOUBLE_SIGN; u64 exp = value.i & DOUBLE_EXP; if (exp > DOUBLE_ZERO && exp < DOUBLE_EXP) { // Nice normalized number. return sign ? PPC_FPCLASS_NN : PPC_FPCLASS_PN; } else { u64 mantissa = value.i & DOUBLE_FRAC; if (mantissa) { if (exp) { return PPC_FPCLASS_QNAN; } else { // Denormalized number. return sign ? PPC_FPCLASS_ND : PPC_FPCLASS_PD; } } else if (exp) { //Infinite return sign ? PPC_FPCLASS_NINF : PPC_FPCLASS_PINF; } else { //Zero return sign ? PPC_FPCLASS_NZ : PPC_FPCLASS_PZ; } } } u32 ClassifyFloat(float fvalue) { // TODO: Optimize the below to be as fast as possible. IntFloat value; value.f = fvalue; u32 sign = value.i & FLOAT_SIGN; u32 exp = value.i & FLOAT_EXP; if (exp > FLOAT_ZERO && exp < FLOAT_EXP) { // Nice normalized number. return sign ? PPC_FPCLASS_NN : PPC_FPCLASS_PN; } else { u32 mantissa = value.i & FLOAT_FRAC; if (mantissa) { if (exp) { return PPC_FPCLASS_QNAN; // Quiet NAN } else { // Denormalized number. return sign ? PPC_FPCLASS_ND : PPC_FPCLASS_PD; } } else if (exp) { // Infinite return sign ? PPC_FPCLASS_NINF : PPC_FPCLASS_PINF; } else { //Zero return sign ? PPC_FPCLASS_NZ : PPC_FPCLASS_PZ; } } } } // namespace inline void MatrixMul(int n, const float *a, const float *b, float *result) { for (int i = 0; i < n; ++i) { for (int j = 0; j < n; ++j) { float temp = 0; for (int k = 0; k < n; ++k) { temp += a[i * n + k] * b[k * n + j]; } result[i * n + j] = temp; } } } // Calculate sum of a float list float MathFloatVectorSum(const std::vector& Vec) { return std::accumulate(Vec.begin(), Vec.end(), 0.0f); } void Matrix33::LoadIdentity(Matrix33 &mtx) { memset(mtx.data, 0, sizeof(mtx.data)); mtx.data[0] = 1.0f; mtx.data[4] = 1.0f; mtx.data[8] = 1.0f; } void Matrix33::RotateX(Matrix33 &mtx, float rad) { float s = sin(rad); float c = cos(rad); memset(mtx.data, 0, sizeof(mtx.data)); mtx.data[0] = 1; mtx.data[4] = c; mtx.data[5] = -s; mtx.data[7] = s; mtx.data[8] = c; } void Matrix33::RotateY(Matrix33 &mtx, float rad) { float s = sin(rad); float c = cos(rad); memset(mtx.data, 0, sizeof(mtx.data)); mtx.data[0] = c; mtx.data[2] = s; mtx.data[4] = 1; mtx.data[6] = -s; mtx.data[8] = c; } void Matrix33::Multiply(const Matrix33 &a, const Matrix33 &b, Matrix33 &result) { MatrixMul(3, a.data, b.data, result.data); } void Matrix33::Multiply(const Matrix33 &a, const float vec[3], float result[3]) { for (int i = 0; i < 3; ++i) { result[i] = 0; for (int k = 0; k < 3; ++k) { result[i] += a.data[i * 3 + k] * vec[k]; } } } void Matrix44::LoadIdentity(Matrix44 &mtx) { memset(mtx.data, 0, sizeof(mtx.data)); mtx.data[0] = 1.0f; mtx.data[5] = 1.0f; mtx.data[10] = 1.0f; mtx.data[15] = 1.0f; } void Matrix44::LoadMatrix33(Matrix44 &mtx, const Matrix33 &m33) { for (int i = 0; i < 3; ++i) { for (int j = 0; j < 3; ++j) { mtx.data[i * 4 + j] = m33.data[i * 3 + j]; } } for (int i = 0; i < 3; ++i) { mtx.data[i * 4 + 3] = 0; mtx.data[i + 12] = 0; } mtx.data[15] = 1.0f; } void Matrix44::Set(Matrix44 &mtx, const float mtxArray[16]) { for(int i = 0; i < 16; ++i) { mtx.data[i] = mtxArray[i]; } } void Matrix44::Translate(Matrix44 &mtx, const float vec[3]) { LoadIdentity(mtx); mtx.data[3] = vec[0]; mtx.data[7] = vec[1]; mtx.data[11] = vec[2]; } void Matrix44::Multiply(const Matrix44 &a, const Matrix44 &b, Matrix44 &result) { MatrixMul(4, a.data, b.data, result.data); }