// Copyright 2008 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #include #include #include #include #include #include #include "Common/CommonFuncs.h" #include "Core/HW/Memmap.h" #include "VideoCommon/BPMemory.h" #include "VideoCommon/IndexGenerator.h" #include "VideoCommon/Statistics.h" #include "VideoCommon/VertexLoaderBase.h" #include "VideoCommon/VertexLoaderManager.h" #include "VideoCommon/VertexManagerBase.h" #include "VideoCommon/VertexShaderManager.h" #include "VideoCommon/VideoCommon.h" namespace VertexLoaderManager { typedef std::unordered_map> NativeVertexFormatMap; static NativeVertexFormatMap s_native_vertex_map; static NativeVertexFormat* s_current_vtx_fmt; typedef std::unordered_map> VertexLoaderMap; static std::mutex s_vertex_loader_map_lock; static VertexLoaderMap s_vertex_loader_map; // TODO - change into array of pointers. Keep a map of all seen so far. u8 *cached_arraybases[12]; void Init() { MarkAllDirty(); for (auto& map_entry : g_main_cp_state.vertex_loaders) map_entry = nullptr; for (auto& map_entry : g_preprocess_cp_state.vertex_loaders) map_entry = nullptr; SETSTAT(stats.numVertexLoaders, 0); } void Shutdown() { std::lock_guard lk(s_vertex_loader_map_lock); s_vertex_loader_map.clear(); s_native_vertex_map.clear(); } void UpdateVertexArrayPointers() { // Some games such as Burnout 2 can put invalid addresses into // the array base registers. (see issue 8591) // But the vertex arrays with invalid addresses aren't actually enabled. // Note: Only array bases 0 through 11 are used by the Vertex loaders. // 12 through 15 are used for loading data into xfmem. for (int i = 0; i < 12; i++) { // Only update the array base if the vertex description states we are going to use it. if (g_main_cp_state.vtx_desc.GetVertexArrayStatus(i) >= 0x2) cached_arraybases[i] = Memory::GetPointer(g_main_cp_state.array_bases[i]); } } namespace { struct entry { std::string text; u64 num_verts; bool operator < (const entry &other) const { return num_verts > other.num_verts; } }; } void AppendListToString(std::string *dest) { std::lock_guard lk(s_vertex_loader_map_lock); std::vector entries; size_t total_size = 0; for (const auto& map_entry : s_vertex_loader_map) { entry e; map_entry.second->AppendToString(&e.text); e.num_verts = map_entry.second->m_numLoadedVertices; entries.push_back(e); total_size += e.text.size() + 1; } sort(entries.begin(), entries.end()); dest->reserve(dest->size() + total_size); for (const entry& entry : entries) { dest->append(entry.text); } } void MarkAllDirty() { g_main_cp_state.attr_dirty = BitSet32::AllTrue(8); g_preprocess_cp_state.attr_dirty = BitSet32::AllTrue(8); } static VertexLoaderBase* RefreshLoader(int vtx_attr_group, bool preprocess = false) { CPState* state = preprocess ? &g_preprocess_cp_state : &g_main_cp_state; VertexLoaderBase* loader; if (state->attr_dirty[vtx_attr_group]) { // We are not allowed to create a native vertex format on preprocessing as this is on the wrong thread bool check_for_native_format = !preprocess; VertexLoaderUID uid(state->vtx_desc, state->vtx_attr[vtx_attr_group]); std::lock_guard lk(s_vertex_loader_map_lock); VertexLoaderMap::iterator iter = s_vertex_loader_map.find(uid); if (iter != s_vertex_loader_map.end()) { loader = iter->second.get(); check_for_native_format &= !loader->m_native_vertex_format; } else { loader = VertexLoaderBase::CreateVertexLoader(state->vtx_desc, state->vtx_attr[vtx_attr_group]); s_vertex_loader_map[uid] = std::unique_ptr(loader); INCSTAT(stats.numVertexLoaders); } if (check_for_native_format) { // search for a cached native vertex format const PortableVertexDeclaration& format = loader->m_native_vtx_decl; std::unique_ptr& native = s_native_vertex_map[format]; if (!native) { native.reset(g_vertex_manager->CreateNativeVertexFormat()); native->Initialize(format); native->m_components = loader->m_native_components; } loader->m_native_vertex_format = native.get(); } state->vertex_loaders[vtx_attr_group] = loader; state->attr_dirty[vtx_attr_group] = false; } else { loader = state->vertex_loaders[vtx_attr_group]; } // Lookup pointers for any vertex arrays. if (!preprocess) UpdateVertexArrayPointers(); return loader; } int RunVertices(int vtx_attr_group, int primitive, int count, DataReader src, bool skip_drawing, bool is_preprocess) { if (!count) return 0; VertexLoaderBase* loader = RefreshLoader(vtx_attr_group, is_preprocess); int size = count * loader->m_VertexSize; if ((int)src.size() < size) return -1; if (skip_drawing || is_preprocess) return size; // If the native vertex format changed, force a flush. if (loader->m_native_vertex_format != s_current_vtx_fmt) VertexManager::Flush(); s_current_vtx_fmt = loader->m_native_vertex_format; // if cull mode is CULL_ALL, tell VertexManager to skip triangles and quads. // They still need to go through vertex loading, because we need to calculate a zfreeze refrence slope. bool cullall = (bpmem.genMode.cullmode == GenMode::CULL_ALL && primitive < 5); DataReader dst = VertexManager::PrepareForAdditionalData(primitive, count, loader->m_native_vtx_decl.stride, cullall); count = loader->RunVertices(src, dst, count); IndexGenerator::AddIndices(primitive, count); VertexManager::FlushData(count, loader->m_native_vtx_decl.stride); ADDSTAT(stats.thisFrame.numPrims, count); INCSTAT(stats.thisFrame.numPrimitiveJoins); return size; } NativeVertexFormat* GetCurrentVertexFormat() { return s_current_vtx_fmt; } } // namespace void LoadCPReg(u32 sub_cmd, u32 value, bool is_preprocess) { bool update_global_state = !is_preprocess; CPState* state = is_preprocess ? &g_preprocess_cp_state : &g_main_cp_state; switch (sub_cmd & 0xF0) { case 0x30: if (update_global_state) VertexShaderManager::SetTexMatrixChangedA(value); break; case 0x40: if (update_global_state) VertexShaderManager::SetTexMatrixChangedB(value); break; case 0x50: state->vtx_desc.Hex &= ~0x1FFFF; // keep the Upper bits state->vtx_desc.Hex |= value; state->attr_dirty = BitSet32::AllTrue(8); break; case 0x60: state->vtx_desc.Hex &= 0x1FFFF; // keep the lower 17Bits state->vtx_desc.Hex |= (u64)value << 17; state->attr_dirty = BitSet32::AllTrue(8); break; case 0x70: _assert_((sub_cmd & 0x0F) < 8); state->vtx_attr[sub_cmd & 7].g0.Hex = value; state->attr_dirty[sub_cmd & 7] = true; break; case 0x80: _assert_((sub_cmd & 0x0F) < 8); state->vtx_attr[sub_cmd & 7].g1.Hex = value; state->attr_dirty[sub_cmd & 7] = true; break; case 0x90: _assert_((sub_cmd & 0x0F) < 8); state->vtx_attr[sub_cmd & 7].g2.Hex = value; state->attr_dirty[sub_cmd & 7] = true; break; // Pointers to vertex arrays in GC RAM case 0xA0: state->array_bases[sub_cmd & 0xF] = value; break; case 0xB0: state->array_strides[sub_cmd & 0xF] = value & 0xFF; break; } } void FillCPMemoryArray(u32 *memory) { memory[0x30] = g_main_cp_state.matrix_index_a.Hex; memory[0x40] = g_main_cp_state.matrix_index_b.Hex; memory[0x50] = (u32)g_main_cp_state.vtx_desc.Hex; memory[0x60] = (u32)(g_main_cp_state.vtx_desc.Hex >> 17); for (int i = 0; i < 8; ++i) { memory[0x70 + i] = g_main_cp_state.vtx_attr[i].g0.Hex; memory[0x80 + i] = g_main_cp_state.vtx_attr[i].g1.Hex; memory[0x90 + i] = g_main_cp_state.vtx_attr[i].g2.Hex; } for (int i = 0; i < 16; ++i) { memory[0xA0 + i] = g_main_cp_state.array_bases[i]; memory[0xB0 + i] = g_main_cp_state.array_strides[i]; } }