// Copyright 2008 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #pragma once // This is a system to schedule events into the emulated machine's future. Time is measured // in main CPU clock cycles. // To schedule an event, you first have to register its type. This is where you pass in the // callback. You then schedule events using the type id you get back. // See HW/SystemTimers.cpp for the main part of Dolphin's usage of this scheduler. // The int cyclesLate that the callbacks get is how many cycles late it was. // So to schedule a new event on a regular basis: // inside callback: // ScheduleEvent(periodInCycles - cyclesLate, callback, "whatever") #include #include "Common/CommonTypes.h" class PointerWrap; namespace CoreTiming { // These really shouldn't be global, but jit64 accesses them directly extern s64 g_global_timer; extern u64 g_fake_TB_start_value; extern u64 g_fake_TB_start_ticks; extern int g_slice_length; extern float g_last_OC_factor_inverted; // CoreTiming begins at the boundary of timing slice -1. An initial call to Advance() is // required to end slice -1 and start slice 0 before the first cycle of code is executed. void Init(); void Shutdown(); typedef void (*TimedCallback)(u64 userdata, s64 cyclesLate); // This should only be called from the CPU thread, if you are calling it any other thread, you are // doing something evil u64 GetTicks(); u64 GetIdleTicks(); void DoState(PointerWrap& p); struct EventType; // Returns the event_type identifier. if name is not unique, an existing event_type will be // discarded. EventType* RegisterEvent(const std::string& name, TimedCallback callback); void UnregisterAllEvents(); enum class FromThread { CPU, NON_CPU, // Don't use ANY unless you're sure you need to call from // both the CPU thread and at least one other thread ANY }; // userdata MAY NOT CONTAIN POINTERS. userdata might get written and reloaded from savestates. // After the first Advance, the slice lengths and the downcount will be reduced whenever an event // is scheduled earlier than the current values (when scheduled from the CPU Thread only). // Scheduling from a callback will not update the downcount until the Advance() completes. void ScheduleEvent(s64 cycles_into_future, EventType* event_type, u64 userdata = 0, FromThread from = FromThread::CPU); // We only permit one event of each type in the queue at a time. void RemoveEvent(EventType* event_type); void RemoveAllEvents(EventType* event_type); // Advance must be called at the beginning of dispatcher loops, not the end. Advance() ends // the previous timing slice and begins the next one, you must Advance from the previous // slice to the current one before executing any cycles. CoreTiming starts in slice -1 so an // Advance() is required to initialize the slice length before the first cycle of emulated // instructions is executed. // NOTE: Advance updates the PowerPC downcount and performs a PPC external exception check. void Advance(); void MoveEvents(); // Pretend that the main CPU has executed enough cycles to reach the next event. void Idle(); // Clear all pending events. This should ONLY be done on exit or state load. void ClearPendingEvents(); void LogPendingEvents(); std::string GetScheduledEventsSummary(); void AdjustEventQueueTimes(u32 new_ppc_clock, u32 old_ppc_clock); u32 GetFakeDecStartValue(); void SetFakeDecStartValue(u32 val); u64 GetFakeDecStartTicks(); void SetFakeDecStartTicks(u64 val); u64 GetFakeTBStartValue(); void SetFakeTBStartValue(u64 val); u64 GetFakeTBStartTicks(); void SetFakeTBStartTicks(u64 val); void ForceExceptionCheck(s64 cycles); } // end of namespace