// Copyright 2010 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #include "VideoCommon/TextureCacheBase.h" #include <algorithm> #include <cmath> #include <cstring> #include <memory> #include <string> #include <utility> #include <vector> #if defined(_M_X86) || defined(_M_X86_64) #include <pmmintrin.h> #endif #include <fmt/format.h> #include "Common/Align.h" #include "Common/Assert.h" #include "Common/ChunkFile.h" #include "Common/CommonTypes.h" #include "Common/FileUtil.h" #include "Common/Hash.h" #include "Common/Logging/Log.h" #include "Common/MathUtil.h" #include "Common/MemoryUtil.h" #include "Core/Config/GraphicsSettings.h" #include "Core/ConfigManager.h" #include "Core/FifoPlayer/FifoPlayer.h" #include "Core/FifoPlayer/FifoRecorder.h" #include "Core/HW/Memmap.h" #include "VideoCommon/AbstractFramebuffer.h" #include "VideoCommon/AbstractStagingTexture.h" #include "VideoCommon/BPMemory.h" #include "VideoCommon/FramebufferManager.h" #include "VideoCommon/HiresTextures.h" #include "VideoCommon/OpcodeDecoding.h" #include "VideoCommon/PixelShaderManager.h" #include "VideoCommon/RenderBase.h" #include "VideoCommon/SamplerCommon.h" #include "VideoCommon/ShaderCache.h" #include "VideoCommon/Statistics.h" #include "VideoCommon/TextureConversionShader.h" #include "VideoCommon/TextureConverterShaderGen.h" #include "VideoCommon/TextureDecoder.h" #include "VideoCommon/VertexManagerBase.h" #include "VideoCommon/VideoCommon.h" #include "VideoCommon/VideoConfig.h" static const u64 TEXHASH_INVALID = 0; // Sonic the Fighters (inside Sonic Gems Collection) loops a 64 frames animation static const int TEXTURE_KILL_THRESHOLD = 64; static const int TEXTURE_POOL_KILL_THRESHOLD = 3; std::unique_ptr<TextureCacheBase> g_texture_cache; std::bitset<8> TextureCacheBase::valid_bind_points; TextureCacheBase::TCacheEntry::TCacheEntry(std::unique_ptr<AbstractTexture> tex, std::unique_ptr<AbstractFramebuffer> fb) : texture(std::move(tex)), framebuffer(std::move(fb)) { } TextureCacheBase::TCacheEntry::~TCacheEntry() { for (auto& reference : references) reference->references.erase(this); } void TextureCacheBase::CheckTempSize(size_t required_size) { if (required_size <= temp_size) return; temp_size = required_size; Common::FreeAlignedMemory(temp); temp = static_cast<u8*>(Common::AllocateAlignedMemory(temp_size, 16)); } TextureCacheBase::TextureCacheBase() { SetBackupConfig(g_ActiveConfig); temp_size = 2048 * 2048 * 4; temp = static_cast<u8*>(Common::AllocateAlignedMemory(temp_size, 16)); TexDecoder_SetTexFmtOverlayOptions(backup_config.texfmt_overlay, backup_config.texfmt_overlay_center); HiresTexture::Init(); Common::SetHash64Function(); InvalidateAllBindPoints(); } TextureCacheBase::~TextureCacheBase() { // Clear pending EFB copies first, so we don't try to flush them. m_pending_efb_copies.clear(); HiresTexture::Shutdown(); Invalidate(); Common::FreeAlignedMemory(temp); temp = nullptr; } bool TextureCacheBase::Initialize() { if (!CreateUtilityTextures()) { PanicAlert("Failed to create utility textures."); return false; } return true; } void TextureCacheBase::Invalidate() { FlushEFBCopies(); InvalidateAllBindPoints(); bound_textures.fill(nullptr); for (auto& tex : textures_by_address) { delete tex.second; } textures_by_address.clear(); textures_by_hash.clear(); texture_pool.clear(); } void TextureCacheBase::OnConfigChanged(const VideoConfig& config) { if (config.bHiresTextures != backup_config.hires_textures || config.bCacheHiresTextures != backup_config.cache_hires_textures) { HiresTexture::Update(); } // TODO: Invalidating texcache is really stupid in some of these cases if (config.iSafeTextureCache_ColorSamples != backup_config.color_samples || config.bTexFmtOverlayEnable != backup_config.texfmt_overlay || config.bTexFmtOverlayCenter != backup_config.texfmt_overlay_center || config.bHiresTextures != backup_config.hires_textures || config.bEnableGPUTextureDecoding != backup_config.gpu_texture_decoding || config.bDisableCopyToVRAM != backup_config.disable_vram_copies || config.bArbitraryMipmapDetection != backup_config.arbitrary_mipmap_detection) { Invalidate(); TexDecoder_SetTexFmtOverlayOptions(config.bTexFmtOverlayEnable, config.bTexFmtOverlayCenter); } SetBackupConfig(config); } void TextureCacheBase::Cleanup(int _frameCount) { TexAddrCache::iterator iter = textures_by_address.begin(); TexAddrCache::iterator tcend = textures_by_address.end(); while (iter != tcend) { if (iter->second->tmem_only) { iter = InvalidateTexture(iter); } else if (iter->second->frameCount == FRAMECOUNT_INVALID) { iter->second->frameCount = _frameCount; ++iter; } else if (_frameCount > TEXTURE_KILL_THRESHOLD + iter->second->frameCount) { if (iter->second->IsCopy()) { // Only remove EFB copies when they wouldn't be used anymore(changed hash), because EFB // copies living on the // host GPU are unrecoverable. Perform this check only every TEXTURE_KILL_THRESHOLD for // performance reasons if ((_frameCount - iter->second->frameCount) % TEXTURE_KILL_THRESHOLD == 1 && iter->second->hash != iter->second->CalculateHash()) { iter = InvalidateTexture(iter); } else { ++iter; } } else { iter = InvalidateTexture(iter); } } else { ++iter; } } TexPool::iterator iter2 = texture_pool.begin(); TexPool::iterator tcend2 = texture_pool.end(); while (iter2 != tcend2) { if (iter2->second.frameCount == FRAMECOUNT_INVALID) { iter2->second.frameCount = _frameCount; } if (_frameCount > TEXTURE_POOL_KILL_THRESHOLD + iter2->second.frameCount) { iter2 = texture_pool.erase(iter2); } else { ++iter2; } } } bool TextureCacheBase::TCacheEntry::OverlapsMemoryRange(u32 range_address, u32 range_size) const { if (addr + size_in_bytes <= range_address) return false; if (addr >= range_address + range_size) return false; return true; } void TextureCacheBase::SetBackupConfig(const VideoConfig& config) { backup_config.color_samples = config.iSafeTextureCache_ColorSamples; backup_config.texfmt_overlay = config.bTexFmtOverlayEnable; backup_config.texfmt_overlay_center = config.bTexFmtOverlayCenter; backup_config.hires_textures = config.bHiresTextures; backup_config.cache_hires_textures = config.bCacheHiresTextures; backup_config.stereo_3d = config.stereo_mode != StereoMode::Off; backup_config.efb_mono_depth = config.bStereoEFBMonoDepth; backup_config.gpu_texture_decoding = config.bEnableGPUTextureDecoding; backup_config.disable_vram_copies = config.bDisableCopyToVRAM; backup_config.arbitrary_mipmap_detection = config.bArbitraryMipmapDetection; } TextureCacheBase::TCacheEntry* TextureCacheBase::ApplyPaletteToEntry(TCacheEntry* entry, u8* palette, TLUTFormat tlutfmt) { DEBUG_ASSERT(g_ActiveConfig.backend_info.bSupportsPaletteConversion); const AbstractPipeline* pipeline = g_shader_cache->GetPaletteConversionPipeline(tlutfmt); if (!pipeline) { ERROR_LOG(VIDEO, "Failed to get conversion pipeline for format 0x%02X", static_cast<u32>(tlutfmt)); return nullptr; } TextureConfig new_config = entry->texture->GetConfig(); new_config.levels = 1; new_config.flags |= AbstractTextureFlag_RenderTarget; TCacheEntry* decoded_entry = AllocateCacheEntry(new_config); if (!decoded_entry) return nullptr; decoded_entry->SetGeneralParameters(entry->addr, entry->size_in_bytes, entry->format, entry->should_force_safe_hashing); decoded_entry->SetDimensions(entry->native_width, entry->native_height, 1); decoded_entry->SetHashes(entry->base_hash, entry->hash); decoded_entry->frameCount = FRAMECOUNT_INVALID; decoded_entry->should_force_safe_hashing = false; decoded_entry->SetNotCopy(); decoded_entry->may_have_overlapping_textures = entry->may_have_overlapping_textures; g_renderer->BeginUtilityDrawing(); const u32 palette_size = entry->format == TextureFormat::I4 ? 32 : 512; u32 texel_buffer_offset; if (g_vertex_manager->UploadTexelBuffer(palette, palette_size, TexelBufferFormat::TEXEL_BUFFER_FORMAT_R16_UINT, &texel_buffer_offset)) { struct Uniforms { float multiplier; u32 texel_buffer_offset; u32 pad[2]; }; static_assert(std::is_standard_layout<Uniforms>::value); Uniforms uniforms = {}; uniforms.multiplier = entry->format == TextureFormat::I4 ? 15.0f : 255.0f; uniforms.texel_buffer_offset = texel_buffer_offset; g_vertex_manager->UploadUtilityUniforms(&uniforms, sizeof(uniforms)); g_renderer->SetAndDiscardFramebuffer(decoded_entry->framebuffer.get()); g_renderer->SetViewportAndScissor(decoded_entry->texture->GetRect()); g_renderer->SetPipeline(pipeline); g_renderer->SetTexture(1, entry->texture.get()); g_renderer->SetSamplerState(1, RenderState::GetPointSamplerState()); g_renderer->Draw(0, 3); g_renderer->EndUtilityDrawing(); decoded_entry->texture->FinishedRendering(); } else { ERROR_LOG(VIDEO, "Texel buffer upload of %u bytes failed", palette_size); g_renderer->EndUtilityDrawing(); } textures_by_address.emplace(decoded_entry->addr, decoded_entry); return decoded_entry; } TextureCacheBase::TCacheEntry* TextureCacheBase::ReinterpretEntry(const TCacheEntry* existing_entry, TextureFormat new_format) { const AbstractPipeline* pipeline = g_shader_cache->GetTextureReinterpretPipeline(existing_entry->format.texfmt, new_format); if (!pipeline) { ERROR_LOG(VIDEO, "Failed to obtain texture reinterpreting pipeline from format 0x%02X to 0x%02X", static_cast<u32>(existing_entry->format.texfmt), static_cast<u32>(new_format)); return nullptr; } TextureConfig new_config = existing_entry->texture->GetConfig(); new_config.levels = 1; new_config.flags |= AbstractTextureFlag_RenderTarget; TCacheEntry* reinterpreted_entry = AllocateCacheEntry(new_config); if (!reinterpreted_entry) return nullptr; reinterpreted_entry->SetGeneralParameters(existing_entry->addr, existing_entry->size_in_bytes, new_format, existing_entry->should_force_safe_hashing); reinterpreted_entry->SetDimensions(existing_entry->native_width, existing_entry->native_height, 1); reinterpreted_entry->SetHashes(existing_entry->base_hash, existing_entry->hash); reinterpreted_entry->frameCount = existing_entry->frameCount; reinterpreted_entry->SetNotCopy(); reinterpreted_entry->is_efb_copy = existing_entry->is_efb_copy; reinterpreted_entry->may_have_overlapping_textures = existing_entry->may_have_overlapping_textures; g_renderer->BeginUtilityDrawing(); g_renderer->SetAndDiscardFramebuffer(reinterpreted_entry->framebuffer.get()); g_renderer->SetViewportAndScissor(reinterpreted_entry->texture->GetRect()); g_renderer->SetPipeline(pipeline); g_renderer->SetTexture(0, existing_entry->texture.get()); g_renderer->SetSamplerState(1, RenderState::GetPointSamplerState()); g_renderer->Draw(0, 3); g_renderer->EndUtilityDrawing(); reinterpreted_entry->texture->FinishedRendering(); textures_by_address.emplace(reinterpreted_entry->addr, reinterpreted_entry); return reinterpreted_entry; } void TextureCacheBase::ScaleTextureCacheEntryTo(TextureCacheBase::TCacheEntry* entry, u32 new_width, u32 new_height) { if (entry->GetWidth() == new_width && entry->GetHeight() == new_height) { return; } const u32 max = g_ActiveConfig.backend_info.MaxTextureSize; if (max < new_width || max < new_height) { ERROR_LOG(VIDEO, "Texture too big, width = %d, height = %d", new_width, new_height); return; } const TextureConfig newconfig(new_width, new_height, 1, entry->GetNumLayers(), 1, AbstractTextureFormat::RGBA8, AbstractTextureFlag_RenderTarget); std::optional<TexPoolEntry> new_texture = AllocateTexture(newconfig); if (!new_texture) { ERROR_LOG(VIDEO, "Scaling failed due to texture allocation failure"); return; } // No need to convert the coordinates here since they'll be the same. g_renderer->ScaleTexture(new_texture->framebuffer.get(), new_texture->texture->GetConfig().GetRect(), entry->texture.get(), entry->texture->GetConfig().GetRect()); entry->texture.swap(new_texture->texture); entry->framebuffer.swap(new_texture->framebuffer); // At this point new_texture has the old texture in it, // we can potentially reuse this, so let's move it back to the pool auto config = new_texture->texture->GetConfig(); texture_pool.emplace( config, TexPoolEntry(std::move(new_texture->texture), std::move(new_texture->framebuffer))); } bool TextureCacheBase::CheckReadbackTexture(u32 width, u32 height, AbstractTextureFormat format) { if (m_readback_texture && m_readback_texture->GetConfig().width >= width && m_readback_texture->GetConfig().height >= height && m_readback_texture->GetConfig().format == format) { return true; } TextureConfig staging_config(std::max(width, 128u), std::max(height, 128u), 1, 1, 1, format, 0); m_readback_texture.reset(); m_readback_texture = g_renderer->CreateStagingTexture(StagingTextureType::Readback, staging_config); return m_readback_texture != nullptr; } void TextureCacheBase::SerializeTexture(AbstractTexture* tex, const TextureConfig& config, PointerWrap& p) { // If we're in measure mode, skip the actual readback to save some time. const bool skip_readback = p.GetMode() == PointerWrap::MODE_MEASURE; p.DoPOD(config); std::vector<u8> texture_data; if (skip_readback || CheckReadbackTexture(config.width, config.height, config.format)) { // Save out each layer of the texture to the staging texture, and then // append it onto the end of the vector. This gives us all the sub-images // in one single buffer which can be written out to the save state. for (u32 layer = 0; layer < config.layers; layer++) { for (u32 level = 0; level < config.levels; level++) { u32 level_width = std::max(config.width >> level, 1u); u32 level_height = std::max(config.height >> level, 1u); auto rect = tex->GetConfig().GetMipRect(level); if (!skip_readback) m_readback_texture->CopyFromTexture(tex, rect, layer, level, rect); size_t stride = AbstractTexture::CalculateStrideForFormat(config.format, level_width); size_t size = stride * level_height; size_t start = texture_data.size(); texture_data.resize(texture_data.size() + size); if (!skip_readback) m_readback_texture->ReadTexels(rect, &texture_data[start], static_cast<u32>(stride)); } } } else { PanicAlert("Failed to create staging texture for serialization"); } p.Do(texture_data); } std::optional<TextureCacheBase::TexPoolEntry> TextureCacheBase::DeserializeTexture(PointerWrap& p) { TextureConfig config; p.Do(config); std::vector<u8> texture_data; p.Do(texture_data); if (p.GetMode() != PointerWrap::MODE_READ || texture_data.empty()) return std::nullopt; auto tex = AllocateTexture(config); if (!tex) { PanicAlert("Failed to create texture for deserialization"); return std::nullopt; } size_t start = 0; for (u32 layer = 0; layer < config.layers; layer++) { for (u32 level = 0; level < config.levels; level++) { u32 level_width = std::max(config.width >> level, 1u); u32 level_height = std::max(config.height >> level, 1u); size_t stride = AbstractTexture::CalculateStrideForFormat(config.format, level_width); size_t size = stride * level_height; if ((start + size) > texture_data.size()) { ERROR_LOG(VIDEO, "Insufficient texture data for layer %u level %u", layer, level); return tex; } tex->texture->Load(level, level_width, level_height, level_width, &texture_data[start], size); start += size; } } return tex; } void TextureCacheBase::DoState(PointerWrap& p) { // Flush all pending XFB copies before either loading or saving. FlushEFBCopies(); p.Do(last_entry_id); if (p.GetMode() == PointerWrap::MODE_WRITE || p.GetMode() == PointerWrap::MODE_MEASURE) DoSaveState(p); else DoLoadState(p); } void TextureCacheBase::DoSaveState(PointerWrap& p) { std::map<const TCacheEntry*, u32> entry_map; std::vector<TCacheEntry*> entries_to_save; auto ShouldSaveEntry = [](const TCacheEntry* entry) { // We skip non-copies as they can be decoded from RAM when the state is loaded. // Storing them would duplicate data in the save state file, adding to decompression time. return entry->IsCopy(); }; auto AddCacheEntryToMap = [&entry_map, &entries_to_save](TCacheEntry* entry) -> u32 { auto iter = entry_map.find(entry); if (iter != entry_map.end()) return iter->second; // Since we are sequentially allocating texture entries, we need to save the textures in the // same order they were collected. This is because of iterating both the address and hash maps. // Therefore, the map is used for fast lookup, and the vector for ordering. u32 id = static_cast<u32>(entry_map.size()); entry_map.emplace(entry, id); entries_to_save.push_back(entry); return id; }; auto GetCacheEntryId = [&entry_map](const TCacheEntry* entry) -> std::optional<u32> { auto iter = entry_map.find(entry); return iter != entry_map.end() ? std::make_optional(iter->second) : std::nullopt; }; // Transform the textures_by_address and textures_by_hash maps to a mapping // of address/hash to entry ID. std::vector<std::pair<u32, u32>> textures_by_address_list; std::vector<std::pair<u64, u32>> textures_by_hash_list; if (Config::Get(Config::GFX_SAVE_TEXTURE_CACHE_TO_STATE)) { for (const auto& it : textures_by_address) { if (ShouldSaveEntry(it.second)) { const u32 id = AddCacheEntryToMap(it.second); textures_by_address_list.emplace_back(it.first, id); } } for (const auto& it : textures_by_hash) { if (ShouldSaveEntry(it.second)) { const u32 id = AddCacheEntryToMap(it.second); textures_by_hash_list.emplace_back(it.first, id); } } } // Save the texture cache entries out in the order the were referenced. u32 size = static_cast<u32>(entries_to_save.size()); p.Do(size); for (TCacheEntry* entry : entries_to_save) { SerializeTexture(entry->texture.get(), entry->texture->GetConfig(), p); entry->DoState(p); } p.DoMarker("TextureCacheEntries"); // Save references for each cache entry. // As references are circular, we need to have everything created before linking entries. std::set<std::pair<u32, u32>> reference_pairs; for (const auto& it : entry_map) { const TCacheEntry* entry = it.first; auto id1 = GetCacheEntryId(entry); if (!id1) continue; for (const TCacheEntry* referenced_entry : entry->references) { auto id2 = GetCacheEntryId(referenced_entry); if (!id2) continue; auto refpair1 = std::make_pair(*id1, *id2); auto refpair2 = std::make_pair(*id2, *id1); if (reference_pairs.count(refpair1) == 0 && reference_pairs.count(refpair2) == 0) reference_pairs.insert(refpair1); } } size = static_cast<u32>(reference_pairs.size()); p.Do(size); for (const auto& it : reference_pairs) { p.Do(it.first); p.Do(it.second); } size = static_cast<u32>(textures_by_address_list.size()); p.Do(size); for (const auto& it : textures_by_address_list) { p.Do(it.first); p.Do(it.second); } size = static_cast<u32>(textures_by_hash_list.size()); p.Do(size); for (const auto& it : textures_by_hash_list) { p.Do(it.first); p.Do(it.second); } // Free the readback texture to potentially save host-mapped GPU memory, depending on where // the driver mapped the staging buffer. m_readback_texture.reset(); } void TextureCacheBase::DoLoadState(PointerWrap& p) { // Helper for getting a cache entry from an ID. std::map<u32, TCacheEntry*> id_map; auto GetEntry = [&id_map](u32 id) { auto iter = id_map.find(id); return iter == id_map.end() ? nullptr : iter->second; }; // Only clear out state when actually restoring/loading. // Since we throw away entries when not in loading mode now, we don't need to check // before inserting entries into the cache, as GetEntry will always return null. const bool commit_state = p.GetMode() == PointerWrap::MODE_READ; if (commit_state) Invalidate(); // Preload all cache entries. u32 size = 0; p.Do(size); for (u32 i = 0; i < size; i++) { // Even if the texture isn't valid, we still need to create the cache entry object // to update the point in the state state. We'll just throw it away if it's invalid. auto tex = DeserializeTexture(p); TCacheEntry* entry = new TCacheEntry(std::move(tex->texture), std::move(tex->framebuffer)); entry->textures_by_hash_iter = textures_by_hash.end(); entry->DoState(p); if (entry->texture && commit_state) id_map.emplace(i, entry); else delete entry; } p.DoMarker("TextureCacheEntries"); // Link all cache entry references. p.Do(size); for (u32 i = 0; i < size; i++) { u32 id1 = 0, id2 = 0; p.Do(id1); p.Do(id2); TCacheEntry* e1 = GetEntry(id1); TCacheEntry* e2 = GetEntry(id2); if (e1 && e2) e1->CreateReference(e2); } // Fill in address map. p.Do(size); for (u32 i = 0; i < size; i++) { u32 addr = 0; u32 id = 0; p.Do(addr); p.Do(id); TCacheEntry* entry = GetEntry(id); if (entry) textures_by_address.emplace(addr, entry); } // Fill in hash map. p.Do(size); for (u32 i = 0; i < size; i++) { u64 hash = 0; u32 id = 0; p.Do(hash); p.Do(id); TCacheEntry* entry = GetEntry(id); if (entry) entry->textures_by_hash_iter = textures_by_hash.emplace(hash, entry); } } void TextureCacheBase::TCacheEntry::DoState(PointerWrap& p) { p.Do(addr); p.Do(size_in_bytes); p.Do(base_hash); p.Do(hash); p.Do(format); p.Do(memory_stride); p.Do(is_efb_copy); p.Do(is_custom_tex); p.Do(may_have_overlapping_textures); p.Do(tmem_only); p.Do(has_arbitrary_mips); p.Do(should_force_safe_hashing); p.Do(is_xfb_copy); p.Do(is_xfb_container); p.Do(id); p.Do(reference_changed); p.Do(native_width); p.Do(native_height); p.Do(native_levels); p.Do(frameCount); } TextureCacheBase::TCacheEntry* TextureCacheBase::DoPartialTextureUpdates(TCacheEntry* entry_to_update, u8* palette, TLUTFormat tlutfmt) { // If the flag may_have_overlapping_textures is cleared, there are no overlapping EFB copies, // which aren't applied already. It is set for new textures, and for the affected range // on each EFB copy. if (!entry_to_update->may_have_overlapping_textures) return entry_to_update; entry_to_update->may_have_overlapping_textures = false; const bool isPaletteTexture = IsColorIndexed(entry_to_update->format.texfmt); // EFB copies are excluded from these updates, until there's an example where a game would // benefit from updating. This would require more work to be done. if (entry_to_update->IsCopy()) return entry_to_update; u32 block_width = TexDecoder_GetBlockWidthInTexels(entry_to_update->format.texfmt); u32 block_height = TexDecoder_GetBlockHeightInTexels(entry_to_update->format.texfmt); u32 block_size = block_width * block_height * TexDecoder_GetTexelSizeInNibbles(entry_to_update->format.texfmt) / 2; u32 numBlocksX = (entry_to_update->native_width + block_width - 1) / block_width; auto iter = FindOverlappingTextures(entry_to_update->addr, entry_to_update->size_in_bytes); while (iter.first != iter.second) { TCacheEntry* entry = iter.first->second; if (entry != entry_to_update && entry->IsCopy() && !entry->tmem_only && entry->references.count(entry_to_update) == 0 && entry->OverlapsMemoryRange(entry_to_update->addr, entry_to_update->size_in_bytes) && entry->memory_stride == numBlocksX * block_size) { if (entry->hash == entry->CalculateHash()) { // If the texture formats are not compatible or convertible, skip it. if (!IsCompatibleTextureFormat(entry_to_update->format.texfmt, entry->format.texfmt)) { if (!CanReinterpretTextureOnGPU(entry_to_update->format.texfmt, entry->format.texfmt)) { ++iter.first; continue; } TCacheEntry* reinterpreted_entry = ReinterpretEntry(entry, entry_to_update->format.texfmt); if (reinterpreted_entry) entry = reinterpreted_entry; } if (isPaletteTexture) { TCacheEntry* decoded_entry = ApplyPaletteToEntry(entry, palette, tlutfmt); if (decoded_entry) { // Link the efb copy with the partially updated texture, so we won't apply this partial // update again entry->CreateReference(entry_to_update); // Mark the texture update as used, as if it was loaded directly entry->frameCount = FRAMECOUNT_INVALID; entry = decoded_entry; } else { ++iter.first; continue; } } u32 src_x, src_y, dst_x, dst_y; // Note for understanding the math: // Normal textures can't be strided, so the 2 missing cases with src_x > 0 don't exist if (entry->addr >= entry_to_update->addr) { u32 block_offset = (entry->addr - entry_to_update->addr) / block_size; u32 block_x = block_offset % numBlocksX; u32 block_y = block_offset / numBlocksX; src_x = 0; src_y = 0; dst_x = block_x * block_width; dst_y = block_y * block_height; } else { u32 block_offset = (entry_to_update->addr - entry->addr) / block_size; u32 block_x = (~block_offset + 1) % numBlocksX; u32 block_y = (block_offset + block_x) / numBlocksX; src_x = 0; src_y = block_y * block_height; dst_x = block_x * block_width; dst_y = 0; } u32 copy_width = std::min(entry->native_width - src_x, entry_to_update->native_width - dst_x); u32 copy_height = std::min(entry->native_height - src_y, entry_to_update->native_height - dst_y); // If one of the textures is scaled, scale both with the current efb scaling factor if (entry_to_update->native_width != entry_to_update->GetWidth() || entry_to_update->native_height != entry_to_update->GetHeight() || entry->native_width != entry->GetWidth() || entry->native_height != entry->GetHeight()) { ScaleTextureCacheEntryTo(entry_to_update, g_renderer->EFBToScaledX(entry_to_update->native_width), g_renderer->EFBToScaledY(entry_to_update->native_height)); ScaleTextureCacheEntryTo(entry, g_renderer->EFBToScaledX(entry->native_width), g_renderer->EFBToScaledY(entry->native_height)); src_x = g_renderer->EFBToScaledX(src_x); src_y = g_renderer->EFBToScaledY(src_y); dst_x = g_renderer->EFBToScaledX(dst_x); dst_y = g_renderer->EFBToScaledY(dst_y); copy_width = g_renderer->EFBToScaledX(copy_width); copy_height = g_renderer->EFBToScaledY(copy_height); } // If the source rectangle is outside of what we actually have in VRAM, skip the copy. // The backend doesn't do any clamping, so if we don't, we'd pass out-of-range coordinates // to the graphics driver, which can cause GPU resets. if (static_cast<u32>(src_x + copy_width) > entry->GetWidth() || static_cast<u32>(src_y + copy_height) > entry->GetHeight() || static_cast<u32>(dst_x + copy_width) > entry_to_update->GetWidth() || static_cast<u32>(dst_y + copy_height) > entry_to_update->GetHeight()) { ++iter.first; continue; } MathUtil::Rectangle<int> srcrect, dstrect; srcrect.left = src_x; srcrect.top = src_y; srcrect.right = (src_x + copy_width); srcrect.bottom = (src_y + copy_height); dstrect.left = dst_x; dstrect.top = dst_y; dstrect.right = (dst_x + copy_width); dstrect.bottom = (dst_y + copy_height); // If one copy is stereo, and the other isn't... not much we can do here :/ const u32 layers_to_copy = std::min(entry->GetNumLayers(), entry_to_update->GetNumLayers()); for (u32 layer = 0; layer < layers_to_copy; layer++) { entry_to_update->texture->CopyRectangleFromTexture(entry->texture.get(), srcrect, layer, 0, dstrect, layer, 0); } if (isPaletteTexture) { // Remove the temporary converted texture, it won't be used anywhere else // TODO: It would be nice to convert and copy in one step, but this code path isn't common iter.first = InvalidateTexture(iter.first); continue; } else { // Link the two textures together, so we won't apply this partial update again entry->CreateReference(entry_to_update); // Mark the texture update as used, as if it was loaded directly entry->frameCount = FRAMECOUNT_INVALID; } } else { // If the hash does not match, this EFB copy will not be used for anything, so remove it iter.first = InvalidateTexture(iter.first); continue; } } ++iter.first; } return entry_to_update; } void TextureCacheBase::DumpTexture(TCacheEntry* entry, std::string basename, unsigned int level, bool is_arbitrary) { std::string szDir = File::GetUserPath(D_DUMPTEXTURES_IDX) + SConfig::GetInstance().GetGameID(); // make sure that the directory exists if (!File::IsDirectory(szDir)) File::CreateDir(szDir); if (is_arbitrary) { basename += "_arb"; } if (level > 0) { basename += fmt::format("_mip{}", level); } const std::string filename = fmt::format("{}/{}.png", szDir, basename); if (File::Exists(filename)) return; entry->texture->Save(filename, level); } static u32 CalculateLevelSize(u32 level_0_size, u32 level) { return std::max(level_0_size >> level, 1u); } static void SetSamplerState(u32 index, float custom_tex_scale, bool custom_tex, bool has_arbitrary_mips) { const FourTexUnits& tex = bpmem.tex[index / 4]; const TexMode0& tm0 = tex.texMode0[index % 4]; SamplerState state = {}; state.Generate(bpmem, index); // Force texture filtering config option. if (g_ActiveConfig.bForceFiltering) { state.min_filter = SamplerState::Filter::Linear; state.mag_filter = SamplerState::Filter::Linear; state.mipmap_filter = SamplerCommon::AreBpTexMode0MipmapsEnabled(tm0) ? SamplerState::Filter::Linear : SamplerState::Filter::Point; } // Custom textures may have a greater number of mips if (custom_tex) state.max_lod = 255; // Anisotropic filtering option. if (g_ActiveConfig.iMaxAnisotropy != 0 && !SamplerCommon::IsBpTexMode0PointFiltering(tm0)) { // https://www.opengl.org/registry/specs/EXT/texture_filter_anisotropic.txt // For predictable results on all hardware/drivers, only use one of: // GL_LINEAR + GL_LINEAR (No Mipmaps [Bilinear]) // GL_LINEAR + GL_LINEAR_MIPMAP_LINEAR (w/ Mipmaps [Trilinear]) // Letting the game set other combinations will have varying arbitrary results; // possibly being interpreted as equal to bilinear/trilinear, implicitly // disabling anisotropy, or changing the anisotropic algorithm employed. state.min_filter = SamplerState::Filter::Linear; state.mag_filter = SamplerState::Filter::Linear; if (SamplerCommon::AreBpTexMode0MipmapsEnabled(tm0)) state.mipmap_filter = SamplerState::Filter::Linear; state.anisotropic_filtering = 1; } else { state.anisotropic_filtering = 0; } if (has_arbitrary_mips && SamplerCommon::AreBpTexMode0MipmapsEnabled(tm0)) { // Apply a secondary bias calculated from the IR scale to pull inwards mipmaps // that have arbitrary contents, eg. are used for fog effects where the // distance they kick in at is important to preserve at any resolution. // Correct this with the upscaling factor of custom textures. s64 lod_offset = std::log2(g_renderer->GetEFBScale() / custom_tex_scale) * 256.f; state.lod_bias = std::clamp<s64>(state.lod_bias + lod_offset, -32768, 32767); // Anisotropic also pushes mips farther away so it cannot be used either state.anisotropic_filtering = 0; } g_renderer->SetSamplerState(index, state); } void TextureCacheBase::BindTextures() { for (u32 i = 0; i < bound_textures.size(); i++) { const TCacheEntry* tentry = bound_textures[i]; if (IsValidBindPoint(i) && tentry) { g_renderer->SetTexture(i, tentry->texture.get()); PixelShaderManager::SetTexDims(i, tentry->native_width, tentry->native_height); const float custom_tex_scale = tentry->GetWidth() / float(tentry->native_width); SetSamplerState(i, custom_tex_scale, tentry->is_custom_tex, tentry->has_arbitrary_mips); } } } class ArbitraryMipmapDetector { private: using PixelRGBAf = std::array<float, 4>; using PixelRGBAu8 = std::array<u8, 4>; public: explicit ArbitraryMipmapDetector() = default; void AddLevel(u32 width, u32 height, u32 row_length, const u8* buffer) { levels.push_back({{width, height, row_length}, buffer}); } bool HasArbitraryMipmaps(u8* downsample_buffer) const { if (levels.size() < 2) return false; if (!g_ActiveConfig.bArbitraryMipmapDetection) return false; // This is the average per-pixel, per-channel difference in percent between what we // expect a normal blurred mipmap to look like and what we actually received // 4.5% was chosen because it's just below the lowest clearly-arbitrary texture // I found in my tests, the background clouds in Mario Galaxy's Observatory lobby. const auto threshold = g_ActiveConfig.fArbitraryMipmapDetectionThreshold; auto* src = downsample_buffer; auto* dst = downsample_buffer + levels[1].shape.row_length * levels[1].shape.height * 4; float total_diff = 0.f; for (std::size_t i = 0; i < levels.size() - 1; ++i) { const auto& level = levels[i]; const auto& mip = levels[i + 1]; u64 level_pixel_count = level.shape.width; level_pixel_count *= level.shape.height; // AverageDiff stores the difference sum in a u64, so make sure we can't overflow ASSERT(level_pixel_count < (std::numeric_limits<u64>::max() / (255 * 255 * 4))); // Manually downsample the past downsample with a simple box blur // This is not necessarily close to whatever the original artists used, however // It should still be closer than a thing that's not a downscale at all Level::Downsample(i ? src : level.pixels, level.shape, dst, mip.shape); // Find the average difference between pixels in this level but downsampled // and the next level auto diff = mip.AverageDiff(dst); total_diff += diff; std::swap(src, dst); } auto all_levels = total_diff / (levels.size() - 1); return all_levels > threshold; } private: struct Shape { u32 width; u32 height; u32 row_length; }; struct Level { Shape shape; const u8* pixels; static PixelRGBAu8 SampleLinear(const u8* src, const Shape& src_shape, u32 x, u32 y) { const auto* p = src + (x + y * src_shape.row_length) * 4; return {{p[0], p[1], p[2], p[3]}}; } // Puts a downsampled image in dst. dst must be at least width*height*4 static void Downsample(const u8* src, const Shape& src_shape, u8* dst, const Shape& dst_shape) { for (u32 i = 0; i < dst_shape.height; ++i) { for (u32 j = 0; j < dst_shape.width; ++j) { auto x = j * 2; auto y = i * 2; const std::array<PixelRGBAu8, 4> samples{{ SampleLinear(src, src_shape, x, y), SampleLinear(src, src_shape, x + 1, y), SampleLinear(src, src_shape, x, y + 1), SampleLinear(src, src_shape, x + 1, y + 1), }}; auto* dst_pixel = dst + (j + i * dst_shape.row_length) * 4; for (int channel = 0; channel < 4; channel++) { uint32_t channel_value = samples[0][channel] + samples[1][channel] + samples[2][channel] + samples[3][channel]; dst_pixel[channel] = (channel_value + 2) / 4; } } } } float AverageDiff(const u8* other) const { // As textures are stored in (at most) 8 bit precision, each channel can // have a max diff of (2^8)^2, multiply by 4 channels = 2^18 per pixel. // That means to overflow, we must have a texture with more than 2^46 // pixels - which is way beyond anything the original hardware could do, // and likely a sane assumption going forward for some significant time. u64 current_diff_sum = 0; const auto* ptr1 = pixels; const auto* ptr2 = other; for (u32 i = 0; i < shape.height; ++i) { const auto* row1 = ptr1; const auto* row2 = ptr2; for (u32 j = 0; j < shape.width; ++j, row1 += 4, row2 += 4) { int pixel_diff = 0; for (int channel = 0; channel < 4; channel++) { const int diff = static_cast<int>(row1[channel]) - static_cast<int>(row2[channel]); const int diff_squared = diff * diff; pixel_diff += diff_squared; } current_diff_sum += pixel_diff; } ptr1 += shape.row_length; ptr2 += shape.row_length; } // calculate the MSE over all pixels, divide by 2.56 to make it a percent // (IE scale to 0..100 instead of 0..256) return std::sqrt(static_cast<float>(current_diff_sum) / (shape.width * shape.height * 4)) / 2.56f; } }; std::vector<Level> levels; }; TextureCacheBase::TCacheEntry* TextureCacheBase::Load(const u32 stage) { // if this stage was not invalidated by changes to texture registers, keep the current texture if (IsValidBindPoint(stage) && bound_textures[stage]) { return bound_textures[stage]; } const FourTexUnits& tex = bpmem.tex[stage >> 2]; const u32 id = stage & 3; const u32 address = (tex.texImage3[id].image_base /* & 0x1FFFFF*/) << 5; u32 width = tex.texImage0[id].width + 1; u32 height = tex.texImage0[id].height + 1; const TextureFormat texformat = static_cast<TextureFormat>(tex.texImage0[id].format); const u32 tlutaddr = tex.texTlut[id].tmem_offset << 9; const TLUTFormat tlutfmt = static_cast<TLUTFormat>(tex.texTlut[id].tlut_format); const bool use_mipmaps = SamplerCommon::AreBpTexMode0MipmapsEnabled(tex.texMode0[id]); u32 tex_levels = use_mipmaps ? ((tex.texMode1[id].max_lod + 0xf) / 0x10 + 1) : 1; const bool from_tmem = tex.texImage1[id].image_type != 0; const u32 tmem_address_even = from_tmem ? tex.texImage1[id].tmem_even * TMEM_LINE_SIZE : 0; const u32 tmem_address_odd = from_tmem ? tex.texImage2[id].tmem_odd * TMEM_LINE_SIZE : 0; auto entry = GetTexture(address, width, height, texformat, g_ActiveConfig.iSafeTextureCache_ColorSamples, tlutaddr, tlutfmt, use_mipmaps, tex_levels, from_tmem, tmem_address_even, tmem_address_odd); if (!entry) return nullptr; entry->frameCount = FRAMECOUNT_INVALID; bound_textures[stage] = entry; // We need to keep track of invalided textures until they have actually been replaced or // re-loaded valid_bind_points.set(stage); return entry; } TextureCacheBase::TCacheEntry* TextureCacheBase::GetTexture(u32 address, u32 width, u32 height, const TextureFormat texformat, const int textureCacheSafetyColorSampleSize, u32 tlutaddr, TLUTFormat tlutfmt, bool use_mipmaps, u32 tex_levels, bool from_tmem, u32 tmem_address_even, u32 tmem_address_odd) { // TexelSizeInNibbles(format) * width * height / 16; const unsigned int bsw = TexDecoder_GetBlockWidthInTexels(texformat); const unsigned int bsh = TexDecoder_GetBlockHeightInTexels(texformat); unsigned int expandedWidth = Common::AlignUp(width, bsw); unsigned int expandedHeight = Common::AlignUp(height, bsh); const unsigned int nativeW = width; const unsigned int nativeH = height; // Hash assigned to texcache entry (also used to generate filenames used for texture dumping and // custom texture lookup) u64 base_hash = TEXHASH_INVALID; u64 full_hash = TEXHASH_INVALID; TextureAndTLUTFormat full_format(texformat, tlutfmt); const bool isPaletteTexture = IsColorIndexed(texformat); // Reject invalid tlut format. if (isPaletteTexture && !IsValidTLUTFormat(tlutfmt)) return nullptr; const u32 texture_size = TexDecoder_GetTextureSizeInBytes(expandedWidth, expandedHeight, texformat); u32 bytes_per_block = (bsw * bsh * TexDecoder_GetTexelSizeInNibbles(texformat)) / 2; u32 additional_mips_size = 0; // not including level 0, which is texture_size // GPUs don't like when the specified mipmap count would require more than one 1x1-sized LOD in // the mipmap chain // e.g. 64x64 with 7 LODs would have the mipmap chain 64x64,32x32,16x16,8x8,4x4,2x2,1x1,0x0, so we // limit the mipmap count to 6 there tex_levels = std::min<u32>(IntLog2(std::max(width, height)) + 1, tex_levels); for (u32 level = 1; level != tex_levels; ++level) { // We still need to calculate the original size of the mips const u32 expanded_mip_width = Common::AlignUp(CalculateLevelSize(width, level), bsw); const u32 expanded_mip_height = Common::AlignUp(CalculateLevelSize(height, level), bsh); additional_mips_size += TexDecoder_GetTextureSizeInBytes(expanded_mip_width, expanded_mip_height, texformat); } // TODO: the texture cache lookup is based on address, but a texture from tmem has no reason // to have a unique and valid address. This could result in a regular texture and a tmem // texture aliasing onto the same texture cache entry. const u8* src_data; if (from_tmem) src_data = &texMem[tmem_address_even]; else src_data = Memory::GetPointer(address); if (!src_data) { ERROR_LOG(VIDEO, "Trying to use an invalid texture address 0x%8x", address); return nullptr; } // If we are recording a FifoLog, keep track of what memory we read. FifoRecorder does // its own memory modification tracking independent of the texture hashing below. if (OpcodeDecoder::g_record_fifo_data && !from_tmem) { FifoRecorder::GetInstance().UseMemory(address, texture_size + additional_mips_size, MemoryUpdate::TEXTURE_MAP); } // TODO: This doesn't hash GB tiles for preloaded RGBA8 textures (instead, it's hashing more data // from the low tmem bank than it should) base_hash = Common::GetHash64(src_data, texture_size, textureCacheSafetyColorSampleSize); u32 palette_size = 0; if (isPaletteTexture) { palette_size = TexDecoder_GetPaletteSize(texformat); full_hash = base_hash ^ Common::GetHash64(&texMem[tlutaddr], palette_size, textureCacheSafetyColorSampleSize); } else { full_hash = base_hash; } // Search the texture cache for textures by address // // Find all texture cache entries for the current texture address, and decide whether to use one // of // them, or to create a new one // // In most cases, the fastest way is to use only one texture cache entry for the same address. // Usually, // when a texture changes, the old version of the texture is unlikely to be used again. If there // were // new cache entries created for normal texture updates, there would be a slowdown due to a huge // amount // of unused cache entries. Also thanks to texture pooling, overwriting an existing cache entry is // faster than creating a new one from scratch. // // Some games use the same address for different textures though. If the same cache entry was used // in // this case, it would be constantly overwritten, and effectively there wouldn't be any caching // for // those textures. Examples for this are Metroid Prime and Castlevania 3. Metroid Prime has // multiple // sets of fonts on each other stored in a single texture and uses the palette to make different // characters visible or invisible. In Castlevania 3 some textures are used for 2 different things // or // at least in 2 different ways(size 1024x1024 vs 1024x256). // // To determine whether to use multiple cache entries or a single entry, use the following // heuristic: // If the same texture address is used several times during the same frame, assume the address is // used // for different purposes and allow creating an additional cache entry. If there's at least one // entry // that hasn't been used for the same frame, then overwrite it, in order to keep the cache as // small as // possible. If the current texture is found in the cache, use that entry. // // For efb copies, the entry created in CopyRenderTargetToTexture always has to be used, or else // it was // done in vain. auto iter_range = textures_by_address.equal_range(address); TexAddrCache::iterator iter = iter_range.first; TexAddrCache::iterator oldest_entry = iter; int temp_frameCount = 0x7fffffff; TexAddrCache::iterator unconverted_copy = textures_by_address.end(); TexAddrCache::iterator unreinterpreted_copy = textures_by_address.end(); while (iter != iter_range.second) { TCacheEntry* entry = iter->second; // Skip entries that are only left in our texture cache for the tmem cache emulation if (entry->tmem_only) { ++iter; continue; } // TODO: Some games (Rogue Squadron 3, Twin Snakes) seem to load a previously made XFB // copy as a regular texture. You can see this particularly well in RS3 whenever the // game freezes the image and fades it out to black on screen transitions, which fades // out a purple screen in XFB2Tex. Check for this here and convert them if necessary. // Do not load strided EFB copies, they are not meant to be used directly. // Also do not directly load EFB copies, which were partly overwritten. if (entry->IsEfbCopy() && entry->native_width == nativeW && entry->native_height == nativeH && entry->memory_stride == entry->BytesPerRow() && !entry->may_have_overlapping_textures) { // EFB copies have slightly different rules as EFB copy formats have different // meanings from texture formats. if ((base_hash == entry->hash && (!isPaletteTexture || g_Config.backend_info.bSupportsPaletteConversion)) || IsPlayingBackFifologWithBrokenEFBCopies) { // The texture format in VRAM must match the format that the copy was created with. Some // formats are inherently compatible, as the channel and bit layout is identical (e.g. // I8/C8). Others have the same number of bits per texel, and can be reinterpreted on the // GPU (e.g. IA4 and I8 or RGB565 and RGBA5). The only known game which reinteprets texels // in this manner is Spiderman Shattered Dimensions, where it creates a copy in B8 format, // and sets it up as a IA4 texture. if (!IsCompatibleTextureFormat(entry->format.texfmt, texformat)) { // Can we reinterpret this in VRAM? if (CanReinterpretTextureOnGPU(entry->format.texfmt, texformat)) { // Delay the conversion until afterwards, it's possible this texture has already been // converted. unreinterpreted_copy = iter++; continue; } else { // If the EFB copies are in a different format and are not reinterpretable, use the RAM // copy. ++iter; continue; } } else { // Prefer the already-converted copy. unconverted_copy = textures_by_address.end(); } // TODO: We should check width/height/levels for EFB copies. I'm not sure what effect // checking width/height/levels would have. if (!isPaletteTexture || !g_Config.backend_info.bSupportsPaletteConversion) return entry; // Note that we found an unconverted EFB copy, then continue. We'll // perform the conversion later. Currently, we only convert EFB copies to // palette textures; we could do other conversions if it proved to be // beneficial. unconverted_copy = iter; } else { // Aggressively prune EFB copies: if it isn't useful here, it will probably // never be useful again. It's theoretically possible for a game to do // something weird where the copy could become useful in the future, but in // practice it doesn't happen. iter = InvalidateTexture(iter); continue; } } else { // For normal textures, all texture parameters need to match if (!entry->IsEfbCopy() && entry->hash == full_hash && entry->format == full_format && entry->native_levels >= tex_levels && entry->native_width == nativeW && entry->native_height == nativeH) { entry = DoPartialTextureUpdates(iter->second, &texMem[tlutaddr], tlutfmt); entry->texture->FinishedRendering(); return entry; } } // Find the texture which hasn't been used for the longest time. Count paletted // textures as the same texture here, when the texture itself is the same. This // improves the performance a lot in some games that use paletted textures. // Example: Sonic the Fighters (inside Sonic Gems Collection) // Skip EFB copies here, so they can be used for partial texture updates // Also skip XFB copies, we might need to still scan them out // or load them as regular textures later. if (entry->frameCount != FRAMECOUNT_INVALID && entry->frameCount < temp_frameCount && !entry->IsCopy() && !(isPaletteTexture && entry->base_hash == base_hash)) { temp_frameCount = entry->frameCount; oldest_entry = iter; } ++iter; } if (unreinterpreted_copy != textures_by_address.end()) { TCacheEntry* decoded_entry = ReinterpretEntry(unreinterpreted_copy->second, texformat); // It's possible to combine reinterpreted textures + palettes. if (unreinterpreted_copy == unconverted_copy && decoded_entry) decoded_entry = ApplyPaletteToEntry(decoded_entry, &texMem[tlutaddr], tlutfmt); if (decoded_entry) return decoded_entry; } if (unconverted_copy != textures_by_address.end()) { TCacheEntry* decoded_entry = ApplyPaletteToEntry(unconverted_copy->second, &texMem[tlutaddr], tlutfmt); if (decoded_entry) { return decoded_entry; } } // Search the texture cache for normal textures by hash // // If the texture was fully hashed, the address does not need to match. Identical duplicate // textures cause unnecessary slowdowns // Example: Tales of Symphonia (GC) uses over 500 small textures in menus, but only around 70 // different ones if (textureCacheSafetyColorSampleSize == 0 || std::max(texture_size, palette_size) <= (u32)textureCacheSafetyColorSampleSize * 8) { auto hash_range = textures_by_hash.equal_range(full_hash); TexHashCache::iterator hash_iter = hash_range.first; while (hash_iter != hash_range.second) { TCacheEntry* entry = hash_iter->second; // All parameters, except the address, need to match here if (entry->format == full_format && entry->native_levels >= tex_levels && entry->native_width == nativeW && entry->native_height == nativeH) { entry = DoPartialTextureUpdates(hash_iter->second, &texMem[tlutaddr], tlutfmt); entry->texture->FinishedRendering(); return entry; } ++hash_iter; } } // If at least one entry was not used for the same frame, overwrite the oldest one if (temp_frameCount != 0x7fffffff) { // pool this texture and make a new one later InvalidateTexture(oldest_entry); } std::shared_ptr<HiresTexture> hires_tex; if (g_ActiveConfig.bHiresTextures) { hires_tex = HiresTexture::Search(src_data, texture_size, &texMem[tlutaddr], palette_size, width, height, texformat, use_mipmaps); if (hires_tex) { const auto& level = hires_tex->m_levels[0]; if (level.width != width || level.height != height) { width = level.width; height = level.height; } expandedWidth = level.width; expandedHeight = level.height; } } // how many levels the allocated texture shall have const u32 texLevels = hires_tex ? (u32)hires_tex->m_levels.size() : tex_levels; // We can decode on the GPU if it is a supported format and the flag is enabled. // Currently we don't decode RGBA8 textures from Tmem, as that would require copying from both // banks, and if we're doing an copy we may as well just do the whole thing on the CPU, since // there's no conversion between formats. In the future this could be extended with a separate // shader, however. const bool decode_on_gpu = !hires_tex && g_ActiveConfig.UseGPUTextureDecoding() && !(from_tmem && texformat == TextureFormat::RGBA8); // create the entry/texture const TextureConfig config(width, height, texLevels, 1, 1, hires_tex ? hires_tex->GetFormat() : AbstractTextureFormat::RGBA8, 0); TCacheEntry* entry = AllocateCacheEntry(config); if (!entry) return nullptr; ArbitraryMipmapDetector arbitrary_mip_detector; const u8* tlut = &texMem[tlutaddr]; if (hires_tex) { const auto& level = hires_tex->m_levels[0]; entry->texture->Load(0, level.width, level.height, level.row_length, level.data.data(), level.data.size()); } // Initialized to null because only software loading uses this buffer u8* dst_buffer = nullptr; if (!hires_tex) { if (!decode_on_gpu || !DecodeTextureOnGPU(entry, 0, src_data, texture_size, texformat, width, height, expandedWidth, expandedHeight, bytes_per_block * (expandedWidth / bsw), tlut, tlutfmt)) { size_t decoded_texture_size = expandedWidth * sizeof(u32) * expandedHeight; // Allocate memory for all levels at once size_t total_texture_size = decoded_texture_size; // For the downsample, we need 2 buffers; 1 is 1/4 of the original texture, the other 1/16 size_t mip_downsample_buffer_size = decoded_texture_size * 5 / 16; size_t prev_level_size = decoded_texture_size; for (u32 i = 1; i < tex_levels; ++i) { prev_level_size /= 4; total_texture_size += prev_level_size; } // Add space for the downsampling at the end total_texture_size += mip_downsample_buffer_size; CheckTempSize(total_texture_size); dst_buffer = temp; if (!(texformat == TextureFormat::RGBA8 && from_tmem)) { TexDecoder_Decode(dst_buffer, src_data, expandedWidth, expandedHeight, texformat, tlut, tlutfmt); } else { u8* src_data_gb = &texMem[tmem_address_odd]; TexDecoder_DecodeRGBA8FromTmem(dst_buffer, src_data, src_data_gb, expandedWidth, expandedHeight); } entry->texture->Load(0, width, height, expandedWidth, dst_buffer, decoded_texture_size); arbitrary_mip_detector.AddLevel(width, height, expandedWidth, dst_buffer); dst_buffer += decoded_texture_size; } } iter = textures_by_address.emplace(address, entry); if (textureCacheSafetyColorSampleSize == 0 || std::max(texture_size, palette_size) <= (u32)textureCacheSafetyColorSampleSize * 8) { entry->textures_by_hash_iter = textures_by_hash.emplace(full_hash, entry); } entry->SetGeneralParameters(address, texture_size, full_format, false); entry->SetDimensions(nativeW, nativeH, tex_levels); entry->SetHashes(base_hash, full_hash); entry->is_custom_tex = hires_tex != nullptr; entry->memory_stride = entry->BytesPerRow(); entry->SetNotCopy(); std::string basename; if (g_ActiveConfig.bDumpTextures && !hires_tex) { basename = HiresTexture::GenBaseName(src_data, texture_size, &texMem[tlutaddr], palette_size, width, height, texformat, use_mipmaps, true); } if (hires_tex) { for (u32 level_index = 1; level_index != texLevels; ++level_index) { const auto& level = hires_tex->m_levels[level_index]; entry->texture->Load(level_index, level.width, level.height, level.row_length, level.data.data(), level.data.size()); } } else { // load mips - TODO: Loading mipmaps from tmem is untested! src_data += texture_size; const u8* ptr_even = nullptr; const u8* ptr_odd = nullptr; if (from_tmem) { ptr_even = &texMem[tmem_address_even + texture_size]; ptr_odd = &texMem[tmem_address_odd]; } for (u32 level = 1; level != texLevels; ++level) { const u32 mip_width = CalculateLevelSize(width, level); const u32 mip_height = CalculateLevelSize(height, level); const u32 expanded_mip_width = Common::AlignUp(mip_width, bsw); const u32 expanded_mip_height = Common::AlignUp(mip_height, bsh); const u8*& mip_src_data = from_tmem ? ((level % 2) ? ptr_odd : ptr_even) : src_data; const u32 mip_size = TexDecoder_GetTextureSizeInBytes(expanded_mip_width, expanded_mip_height, texformat); if (!decode_on_gpu || !DecodeTextureOnGPU(entry, level, mip_src_data, mip_size, texformat, mip_width, mip_height, expanded_mip_width, expanded_mip_height, bytes_per_block * (expanded_mip_width / bsw), tlut, tlutfmt)) { // No need to call CheckTempSize here, as the whole buffer is preallocated at the beginning const u32 decoded_mip_size = expanded_mip_width * sizeof(u32) * expanded_mip_height; TexDecoder_Decode(dst_buffer, mip_src_data, expanded_mip_width, expanded_mip_height, texformat, tlut, tlutfmt); entry->texture->Load(level, mip_width, mip_height, expanded_mip_width, dst_buffer, decoded_mip_size); arbitrary_mip_detector.AddLevel(mip_width, mip_height, expanded_mip_width, dst_buffer); dst_buffer += decoded_mip_size; } mip_src_data += mip_size; } } entry->has_arbitrary_mips = hires_tex ? hires_tex->HasArbitraryMipmaps() : arbitrary_mip_detector.HasArbitraryMipmaps(dst_buffer); if (g_ActiveConfig.bDumpTextures && !hires_tex) { for (u32 level = 0; level < texLevels; ++level) { DumpTexture(entry, basename, level, entry->has_arbitrary_mips); } } INCSTAT(g_stats.num_textures_uploaded); SETSTAT(g_stats.num_textures_alive, static_cast<int>(textures_by_address.size())); entry = DoPartialTextureUpdates(iter->second, &texMem[tlutaddr], tlutfmt); // This should only be needed if the texture was updated, or used GPU decoding. entry->texture->FinishedRendering(); return entry; } static void GetDisplayRectForXFBEntry(TextureCacheBase::TCacheEntry* entry, u32 width, u32 height, MathUtil::Rectangle<int>* display_rect) { // Scale the sub-rectangle to the full resolution of the texture. display_rect->left = 0; display_rect->top = 0; display_rect->right = static_cast<int>(width * entry->GetWidth() / entry->native_width); display_rect->bottom = static_cast<int>(height * entry->GetHeight() / entry->native_height); } TextureCacheBase::TCacheEntry* TextureCacheBase::GetXFBTexture(u32 address, u32 width, u32 height, u32 stride, MathUtil::Rectangle<int>* display_rect) { const u8* src_data = Memory::GetPointer(address); if (!src_data) { ERROR_LOG(VIDEO, "Trying to load XFB texture from invalid address 0x%8x", address); return nullptr; } // Compute total texture size. XFB textures aren't tiled, so this is simple. const u32 total_size = height * stride; const u64 hash = Common::GetHash64(src_data, total_size, 0); // Do we currently have a version of this XFB copy in VRAM? TCacheEntry* entry = GetXFBFromCache(address, width, height, stride, hash); if (entry) { if (entry->is_xfb_container) { StitchXFBCopy(entry); entry->texture->FinishedRendering(); } GetDisplayRectForXFBEntry(entry, width, height, display_rect); return entry; } // Create a new VRAM texture, and fill it with the data from guest RAM. entry = AllocateCacheEntry(TextureConfig(width, height, 1, 1, 1, AbstractTextureFormat::RGBA8, AbstractTextureFlag_RenderTarget)); entry->SetGeneralParameters(address, total_size, TextureAndTLUTFormat(TextureFormat::XFB, TLUTFormat::IA8), true); entry->SetDimensions(width, height, 1); entry->SetHashes(hash, hash); entry->SetXfbCopy(stride); entry->is_xfb_container = true; entry->is_custom_tex = false; entry->may_have_overlapping_textures = false; entry->frameCount = FRAMECOUNT_INVALID; if (!g_ActiveConfig.UseGPUTextureDecoding() || !DecodeTextureOnGPU(entry, 0, src_data, total_size, entry->format.texfmt, width, height, width, height, stride, texMem, entry->format.tlutfmt)) { const u32 decoded_size = width * height * sizeof(u32); CheckTempSize(decoded_size); TexDecoder_DecodeXFB(temp, src_data, width, height, stride); entry->texture->Load(0, width, height, width, temp, decoded_size); } // Stitch any VRAM copies into the new RAM copy. StitchXFBCopy(entry); entry->texture->FinishedRendering(); // Insert into the texture cache so we can re-use it next frame, if needed. textures_by_address.emplace(entry->addr, entry); SETSTAT(g_stats.num_textures_alive, static_cast<int>(textures_by_address.size())); INCSTAT(g_stats.num_textures_uploaded); if (g_ActiveConfig.bDumpXFBTarget) { // While this isn't really an xfb copy, we can treat it as such for dumping purposes static int xfb_count = 0; entry->texture->Save( fmt::format("{}xfb_loaded_{}.png", File::GetUserPath(D_DUMPTEXTURES_IDX), xfb_count++), 0); } GetDisplayRectForXFBEntry(entry, width, height, display_rect); return entry; } TextureCacheBase::TCacheEntry* TextureCacheBase::GetXFBFromCache(u32 address, u32 width, u32 height, u32 stride, u64 hash) { auto iter_range = textures_by_address.equal_range(address); TexAddrCache::iterator iter = iter_range.first; while (iter != iter_range.second) { TCacheEntry* entry = iter->second; // The only thing which has to match exactly is the stride. We can use a partial rectangle if // the VI width/height differs from that of the XFB copy. if (entry->is_xfb_copy && entry->memory_stride == stride && entry->native_width >= width && entry->native_height >= height && !entry->may_have_overlapping_textures) { // But if the dimensions do differ, we must compute the hash on the sub-rectangle. u64 check_hash = hash; if (entry->native_width != width || entry->native_height != height) { check_hash = Common::GetHash64(Memory::GetPointer(entry->addr), entry->memory_stride * entry->native_height, 0); } if (entry->hash == check_hash && !entry->reference_changed) { return entry; } else { // At this point, we either have an xfb copy that has changed its hash // or an xfb created by stitching or from memory that has been changed // we are safe to invalidate this iter = InvalidateTexture(iter); continue; } } ++iter; } return nullptr; } void TextureCacheBase::StitchXFBCopy(TCacheEntry* stitched_entry) { // It is possible that some of the overlapping textures overlap each other. This behavior has been // seen with XFB copies in Rogue Leader. To get the correct result, we apply the texture updates // in the order the textures were originally loaded. This ensures that the parts of the texture // that would have been overwritten in memory on real hardware get overwritten the same way here // too. This should work, but it may be a better idea to keep track of partial XFB copy // invalidations instead, which would reduce the amount of copying work here. std::vector<TCacheEntry*> candidates; bool create_upscaled_copy = false; auto iter = FindOverlappingTextures(stitched_entry->addr, stitched_entry->size_in_bytes); while (iter.first != iter.second) { // Currently, this checks the stride of the VRAM copy against the VI request. Therefore, for // interlaced modes, VRAM copies won't be considered candidates. This is okay for now, because // our force progressive hack means that an XFB copy should always have a matching stride. If // the hack is disabled, XFB2RAM should also be enabled. Should we wish to implement interlaced // stitching in the future, this would require a shader which grabs every second line. TCacheEntry* entry = iter.first->second; if (entry != stitched_entry && entry->IsCopy() && !entry->tmem_only && entry->OverlapsMemoryRange(stitched_entry->addr, stitched_entry->size_in_bytes) && entry->memory_stride == stitched_entry->memory_stride) { if (entry->hash == entry->CalculateHash()) { // Can't check the height here because of Y scaling. if (entry->native_width != entry->GetWidth()) create_upscaled_copy = true; candidates.emplace_back(entry); } else { // If the hash does not match, this EFB copy will not be used for anything, so remove it iter.first = InvalidateTexture(iter.first); continue; } } ++iter.first; } if (candidates.empty()) return; std::sort(candidates.begin(), candidates.end(), [](const TCacheEntry* a, const TCacheEntry* b) { return a->id < b->id; }); // We only upscale when necessary to preserve resolution. i.e. when there are upscaled partial // copies to be stitched together. if (create_upscaled_copy) { ScaleTextureCacheEntryTo(stitched_entry, g_renderer->EFBToScaledX(stitched_entry->native_width), g_renderer->EFBToScaledY(stitched_entry->native_height)); } for (TCacheEntry* entry : candidates) { int src_x, src_y, dst_x, dst_y; if (entry->addr >= stitched_entry->addr) { int pixel_offset = (entry->addr - stitched_entry->addr) / 2; src_x = 0; src_y = 0; dst_x = pixel_offset % stitched_entry->native_width; dst_y = pixel_offset / stitched_entry->native_width; } else { int pixel_offset = (stitched_entry->addr - entry->addr) / 2; src_x = pixel_offset % entry->native_width; src_y = pixel_offset / entry->native_width; dst_x = 0; dst_y = 0; } const int native_width = std::min(entry->native_width - src_x, stitched_entry->native_width - dst_x); const int native_height = std::min(entry->native_height - src_y, stitched_entry->native_height - dst_y); int src_width = native_width; int src_height = native_height; int dst_width = native_width; int dst_height = native_height; // Scale to internal resolution. if (entry->native_width != entry->GetWidth()) { src_x = g_renderer->EFBToScaledX(src_x); src_y = g_renderer->EFBToScaledY(src_y); src_width = g_renderer->EFBToScaledX(src_width); src_height = g_renderer->EFBToScaledY(src_height); } if (create_upscaled_copy) { dst_x = g_renderer->EFBToScaledX(dst_x); dst_y = g_renderer->EFBToScaledY(dst_y); dst_width = g_renderer->EFBToScaledX(dst_width); dst_height = g_renderer->EFBToScaledY(dst_height); } // If the source rectangle is outside of what we actually have in VRAM, skip the copy. // The backend doesn't do any clamping, so if we don't, we'd pass out-of-range coordinates // to the graphics driver, which can cause GPU resets. if (static_cast<u32>(src_x + src_width) > entry->GetWidth() || static_cast<u32>(src_y + src_height) > entry->GetHeight() || static_cast<u32>(dst_x + dst_width) > stitched_entry->GetWidth() || static_cast<u32>(dst_y + dst_height) > stitched_entry->GetHeight()) { continue; } MathUtil::Rectangle<int> srcrect, dstrect; srcrect.left = src_x; srcrect.top = src_y; srcrect.right = (src_x + src_width); srcrect.bottom = (src_y + src_height); dstrect.left = dst_x; dstrect.top = dst_y; dstrect.right = (dst_x + dst_width); dstrect.bottom = (dst_y + dst_height); // We may have to scale if one of the copies is not internal resolution. if (srcrect.GetWidth() != dstrect.GetWidth() || srcrect.GetHeight() != dstrect.GetHeight()) { g_renderer->ScaleTexture(stitched_entry->framebuffer.get(), dstrect, entry->texture.get(), srcrect); } else { // If one copy is stereo, and the other isn't... not much we can do here :/ const u32 layers_to_copy = std::min(entry->GetNumLayers(), stitched_entry->GetNumLayers()); for (u32 layer = 0; layer < layers_to_copy; layer++) { stitched_entry->texture->CopyRectangleFromTexture(entry->texture.get(), srcrect, layer, 0, dstrect, layer, 0); } } // Link the two textures together, so we won't apply this partial update again entry->CreateReference(stitched_entry); // Mark the texture update as used, as if it was loaded directly entry->frameCount = FRAMECOUNT_INVALID; } } EFBCopyFilterCoefficients TextureCacheBase::GetRAMCopyFilterCoefficients(const CopyFilterCoefficients::Values& coefficients) { // To simplify the backend, we precalculate the three coefficients in common. Coefficients 0, 1 // are for the row above, 2, 3, 4 are for the current pixel, and 5, 6 are for the row below. return EFBCopyFilterCoefficients{ static_cast<float>(static_cast<u32>(coefficients[0]) + static_cast<u32>(coefficients[1])) / 64.0f, static_cast<float>(static_cast<u32>(coefficients[2]) + static_cast<u32>(coefficients[3]) + static_cast<u32>(coefficients[4])) / 64.0f, static_cast<float>(static_cast<u32>(coefficients[5]) + static_cast<u32>(coefficients[6])) / 64.0f, }; } EFBCopyFilterCoefficients TextureCacheBase::GetVRAMCopyFilterCoefficients(const CopyFilterCoefficients::Values& coefficients) { // If the user disables the copy filter, only apply it to the VRAM copy. // This way games which are sensitive to changes to the RAM copy of the XFB will be unaffected. EFBCopyFilterCoefficients res = GetRAMCopyFilterCoefficients(coefficients); if (!g_ActiveConfig.bDisableCopyFilter) return res; // Disabling the copy filter in options should not ignore the values the game sets completely, // as some games use the filter coefficients to control the brightness of the screen. Instead, // add all coefficients to the middle sample, so the deflicker/vertical filter has no effect. res.middle = res.upper + res.middle + res.lower; res.upper = 0.0f; res.lower = 0.0f; return res; } bool TextureCacheBase::NeedsCopyFilterInShader(const EFBCopyFilterCoefficients& coefficients) { // If the top/bottom coefficients are zero, no point sampling/blending from these rows. return coefficients.upper != 0 || coefficients.lower != 0; } void TextureCacheBase::CopyRenderTargetToTexture( u32 dstAddr, EFBCopyFormat dstFormat, u32 width, u32 height, u32 dstStride, bool is_depth_copy, const MathUtil::Rectangle<int>& srcRect, bool isIntensity, bool scaleByHalf, float y_scale, float gamma, bool clamp_top, bool clamp_bottom, const CopyFilterCoefficients::Values& filter_coefficients) { // Emulation methods: // // - EFB to RAM: // Encodes the requested EFB data at its native resolution to the emulated RAM using shaders. // Load() decodes the data from there again (using TextureDecoder) if the EFB copy is being // used as a texture again. // Advantage: CPU can read data from the EFB copy and we don't lose any important updates to // the texture // Disadvantage: Encoding+decoding steps often are redundant because only some games read or // modify EFB copies before using them as textures. // // - EFB to texture: // Copies the requested EFB data to a texture object in VRAM, performing any color conversion // using shaders. // Advantage: Works for many games, since in most cases EFB copies aren't read or modified at // all before being used as a texture again. // Since we don't do any further encoding or decoding here, this method is much // faster. // It also allows enhancing the visual quality by doing scaled EFB copies. // // - Hybrid EFB copies: // 1a) Whenever this function gets called, encode the requested EFB data to RAM (like EFB to // RAM) // 1b) Set type to TCET_EC_DYNAMIC for all texture cache entries in the destination address // range. // If EFB copy caching is enabled, further checks will (try to) prevent redundant EFB // copies. // 2) Check if a texture cache entry for the specified dstAddr already exists (i.e. if an EFB // copy was triggered to that address before): // 2a) Entry doesn't exist: // - Also copy the requested EFB data to a texture object in VRAM (like EFB to texture) // - Create a texture cache entry for the target (type = TCET_EC_VRAM) // - Store a hash of the encoded RAM data in the texcache entry. // 2b) Entry exists AND type is TCET_EC_VRAM: // - Like case 2a, but reuse the old texcache entry instead of creating a new one. // 2c) Entry exists AND type is TCET_EC_DYNAMIC: // - Only encode the texture to RAM (like EFB to RAM) and store a hash of the encoded // data in the existing texcache entry. // - Do NOT copy the requested EFB data to a VRAM object. Reason: the texture is dynamic, // i.e. the CPU is modifying it. Storing a VRAM copy is useless, because we'd always end // up deleting it and reloading the data from RAM anyway. // 3) If the EFB copy gets used as a texture, compare the source RAM hash with the hash you // stored when encoding the EFB data to RAM. // 3a) If the two hashes match AND type is TCET_EC_VRAM, reuse the VRAM copy you created // 3b) If the two hashes differ AND type is TCET_EC_VRAM, screw your existing VRAM copy. Set // type to TCET_EC_DYNAMIC. // Redecode the source RAM data to a VRAM object. The entry basically behaves like a // normal texture now. // 3c) If type is TCET_EC_DYNAMIC, treat the EFB copy like a normal texture. // Advantage: Non-dynamic EFB copies can be visually enhanced like with EFB to texture. // Compatibility is as good as EFB to RAM. // Disadvantage: Slower than EFB to texture and often even slower than EFB to RAM. // EFB copy cache depends on accurate texture hashing being enabled. However, // with accurate hashing you end up being as slow as without a copy cache // anyway. // // Disadvantage of all methods: Calling this function requires the GPU to perform a pipeline flush // which stalls any further CPU processing. const bool is_xfb_copy = !is_depth_copy && !isIntensity && dstFormat == EFBCopyFormat::XFB; bool copy_to_vram = g_ActiveConfig.backend_info.bSupportsCopyToVram && !g_ActiveConfig.bDisableCopyToVRAM; bool copy_to_ram = !(is_xfb_copy ? g_ActiveConfig.bSkipXFBCopyToRam : g_ActiveConfig.bSkipEFBCopyToRam) || !copy_to_vram; u8* dst = Memory::GetPointer(dstAddr); if (dst == nullptr) { ERROR_LOG(VIDEO, "Trying to copy from EFB to invalid address 0x%8x", dstAddr); return; } // tex_w and tex_h are the native size of the texture in the GC memory. // The size scaled_* represents the emulated texture. Those differ // because of upscaling and because of yscaling of XFB copies. // For the latter, we keep the EFB resolution for the virtual XFB blit. u32 tex_w = width; u32 tex_h = height; u32 scaled_tex_w = g_renderer->EFBToScaledX(width); u32 scaled_tex_h = g_renderer->EFBToScaledY(height); if (scaleByHalf) { tex_w /= 2; tex_h /= 2; scaled_tex_w /= 2; scaled_tex_h /= 2; } if (!is_xfb_copy && !g_ActiveConfig.bCopyEFBScaled) { // No upscaling scaled_tex_w = tex_w; scaled_tex_h = tex_h; } // Get the base (in memory) format of this efb copy. TextureFormat baseFormat = TexDecoder_GetEFBCopyBaseFormat(dstFormat); u32 blockH = TexDecoder_GetBlockHeightInTexels(baseFormat); const u32 blockW = TexDecoder_GetBlockWidthInTexels(baseFormat); // Round up source height to multiple of block size u32 actualHeight = Common::AlignUp(tex_h, blockH); const u32 actualWidth = Common::AlignUp(tex_w, blockW); u32 num_blocks_y = actualHeight / blockH; const u32 num_blocks_x = actualWidth / blockW; // RGBA takes two cache lines per block; all others take one const u32 bytes_per_block = baseFormat == TextureFormat::RGBA8 ? 64 : 32; const u32 bytes_per_row = num_blocks_x * bytes_per_block; const u32 covered_range = num_blocks_y * dstStride; if (dstStride < bytes_per_row) { // This kind of efb copy results in a scrambled image. // I'm pretty sure no game actually wants to do this, it might be caused by a // programming bug in the game, or a CPU/Bounding box emulation issue with dolphin. // The copy_to_ram code path above handles this "correctly" and scrambles the image // but the copy_to_vram code path just saves and uses unscrambled texture instead. // To avoid a "incorrect" result, we simply skip doing the copy_to_vram code path // so if the game does try to use the scrambled texture, dolphin will grab the scrambled // texture (or black if copy_to_ram is also disabled) out of ram. ERROR_LOG(VIDEO, "Memory stride too small (%i < %i)", dstStride, bytes_per_row); copy_to_vram = false; } // We also linear filtering for both box filtering and downsampling higher resolutions to 1x. // TODO: This only produces perfect downsampling for 2x IR, other resolutions will need more // complex down filtering to average all pixels and produce the correct result. const bool linear_filter = !is_depth_copy && (scaleByHalf || g_renderer->GetEFBScale() != 1 || y_scale > 1.0f); TCacheEntry* entry = nullptr; if (copy_to_vram) { // create the texture const TextureConfig config(scaled_tex_w, scaled_tex_h, 1, g_framebuffer_manager->GetEFBLayers(), 1, AbstractTextureFormat::RGBA8, AbstractTextureFlag_RenderTarget); entry = AllocateCacheEntry(config); if (entry) { entry->SetGeneralParameters(dstAddr, 0, baseFormat, is_xfb_copy); entry->SetDimensions(tex_w, tex_h, 1); entry->frameCount = FRAMECOUNT_INVALID; if (is_xfb_copy) { entry->should_force_safe_hashing = is_xfb_copy; entry->SetXfbCopy(dstStride); } else { entry->SetEfbCopy(dstStride); } entry->may_have_overlapping_textures = false; entry->is_custom_tex = false; CopyEFBToCacheEntry(entry, is_depth_copy, srcRect, scaleByHalf, linear_filter, dstFormat, isIntensity, gamma, clamp_top, clamp_bottom, GetVRAMCopyFilterCoefficients(filter_coefficients)); if (g_ActiveConfig.bDumpEFBTarget && !is_xfb_copy) { static int efb_count = 0; entry->texture->Save( fmt::format("{}efb_frame_{}.png", File::GetUserPath(D_DUMPTEXTURES_IDX), efb_count++), 0); } if (g_ActiveConfig.bDumpXFBTarget && is_xfb_copy) { static int xfb_count = 0; entry->texture->Save( fmt::format("{}xfb_copy_{}.png", File::GetUserPath(D_DUMPTEXTURES_IDX), xfb_count++), 0); } } } if (copy_to_ram) { EFBCopyFilterCoefficients coefficients = GetRAMCopyFilterCoefficients(filter_coefficients); PEControl::PixelFormat srcFormat = bpmem.zcontrol.pixel_format; EFBCopyParams format(srcFormat, dstFormat, is_depth_copy, isIntensity, NeedsCopyFilterInShader(coefficients)); std::unique_ptr<AbstractStagingTexture> staging_texture = GetEFBCopyStagingTexture(); if (staging_texture) { CopyEFB(staging_texture.get(), format, tex_w, bytes_per_row, num_blocks_y, dstStride, srcRect, scaleByHalf, linear_filter, y_scale, gamma, clamp_top, clamp_bottom, coefficients); // We can't defer if there is no VRAM copy (since we need to update the hash). if (!copy_to_vram || !g_ActiveConfig.bDeferEFBCopies) { // Immediately flush it. WriteEFBCopyToRAM(dst, bytes_per_row / sizeof(u32), num_blocks_y, dstStride, std::move(staging_texture)); } else { // Defer the flush until later. entry->pending_efb_copy = std::move(staging_texture); entry->pending_efb_copy_width = bytes_per_row / sizeof(u32); entry->pending_efb_copy_height = num_blocks_y; entry->pending_efb_copy_invalidated = false; m_pending_efb_copies.push_back(entry); } } } else { if (is_xfb_copy) { UninitializeXFBMemory(dst, dstStride, bytes_per_row, num_blocks_y); } else { // Hack: Most games don't actually need the correct texture data in RAM // and we can just keep a copy in VRAM. We zero the memory so we // can check it hasn't changed before using our copy in VRAM. u8* ptr = dst; for (u32 i = 0; i < num_blocks_y; i++) { std::memset(ptr, 0, bytes_per_row); ptr += dstStride; } } } // Invalidate all textures, if they are either fully overwritten by our efb copy, or if they // have a different stride than our efb copy. Partly overwritten textures with the same stride // as our efb copy are marked to check them for partial texture updates. // TODO: The logic to detect overlapping strided efb copies is not 100% accurate. bool strided_efb_copy = dstStride != bytes_per_row; auto iter = FindOverlappingTextures(dstAddr, covered_range); while (iter.first != iter.second) { TCacheEntry* overlapping_entry = iter.first->second; if (overlapping_entry->addr == dstAddr && overlapping_entry->is_xfb_copy) { for (auto& reference : overlapping_entry->references) { reference->reference_changed = true; } } if (overlapping_entry->OverlapsMemoryRange(dstAddr, covered_range)) { u32 overlap_range = std::min(overlapping_entry->addr + overlapping_entry->size_in_bytes, dstAddr + covered_range) - std::max(overlapping_entry->addr, dstAddr); if (!copy_to_vram || overlapping_entry->memory_stride != dstStride || (!strided_efb_copy && overlapping_entry->size_in_bytes == overlap_range) || (strided_efb_copy && overlapping_entry->size_in_bytes == overlap_range && overlapping_entry->addr == dstAddr)) { // Pending EFB copies which are completely covered by this new copy can simply be tossed, // instead of having to flush them later on, since this copy will write over everything. iter.first = InvalidateTexture(iter.first, true); continue; } // We don't want to change the may_have_overlapping_textures flag on XFB container entries // because otherwise they can't be re-used/updated, leaking textures for several frames. if (!overlapping_entry->is_xfb_container) overlapping_entry->may_have_overlapping_textures = true; // There are cases (Rogue Squadron 2 / Texas Holdem on Wiiware) where // for xfb copies the textures overlap which causes the hash of the first copy // to be different (from when it was originally created). This has no implications // for XFB2Tex because the underlying memory doesn't change (dummy values) but // can affect XFB2Ram when we compare the texture cache copy hash with the // newly computed hash // By calculating the hash when we receive overlapping xfbs, we are able // to mitigate this if (overlapping_entry->is_xfb_copy && copy_to_ram) { overlapping_entry->hash = overlapping_entry->CalculateHash(); } // Do not load textures by hash, if they were at least partly overwritten by an efb copy. // In this case, comparing the hash is not enough to check, if two textures are identical. if (overlapping_entry->textures_by_hash_iter != textures_by_hash.end()) { textures_by_hash.erase(overlapping_entry->textures_by_hash_iter); overlapping_entry->textures_by_hash_iter = textures_by_hash.end(); } } ++iter.first; } if (OpcodeDecoder::g_record_fifo_data) { // Mark the memory behind this efb copy as dynamicly generated for the Fifo log u32 address = dstAddr; for (u32 i = 0; i < num_blocks_y; i++) { FifoRecorder::GetInstance().UseMemory(address, bytes_per_row, MemoryUpdate::TEXTURE_MAP, true); address += dstStride; } } // Even if the copy is deferred, still compute the hash. This way if the copy is used as a texture // in a subsequent draw before it is flushed, it will have the same hash. if (entry) { const u64 hash = entry->CalculateHash(); entry->SetHashes(hash, hash); textures_by_address.emplace(dstAddr, entry); } } void TextureCacheBase::FlushEFBCopies() { if (m_pending_efb_copies.empty()) return; for (TCacheEntry* entry : m_pending_efb_copies) FlushEFBCopy(entry); m_pending_efb_copies.clear(); } void TextureCacheBase::WriteEFBCopyToRAM(u8* dst_ptr, u32 width, u32 height, u32 stride, std::unique_ptr<AbstractStagingTexture> staging_texture) { MathUtil::Rectangle<int> copy_rect(0, 0, static_cast<int>(width), static_cast<int>(height)); staging_texture->ReadTexels(copy_rect, dst_ptr, stride); ReleaseEFBCopyStagingTexture(std::move(staging_texture)); } void TextureCacheBase::FlushEFBCopy(TCacheEntry* entry) { // Copy from texture -> guest memory. u8* const dst = Memory::GetPointer(entry->addr); WriteEFBCopyToRAM(dst, entry->pending_efb_copy_width, entry->pending_efb_copy_height, entry->memory_stride, std::move(entry->pending_efb_copy)); // If the EFB copy was invalidated (e.g. the bloom case mentioned in InvalidateTexture), now is // the time to clean up the TCacheEntry. In which case, we don't need to compute the new hash of // the RAM copy. But we need to clean up the TCacheEntry, as InvalidateTexture doesn't free it. if (entry->pending_efb_copy_invalidated) { delete entry; return; } // Re-hash the texture now that the guest memory is populated. // This should be safe because we'll catch any writes before the game can modify it. const u64 hash = entry->CalculateHash(); entry->SetHashes(hash, hash); // Check for any overlapping XFB copies which now need the hash recomputed. // See the comment above regarding Rogue Squadron 2. if (entry->is_xfb_copy) { const u32 covered_range = entry->pending_efb_copy_height * entry->memory_stride; auto range = FindOverlappingTextures(entry->addr, covered_range); for (auto iter = range.first; iter != range.second; ++iter) { TCacheEntry* overlapping_entry = iter->second; if (overlapping_entry->may_have_overlapping_textures && overlapping_entry->is_xfb_copy && overlapping_entry->OverlapsMemoryRange(entry->addr, covered_range)) { const u64 overlapping_hash = overlapping_entry->CalculateHash(); entry->SetHashes(overlapping_hash, overlapping_hash); } } } } std::unique_ptr<AbstractStagingTexture> TextureCacheBase::GetEFBCopyStagingTexture() { // Pull off the back first to re-use the most frequently used textures. if (!m_efb_copy_staging_texture_pool.empty()) { auto ptr = std::move(m_efb_copy_staging_texture_pool.back()); m_efb_copy_staging_texture_pool.pop_back(); return ptr; } std::unique_ptr<AbstractStagingTexture> tex = g_renderer->CreateStagingTexture( StagingTextureType::Readback, m_efb_encoding_texture->GetConfig()); if (!tex) WARN_LOG(VIDEO, "Failed to create EFB copy staging texture"); return tex; } void TextureCacheBase::ReleaseEFBCopyStagingTexture(std::unique_ptr<AbstractStagingTexture> tex) { m_efb_copy_staging_texture_pool.push_back(std::move(tex)); } void TextureCacheBase::UninitializeXFBMemory(u8* dst, u32 stride, u32 bytes_per_row, u32 num_blocks_y) { // Originally, we planned on using a 'key color' // for alpha to address partial xfbs (Mario Strikers / Chicken Little). // This work was removed since it was unfinished but there // was still a desire to differentiate between the old and the new approach // which is why we still set uninitialized xfb memory to fuchsia // (Y=1,U=254,V=254) instead of dark green (Y=0,U=0,V=0) in YUV // like is done in the EFB path. #if defined(_M_X86) || defined(_M_X86_64) __m128i sixteenBytes = _mm_set1_epi16((s16)(u16)0xFE01); #endif for (u32 i = 0; i < num_blocks_y; i++) { u32 size = bytes_per_row; u8* rowdst = dst; #if defined(_M_X86) || defined(_M_X86_64) while (size >= 16) { _mm_storeu_si128((__m128i*)rowdst, sixteenBytes); size -= 16; rowdst += 16; } #endif for (u32 offset = 0; offset < size; offset++) { if (offset & 1) { rowdst[offset] = 254; } else { rowdst[offset] = 1; } } dst += stride; } } TextureCacheBase::TCacheEntry* TextureCacheBase::AllocateCacheEntry(const TextureConfig& config) { std::optional<TexPoolEntry> alloc = AllocateTexture(config); if (!alloc) return nullptr; TCacheEntry* cacheEntry = new TCacheEntry(std::move(alloc->texture), std::move(alloc->framebuffer)); cacheEntry->textures_by_hash_iter = textures_by_hash.end(); cacheEntry->id = last_entry_id++; return cacheEntry; } std::optional<TextureCacheBase::TexPoolEntry> TextureCacheBase::AllocateTexture(const TextureConfig& config) { TexPool::iterator iter = FindMatchingTextureFromPool(config); if (iter != texture_pool.end()) { auto entry = std::move(iter->second); texture_pool.erase(iter); return std::move(entry); } std::unique_ptr<AbstractTexture> texture = g_renderer->CreateTexture(config); if (!texture) { WARN_LOG(VIDEO, "Failed to allocate a %ux%ux%u texture", config.width, config.height, config.layers); return {}; } std::unique_ptr<AbstractFramebuffer> framebuffer; if (config.IsRenderTarget()) { framebuffer = g_renderer->CreateFramebuffer(texture.get(), nullptr); if (!framebuffer) { WARN_LOG(VIDEO, "Failed to allocate a %ux%ux%u framebuffer", config.width, config.height, config.layers); return {}; } } INCSTAT(g_stats.num_textures_created); return TexPoolEntry(std::move(texture), std::move(framebuffer)); } TextureCacheBase::TexPool::iterator TextureCacheBase::FindMatchingTextureFromPool(const TextureConfig& config) { // Find a texture from the pool that does not have a frameCount of FRAMECOUNT_INVALID. // This prevents a texture from being used twice in a single frame with different data, // which potentially means that a driver has to maintain two copies of the texture anyway. // Render-target textures are fine through, as they have to be generated in a seperated pass. // As non-render-target textures are usually static, this should not matter much. auto range = texture_pool.equal_range(config); auto matching_iter = std::find_if(range.first, range.second, [](const auto& iter) { return iter.first.IsRenderTarget() || iter.second.frameCount != FRAMECOUNT_INVALID; }); return matching_iter != range.second ? matching_iter : texture_pool.end(); } TextureCacheBase::TexAddrCache::iterator TextureCacheBase::GetTexCacheIter(TextureCacheBase::TCacheEntry* entry) { auto iter_range = textures_by_address.equal_range(entry->addr); TexAddrCache::iterator iter = iter_range.first; while (iter != iter_range.second) { if (iter->second == entry) { return iter; } ++iter; } return textures_by_address.end(); } std::pair<TextureCacheBase::TexAddrCache::iterator, TextureCacheBase::TexAddrCache::iterator> TextureCacheBase::FindOverlappingTextures(u32 addr, u32 size_in_bytes) { // We index by the starting address only, so there is no way to query all textures // which end after the given addr. But the GC textures have a limited size, so we // look for all textures which have a start address bigger than addr minus the maximal // texture size. But this yields false-positives which must be checked later on. // 1024 x 1024 texel times 8 nibbles per texel constexpr u32 max_texture_size = 1024 * 1024 * 4; u32 lower_addr = addr > max_texture_size ? addr - max_texture_size : 0; auto begin = textures_by_address.lower_bound(lower_addr); auto end = textures_by_address.upper_bound(addr + size_in_bytes); return std::make_pair(begin, end); } TextureCacheBase::TexAddrCache::iterator TextureCacheBase::InvalidateTexture(TexAddrCache::iterator iter, bool discard_pending_efb_copy) { if (iter == textures_by_address.end()) return textures_by_address.end(); TCacheEntry* entry = iter->second; if (entry->textures_by_hash_iter != textures_by_hash.end()) { textures_by_hash.erase(entry->textures_by_hash_iter); entry->textures_by_hash_iter = textures_by_hash.end(); } for (size_t i = 0; i < bound_textures.size(); ++i) { // If the entry is currently bound and not invalidated, keep it, but mark it as invalidated. // This way it can still be used via tmem cache emulation, but nothing else. // Spyro: A Hero's Tail is known for using such overwritten textures. if (bound_textures[i] == entry && IsValidBindPoint(static_cast<u32>(i))) { bound_textures[i]->tmem_only = true; return ++iter; } } // If this is a pending EFB copy, we don't want to flush it here. // Why? Because let's say a game is rendering a bloom-type effect, using EFB copies to essentially // downscale the framebuffer. Copy from EFB->Texture, draw texture to EFB, copy EFB->Texture, // draw, repeat. The second copy will invalidate the first, forcing a flush. Which means we lose // any benefit of EFB copy batching. So instead, let's just leave the EFB copy pending, but remove // it from the texture cache. This way we don't use the old VRAM copy. When the EFB copies are // eventually flushed, they will overwrite each other, and the end result should be the same. if (entry->pending_efb_copy) { if (discard_pending_efb_copy) { // If the RAM copy is being completely overwritten by a new EFB copy, we can discard the // existing pending copy, and not bother waiting for it in the future. This happens in // Xenoblade's sunset scene, where 35 copies are done per frame, and 25 of them are // copied to the same address, and can be skipped. ReleaseEFBCopyStagingTexture(std::move(entry->pending_efb_copy)); auto pending_it = std::find(m_pending_efb_copies.begin(), m_pending_efb_copies.end(), entry); if (pending_it != m_pending_efb_copies.end()) m_pending_efb_copies.erase(pending_it); } else { entry->pending_efb_copy_invalidated = true; } } auto config = entry->texture->GetConfig(); texture_pool.emplace(config, TexPoolEntry(std::move(entry->texture), std::move(entry->framebuffer))); // Don't delete if there's a pending EFB copy, as we need the TCacheEntry alive. if (!entry->pending_efb_copy) delete entry; return textures_by_address.erase(iter); } bool TextureCacheBase::CreateUtilityTextures() { constexpr TextureConfig encoding_texture_config( EFB_WIDTH * 4, 1024, 1, 1, 1, AbstractTextureFormat::BGRA8, AbstractTextureFlag_RenderTarget); m_efb_encoding_texture = g_renderer->CreateTexture(encoding_texture_config); if (!m_efb_encoding_texture) return false; m_efb_encoding_framebuffer = g_renderer->CreateFramebuffer(m_efb_encoding_texture.get(), nullptr); if (!m_efb_encoding_framebuffer) return false; if (g_ActiveConfig.backend_info.bSupportsGPUTextureDecoding) { constexpr TextureConfig decoding_texture_config( 1024, 1024, 1, 1, 1, AbstractTextureFormat::RGBA8, AbstractTextureFlag_ComputeImage); m_decoding_texture = g_renderer->CreateTexture(decoding_texture_config); if (!m_decoding_texture) return false; } return true; } void TextureCacheBase::CopyEFBToCacheEntry(TCacheEntry* entry, bool is_depth_copy, const MathUtil::Rectangle<int>& src_rect, bool scale_by_half, bool linear_filter, EFBCopyFormat dst_format, bool is_intensity, float gamma, bool clamp_top, bool clamp_bottom, const EFBCopyFilterCoefficients& filter_coefficients) { // Flush EFB pokes first, as they're expected to be included. g_framebuffer_manager->FlushEFBPokes(); // Get the pipeline which we will be using. If the compilation failed, this will be null. const AbstractPipeline* copy_pipeline = g_shader_cache->GetEFBCopyToVRAMPipeline(TextureConversionShaderGen::GetShaderUid( dst_format, is_depth_copy, is_intensity, scale_by_half, NeedsCopyFilterInShader(filter_coefficients))); if (!copy_pipeline) { WARN_LOG(VIDEO, "Skipping EFB copy to VRAM due to missing pipeline."); return; } const auto scaled_src_rect = g_renderer->ConvertEFBRectangle(src_rect); const auto framebuffer_rect = g_renderer->ConvertFramebufferRectangle( scaled_src_rect, g_framebuffer_manager->GetEFBFramebuffer()); AbstractTexture* src_texture = is_depth_copy ? g_framebuffer_manager->ResolveEFBDepthTexture(framebuffer_rect) : g_framebuffer_manager->ResolveEFBColorTexture(framebuffer_rect); src_texture->FinishedRendering(); g_renderer->BeginUtilityDrawing(); // Fill uniform buffer. struct Uniforms { float src_left, src_top, src_width, src_height; float filter_coefficients[3]; float gamma_rcp; float clamp_top; float clamp_bottom; float pixel_height; u32 padding; }; Uniforms uniforms; const float rcp_efb_width = 1.0f / static_cast<float>(g_framebuffer_manager->GetEFBWidth()); const float rcp_efb_height = 1.0f / static_cast<float>(g_framebuffer_manager->GetEFBHeight()); uniforms.src_left = framebuffer_rect.left * rcp_efb_width; uniforms.src_top = framebuffer_rect.top * rcp_efb_height; uniforms.src_width = framebuffer_rect.GetWidth() * rcp_efb_width; uniforms.src_height = framebuffer_rect.GetHeight() * rcp_efb_height; uniforms.filter_coefficients[0] = filter_coefficients.upper; uniforms.filter_coefficients[1] = filter_coefficients.middle; uniforms.filter_coefficients[2] = filter_coefficients.lower; uniforms.gamma_rcp = 1.0f / gamma; uniforms.clamp_top = clamp_top ? framebuffer_rect.top * rcp_efb_height : 0.0f; uniforms.clamp_bottom = clamp_bottom ? framebuffer_rect.bottom * rcp_efb_height : 1.0f; uniforms.pixel_height = g_ActiveConfig.bCopyEFBScaled ? rcp_efb_height : 1.0f / EFB_HEIGHT; uniforms.padding = 0; g_vertex_manager->UploadUtilityUniforms(&uniforms, sizeof(uniforms)); // Use the copy pipeline to render the VRAM copy. g_renderer->SetAndDiscardFramebuffer(entry->framebuffer.get()); g_renderer->SetViewportAndScissor(entry->framebuffer->GetRect()); g_renderer->SetPipeline(copy_pipeline); g_renderer->SetTexture(0, src_texture); g_renderer->SetSamplerState(0, linear_filter ? RenderState::GetLinearSamplerState() : RenderState::GetPointSamplerState()); g_renderer->Draw(0, 3); g_renderer->EndUtilityDrawing(); entry->texture->FinishedRendering(); } void TextureCacheBase::CopyEFB(AbstractStagingTexture* dst, const EFBCopyParams& params, u32 native_width, u32 bytes_per_row, u32 num_blocks_y, u32 memory_stride, const MathUtil::Rectangle<int>& src_rect, bool scale_by_half, bool linear_filter, float y_scale, float gamma, bool clamp_top, bool clamp_bottom, const EFBCopyFilterCoefficients& filter_coefficients) { // Flush EFB pokes first, as they're expected to be included. g_framebuffer_manager->FlushEFBPokes(); // Get the pipeline which we will be using. If the compilation failed, this will be null. const AbstractPipeline* copy_pipeline = g_shader_cache->GetEFBCopyToRAMPipeline(params); if (!copy_pipeline) { WARN_LOG(VIDEO, "Skipping EFB copy to VRAM due to missing pipeline."); return; } const auto scaled_src_rect = g_renderer->ConvertEFBRectangle(src_rect); const auto framebuffer_rect = g_renderer->ConvertFramebufferRectangle( scaled_src_rect, g_framebuffer_manager->GetEFBFramebuffer()); AbstractTexture* src_texture = params.depth ? g_framebuffer_manager->ResolveEFBDepthTexture(framebuffer_rect) : g_framebuffer_manager->ResolveEFBColorTexture(framebuffer_rect); src_texture->FinishedRendering(); g_renderer->BeginUtilityDrawing(); // Fill uniform buffer. struct Uniforms { std::array<s32, 4> position_uniform; float y_scale; float gamma_rcp; float clamp_top; float clamp_bottom; float filter_coefficients[3]; u32 padding; }; Uniforms encoder_params; const float rcp_efb_height = 1.0f / static_cast<float>(g_framebuffer_manager->GetEFBHeight()); encoder_params.position_uniform[0] = src_rect.left; encoder_params.position_uniform[1] = src_rect.top; encoder_params.position_uniform[2] = static_cast<s32>(native_width); encoder_params.position_uniform[3] = scale_by_half ? 2 : 1; encoder_params.y_scale = y_scale; encoder_params.gamma_rcp = 1.0f / gamma; encoder_params.clamp_top = clamp_top ? framebuffer_rect.top * rcp_efb_height : 0.0f; encoder_params.clamp_bottom = clamp_bottom ? framebuffer_rect.bottom * rcp_efb_height : 1.0f; encoder_params.filter_coefficients[0] = filter_coefficients.upper; encoder_params.filter_coefficients[1] = filter_coefficients.middle; encoder_params.filter_coefficients[2] = filter_coefficients.lower; g_vertex_manager->UploadUtilityUniforms(&encoder_params, sizeof(encoder_params)); // Because the shader uses gl_FragCoord and we read it back, we must render to the lower-left. const u32 render_width = bytes_per_row / sizeof(u32); const u32 render_height = num_blocks_y; const auto encode_rect = MathUtil::Rectangle<int>(0, 0, render_width, render_height); // Render to GPU texture, and then copy to CPU-accessible texture. g_renderer->SetAndDiscardFramebuffer(m_efb_encoding_framebuffer.get()); g_renderer->SetViewportAndScissor(encode_rect); g_renderer->SetPipeline(copy_pipeline); g_renderer->SetTexture(0, src_texture); g_renderer->SetSamplerState(0, linear_filter ? RenderState::GetLinearSamplerState() : RenderState::GetPointSamplerState()); g_renderer->Draw(0, 3); dst->CopyFromTexture(m_efb_encoding_texture.get(), encode_rect, 0, 0, encode_rect); g_renderer->EndUtilityDrawing(); // Flush if there's sufficient draws between this copy and the last. g_vertex_manager->OnEFBCopyToRAM(); } bool TextureCacheBase::DecodeTextureOnGPU(TCacheEntry* entry, u32 dst_level, const u8* data, u32 data_size, TextureFormat format, u32 width, u32 height, u32 aligned_width, u32 aligned_height, u32 row_stride, const u8* palette, TLUTFormat palette_format) { const auto* info = TextureConversionShaderTiled::GetDecodingShaderInfo(format); if (!info) return false; const AbstractShader* shader = g_shader_cache->GetTextureDecodingShader(format, palette_format); if (!shader) return false; // Copy to GPU-visible buffer, aligned to the data type. const u32 bytes_per_buffer_elem = VertexManagerBase::GetTexelBufferElementSize(info->buffer_format); // Allocate space in stream buffer, and copy texture + palette across. u32 src_offset = 0, palette_offset = 0; if (info->palette_size > 0) { if (!g_vertex_manager->UploadTexelBuffer(data, data_size, info->buffer_format, &src_offset, palette, info->palette_size, TEXEL_BUFFER_FORMAT_R16_UINT, &palette_offset)) { return false; } } else { if (!g_vertex_manager->UploadTexelBuffer(data, data_size, info->buffer_format, &src_offset)) return false; } // Set up uniforms. struct Uniforms { u32 dst_width, dst_height; u32 src_width, src_height; u32 src_offset, src_row_stride; u32 palette_offset, unused; } uniforms = {width, height, aligned_width, aligned_height, src_offset, row_stride / bytes_per_buffer_elem, palette_offset}; g_vertex_manager->UploadUtilityUniforms(&uniforms, sizeof(uniforms)); g_renderer->SetComputeImageTexture(m_decoding_texture.get(), false, true); auto dispatch_groups = TextureConversionShaderTiled::GetDispatchCount(info, aligned_width, aligned_height); g_renderer->DispatchComputeShader(shader, dispatch_groups.first, dispatch_groups.second, 1); // Copy from decoding texture -> final texture // This is because we don't want to have to create compute view for every layer const auto copy_rect = entry->texture->GetConfig().GetMipRect(dst_level); entry->texture->CopyRectangleFromTexture(m_decoding_texture.get(), copy_rect, 0, 0, copy_rect, 0, dst_level); entry->texture->FinishedRendering(); return true; } u32 TextureCacheBase::TCacheEntry::BytesPerRow() const { const u32 blockW = TexDecoder_GetBlockWidthInTexels(format.texfmt); // Round up source height to multiple of block size const u32 actualWidth = Common::AlignUp(native_width, blockW); const u32 numBlocksX = actualWidth / blockW; // RGBA takes two cache lines per block; all others take one const u32 bytes_per_block = format == TextureFormat::RGBA8 ? 64 : 32; return numBlocksX * bytes_per_block; } u32 TextureCacheBase::TCacheEntry::NumBlocksY() const { u32 blockH = TexDecoder_GetBlockHeightInTexels(format.texfmt); // Round up source height to multiple of block size u32 actualHeight = Common::AlignUp(native_height, blockH); return actualHeight / blockH; } void TextureCacheBase::TCacheEntry::SetXfbCopy(u32 stride) { is_efb_copy = false; is_xfb_copy = true; is_xfb_container = false; memory_stride = stride; ASSERT_MSG(VIDEO, memory_stride >= BytesPerRow(), "Memory stride is too small"); size_in_bytes = memory_stride * NumBlocksY(); } void TextureCacheBase::TCacheEntry::SetEfbCopy(u32 stride) { is_efb_copy = true; is_xfb_copy = false; is_xfb_container = false; memory_stride = stride; ASSERT_MSG(VIDEO, memory_stride >= BytesPerRow(), "Memory stride is too small"); size_in_bytes = memory_stride * NumBlocksY(); } void TextureCacheBase::TCacheEntry::SetNotCopy() { is_efb_copy = false; is_xfb_copy = false; is_xfb_container = false; } int TextureCacheBase::TCacheEntry::HashSampleSize() const { if (should_force_safe_hashing) { return 0; } return g_ActiveConfig.iSafeTextureCache_ColorSamples; } u64 TextureCacheBase::TCacheEntry::CalculateHash() const { u8* ptr = Memory::GetPointer(addr); if (memory_stride == BytesPerRow()) { return Common::GetHash64(ptr, size_in_bytes, HashSampleSize()); } else { u32 blocks = NumBlocksY(); u64 temp_hash = size_in_bytes; u32 samples_per_row = 0; if (HashSampleSize() != 0) { // Hash at least 4 samples per row to avoid hashing in a bad pattern, like just on the left // side of the efb copy samples_per_row = std::max(HashSampleSize() / blocks, 4u); } for (u32 i = 0; i < blocks; i++) { // Multiply by a prime number to mix the hash up a bit. This prevents identical blocks from // canceling each other out temp_hash = (temp_hash * 397) ^ Common::GetHash64(ptr, BytesPerRow(), samples_per_row); ptr += memory_stride; } return temp_hash; } } TextureCacheBase::TexPoolEntry::TexPoolEntry(std::unique_ptr<AbstractTexture> tex, std::unique_ptr<AbstractFramebuffer> fb) : texture(std::move(tex)), framebuffer(std::move(fb)) { }