// Copyright 2013 Dolphin Emulator Project // Licensed under GPLv2 // Refer to the license.txt file included. #include "Common/CommonFuncs.h" #include "Core/HW/Memmap.h" #include "VideoBackends/OGL/FramebufferManager.h" #include "VideoBackends/OGL/Render.h" #include "VideoBackends/OGL/TextureConverter.h" #include "VideoCommon/DriverDetails.h" #include "VideoCommon/OnScreenDisplay.h" #include "VideoCommon/VertexShaderGen.h" namespace OGL { int FramebufferManager::m_targetWidth; int FramebufferManager::m_targetHeight; int FramebufferManager::m_msaaSamples; GLenum FramebufferManager::m_textureType; GLuint* FramebufferManager::m_efbFramebuffer; GLuint FramebufferManager::m_xfbFramebuffer; GLuint FramebufferManager::m_efbColor; GLuint FramebufferManager::m_efbDepth; GLuint FramebufferManager::m_efbColorSwap; // for hot swap when reinterpreting EFB pixel formats // Only used in MSAA mode. GLuint* FramebufferManager::m_resolvedFramebuffer; GLuint FramebufferManager::m_resolvedColorTexture; GLuint FramebufferManager::m_resolvedDepthTexture; // reinterpret pixel format SHADER FramebufferManager::m_pixel_format_shaders[2]; FramebufferManager::FramebufferManager(int targetWidth, int targetHeight, int msaaSamples) { m_xfbFramebuffer = 0; m_efbColor = 0; m_efbDepth = 0; m_efbColorSwap = 0; m_resolvedColorTexture = 0; m_resolvedDepthTexture = 0; m_targetWidth = targetWidth; m_targetHeight = targetHeight; m_msaaSamples = msaaSamples; // The EFB can be set to different pixel formats by the game through the // BPMEM_ZCOMPARE register (which should probably have a different name). // They are: // - 24-bit RGB (8-bit components) with 24-bit Z // - 24-bit RGBA (6-bit components) with 24-bit Z // - Multisampled 16-bit RGB (5-6-5 format) with 16-bit Z // We only use one EFB format here: 32-bit ARGB with 24-bit Z. // Multisampling depends on user settings. // The distinction becomes important for certain operations, i.e. the // alpha channel should be ignored if the EFB does not have one. glActiveTexture(GL_TEXTURE0 + 9); GLuint glObj[3]; glGenTextures(3, glObj); m_efbColor = glObj[0]; m_efbDepth = glObj[1]; m_efbColorSwap = glObj[2]; m_EFBLayers = (g_ActiveConfig.iStereoMode > 0) ? 2 : 1; m_efbFramebuffer = new GLuint[m_EFBLayers](); m_resolvedFramebuffer = new GLuint[m_EFBLayers](); // OpenGL MSAA textures are a different kind of texture type and must be allocated // with a different function, so we create them separately. if (m_msaaSamples <= 1) { m_textureType = GL_TEXTURE_2D_ARRAY; glBindTexture(m_textureType, m_efbColor); glTexParameteri(m_textureType, GL_TEXTURE_MAX_LEVEL, 0); glTexParameteri(m_textureType, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(m_textureType, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexImage3D(m_textureType, 0, GL_RGBA, m_targetWidth, m_targetHeight, m_EFBLayers, 0, GL_RGBA, GL_UNSIGNED_BYTE, nullptr); glBindTexture(m_textureType, m_efbDepth); glTexParameteri(m_textureType, GL_TEXTURE_MAX_LEVEL, 0); glTexParameteri(m_textureType, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(m_textureType, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexImage3D(m_textureType, 0, GL_DEPTH_COMPONENT24, m_targetWidth, m_targetHeight, m_EFBLayers, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, nullptr); glBindTexture(m_textureType, m_efbColorSwap); glTexParameteri(m_textureType, GL_TEXTURE_MAX_LEVEL, 0); glTexParameteri(m_textureType, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(m_textureType, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexImage3D(m_textureType, 0, GL_RGBA, m_targetWidth, m_targetHeight, m_EFBLayers, 0, GL_RGBA, GL_UNSIGNED_BYTE, nullptr); } else { GLenum resolvedType = GL_TEXTURE_2D_ARRAY; // Only use a layered multisample texture if needed. Some drivers // slow down significantly with single-layered multisample textures. if (m_EFBLayers > 1) { m_textureType = GL_TEXTURE_2D_MULTISAMPLE_ARRAY; glBindTexture(m_textureType, m_efbColor); glTexImage3DMultisample(m_textureType, m_msaaSamples, GL_RGBA, m_targetWidth, m_targetHeight, m_EFBLayers, false); glBindTexture(m_textureType, m_efbDepth); glTexImage3DMultisample(m_textureType, m_msaaSamples, GL_DEPTH_COMPONENT24, m_targetWidth, m_targetHeight, m_EFBLayers, false); glBindTexture(m_textureType, m_efbColorSwap); glTexImage3DMultisample(m_textureType, m_msaaSamples, GL_RGBA, m_targetWidth, m_targetHeight, m_EFBLayers, false); glBindTexture(m_textureType, 0); } else { m_textureType = GL_TEXTURE_2D_MULTISAMPLE; glBindTexture(m_textureType, m_efbColor); glTexImage2DMultisample(m_textureType, m_msaaSamples, GL_RGBA, m_targetWidth, m_targetHeight, false); glBindTexture(m_textureType, m_efbDepth); glTexImage2DMultisample(m_textureType, m_msaaSamples, GL_DEPTH_COMPONENT24, m_targetWidth, m_targetHeight, false); glBindTexture(m_textureType, m_efbColorSwap); glTexImage2DMultisample(m_textureType, m_msaaSamples, GL_RGBA, m_targetWidth, m_targetHeight, false); glBindTexture(m_textureType, 0); } // Although we are able to access the multisampled texture directly, we don't do it everywhere. // The old way is to "resolve" this multisampled texture by copying it into a non-sampled texture. // This would lead to an unneeded copy of the EFB, so we are going to avoid it. // But as this job isn't done right now, we do need that texture for resolving: glGenTextures(2, glObj); m_resolvedColorTexture = glObj[0]; m_resolvedDepthTexture = glObj[1]; glBindTexture(resolvedType, m_resolvedColorTexture); glTexParameteri(resolvedType, GL_TEXTURE_MAX_LEVEL, 0); glTexParameteri(resolvedType, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(resolvedType, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexImage3D(resolvedType, 0, GL_RGBA, m_targetWidth, m_targetHeight, m_EFBLayers, 0, GL_RGBA, GL_UNSIGNED_BYTE, nullptr); glBindTexture(resolvedType, m_resolvedDepthTexture); glTexParameteri(resolvedType, GL_TEXTURE_MAX_LEVEL, 0); glTexParameteri(resolvedType, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(resolvedType, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexImage3D(resolvedType, 0, GL_DEPTH_COMPONENT24, m_targetWidth, m_targetHeight, m_EFBLayers, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, nullptr); // Bind resolved textures to resolved framebuffer. glGenFramebuffers(m_EFBLayers, m_resolvedFramebuffer); glBindFramebuffer(GL_FRAMEBUFFER, m_resolvedFramebuffer[0]); FramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, resolvedType, m_resolvedColorTexture, 0); FramebufferTexture(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, resolvedType, m_resolvedDepthTexture, 0); // Bind all the other layers as separate FBOs for blitting. for (unsigned int i = 1; i < m_EFBLayers; i++) { glBindFramebuffer(GL_FRAMEBUFFER, m_resolvedFramebuffer[i]); glFramebufferTextureLayer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, m_resolvedColorTexture, 0, i); glFramebufferTextureLayer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, m_resolvedDepthTexture, 0, i); } } // Create XFB framebuffer; targets will be created elsewhere. glGenFramebuffers(1, &m_xfbFramebuffer); // Bind target textures to EFB framebuffer. glGenFramebuffers(m_EFBLayers, m_efbFramebuffer); glBindFramebuffer(GL_FRAMEBUFFER, m_efbFramebuffer[0]); FramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, m_textureType, m_efbColor, 0); FramebufferTexture(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, m_textureType, m_efbDepth, 0); // Bind all the other layers as separate FBOs for blitting. for (unsigned int i = 1; i < m_EFBLayers; i++) { glBindFramebuffer(GL_FRAMEBUFFER, m_efbFramebuffer[i]); glFramebufferTextureLayer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, m_efbColor, 0, i); glFramebufferTextureLayer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, m_efbDepth, 0, i); } // EFB framebuffer is currently bound, make sure to clear its alpha value to 1.f glViewport(0, 0, m_targetWidth, m_targetHeight); glScissor(0, 0, m_targetWidth, m_targetHeight); glClearColor(0.f, 0.f, 0.f, 1.f); glClearDepthf(1.0f); glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT); // reinterpret pixel format char vs[] = "void main(void) {\n" " vec2 rawpos = vec2(gl_VertexID&1, gl_VertexID&2);\n" " gl_Position = vec4(rawpos*2.0-1.0, 0.0, 1.0);\n" "}\n"; // The way to sample the EFB is based on the on the current configuration. // As we use the same sampling way for both interpreting shaders, the sampling // shader are generated first: std::string sampler; if (m_msaaSamples <= 1) { // non-msaa, so just fetch the pixel sampler = "SAMPLER_BINDING(9) uniform sampler2DArray samp9;\n" "vec4 sampleEFB(ivec2 pos) {\n" " return texelFetch(samp9, ivec3(pos, 0), 0);\n" "}\n"; } else if (g_ogl_config.bSupportSampleShading) { // msaa + sample shading available, so just fetch the sample // This will lead to sample shading, but it's the only way to not loose // the values of each sample. if (m_EFBLayers > 1) { sampler = "SAMPLER_BINDING(9) uniform sampler2DMSArray samp9;\n" "vec4 sampleEFB(ivec2 pos) {\n" " return texelFetch(samp9, ivec3(pos, 0), gl_SampleID);\n" "}\n"; } else { sampler = "SAMPLER_BINDING(9) uniform sampler2DMS samp9;\n" "vec4 sampleEFB(ivec2 pos) {\n" " return texelFetch(samp9, pos, gl_SampleID);\n" "}\n"; } } else { // msaa without sample shading: calculate the mean value of the pixel std::stringstream samples; samples << m_msaaSamples; if (m_EFBLayers > 1) { sampler = "SAMPLER_BINDING(9) uniform sampler2DMSArray samp9;\n" "vec4 sampleEFB(ivec2 pos) {\n" " vec4 color = vec4(0.0, 0.0, 0.0, 0.0);\n" " for(int i=0; i<" + samples.str() + "; i++)\n" " color += texelFetch(samp9, ivec3(pos, 0), i);\n" " return color / " + samples.str() + ";\n" "}\n"; } else { sampler = "SAMPLER_BINDING(9) uniform sampler2DMS samp9;\n" "vec4 sampleEFB(ivec2 pos) {\n" " vec4 color = vec4(0.0, 0.0, 0.0, 0.0);\n" " for(int i=0; i<" + samples.str() + "; i++)\n" " color += texelFetch(samp9, pos, i);\n" " return color / " + samples.str() + ";\n" "}\n"; } } std::string ps_rgba6_to_rgb8 = sampler + "out vec4 ocol0;\n" "void main()\n" "{\n" " ivec4 src6 = ivec4(round(sampleEFB(ivec2(gl_FragCoord.xy)) * 63.f));\n" " ivec4 dst8;\n" " dst8.r = (src6.r << 2) | (src6.g >> 4);\n" " dst8.g = ((src6.g & 0xF) << 4) | (src6.b >> 2);\n" " dst8.b = ((src6.b & 0x3) << 6) | src6.a;\n" " dst8.a = 255;\n" " ocol0 = float4(dst8) / 255.f;\n" "}"; std::string ps_rgb8_to_rgba6 = sampler + "out vec4 ocol0;\n" "void main()\n" "{\n" " ivec4 src8 = ivec4(round(sampleEFB(ivec2(gl_FragCoord.xy)) * 255.f));\n" " ivec4 dst6;\n" " dst6.r = src8.r >> 2;\n" " dst6.g = ((src8.r & 0x3) << 4) | (src8.g >> 4);\n" " dst6.b = ((src8.g & 0xF) << 2) | (src8.b >> 6);\n" " dst6.a = src8.b & 0x3F;\n" " ocol0 = float4(dst6) / 63.f;\n" "}"; ProgramShaderCache::CompileShader(m_pixel_format_shaders[0], vs, ps_rgb8_to_rgba6.c_str()); ProgramShaderCache::CompileShader(m_pixel_format_shaders[1], vs, ps_rgba6_to_rgb8.c_str()); } FramebufferManager::~FramebufferManager() { glBindFramebuffer(GL_FRAMEBUFFER, 0); GLuint glObj[3]; // Note: OpenGL deletion functions silently ignore parameters of "0". glDeleteFramebuffers(m_EFBLayers, m_efbFramebuffer); glDeleteFramebuffers(m_EFBLayers, m_resolvedFramebuffer); delete [] m_efbFramebuffer; delete [] m_resolvedFramebuffer; m_efbFramebuffer = nullptr; m_resolvedFramebuffer = nullptr; glDeleteFramebuffers(1, &m_xfbFramebuffer); m_xfbFramebuffer = 0; glObj[0] = m_resolvedColorTexture; glObj[1] = m_resolvedDepthTexture; glDeleteTextures(2, glObj); m_resolvedColorTexture = 0; m_resolvedDepthTexture = 0; glObj[0] = m_efbColor; glObj[1] = m_efbDepth; glObj[2] = m_efbColorSwap; glDeleteTextures(3, glObj); m_efbColor = 0; m_efbDepth = 0; m_efbColorSwap = 0; // reinterpret pixel format m_pixel_format_shaders[0].Destroy(); m_pixel_format_shaders[1].Destroy(); } GLuint FramebufferManager::GetEFBColorTexture(const EFBRectangle& sourceRc) { if (m_msaaSamples <= 1) { return m_efbColor; } else { // Transfer the EFB to a resolved texture. EXT_framebuffer_blit is // required. TargetRectangle targetRc = g_renderer->ConvertEFBRectangle(sourceRc); targetRc.ClampLL(0, 0, m_targetWidth, m_targetHeight); // Resolve. for (unsigned int i = 0; i < m_EFBLayers; i++) { glBindFramebuffer(GL_READ_FRAMEBUFFER, m_efbFramebuffer[i]); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, m_resolvedFramebuffer[i]); glBlitFramebuffer( targetRc.left, targetRc.top, targetRc.right, targetRc.bottom, targetRc.left, targetRc.top, targetRc.right, targetRc.bottom, GL_COLOR_BUFFER_BIT, GL_NEAREST ); } // Return to EFB. glBindFramebuffer(GL_FRAMEBUFFER, m_efbFramebuffer[0]); return m_resolvedColorTexture; } } GLuint FramebufferManager::GetEFBDepthTexture(const EFBRectangle& sourceRc) { if (m_msaaSamples <= 1) { return m_efbDepth; } else { // Transfer the EFB to a resolved texture. TargetRectangle targetRc = g_renderer->ConvertEFBRectangle(sourceRc); targetRc.ClampLL(0, 0, m_targetWidth, m_targetHeight); // Resolve. for (unsigned int i = 0; i < m_EFBLayers; i++) { glBindFramebuffer(GL_READ_FRAMEBUFFER, m_efbFramebuffer[i]); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, m_resolvedFramebuffer[i]); glBlitFramebuffer( targetRc.left, targetRc.top, targetRc.right, targetRc.bottom, targetRc.left, targetRc.top, targetRc.right, targetRc.bottom, GL_DEPTH_BUFFER_BIT, GL_NEAREST ); } // Return to EFB. glBindFramebuffer(GL_FRAMEBUFFER, m_efbFramebuffer[0]); return m_resolvedDepthTexture; } } void FramebufferManager::CopyToRealXFB(u32 xfbAddr, u32 fbWidth, u32 fbHeight, const EFBRectangle& sourceRc,float Gamma) { u8* xfb_in_ram = Memory::GetPointer(xfbAddr); if (!xfb_in_ram) { WARN_LOG(VIDEO, "Tried to copy to invalid XFB address"); return; } TargetRectangle targetRc = g_renderer->ConvertEFBRectangle(sourceRc); TextureConverter::EncodeToRamYUYV(ResolveAndGetRenderTarget(sourceRc), targetRc, xfb_in_ram, fbWidth, fbHeight); } void FramebufferManager::SetFramebuffer(GLuint fb) { glBindFramebuffer(GL_FRAMEBUFFER, fb != 0 ? fb : GetEFBFramebuffer()); } void FramebufferManager::FramebufferTexture(GLenum target, GLenum attachment, GLenum textarget, GLuint texture, GLint level) { if (textarget == GL_TEXTURE_2D_ARRAY || textarget == GL_TEXTURE_2D_MULTISAMPLE_ARRAY) { if (m_EFBLayers > 1) glFramebufferTexture(target, attachment, texture, level); else glFramebufferTextureLayer(target, attachment, texture, level, 0); } else { glFramebufferTexture2D(target, attachment, textarget, texture, level); } } // Apply AA if enabled GLuint FramebufferManager::ResolveAndGetRenderTarget(const EFBRectangle &source_rect) { return GetEFBColorTexture(source_rect); } GLuint FramebufferManager::ResolveAndGetDepthTarget(const EFBRectangle &source_rect) { return GetEFBDepthTexture(source_rect); } void FramebufferManager::ReinterpretPixelData(unsigned int convtype) { g_renderer->ResetAPIState(); OpenGL_BindAttributelessVAO(); GLuint src_texture = 0; // We aren't allowed to render and sample the same texture in one draw call, // so we have to create a new texture and overwrite it completely. // To not allocate one big texture every time, we've allocated two on // initialization and just swap them here: src_texture = m_efbColor; m_efbColor = m_efbColorSwap; m_efbColorSwap = src_texture; FramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, m_textureType, m_efbColor, 0); glViewport(0,0, m_targetWidth, m_targetHeight); glActiveTexture(GL_TEXTURE0 + 9); glBindTexture(m_textureType, src_texture); m_pixel_format_shaders[convtype ? 1 : 0].Bind(); glDrawArrays(GL_TRIANGLE_STRIP, 0, 4); glBindTexture(m_textureType, 0); g_renderer->RestoreAPIState(); } XFBSource::~XFBSource() { glDeleteTextures(1, &texture); } void XFBSource::DecodeToTexture(u32 xfbAddr, u32 fbWidth, u32 fbHeight) { TextureConverter::DecodeToTexture(xfbAddr, fbWidth, fbHeight, texture); } void XFBSource::CopyEFB(float Gamma) { g_renderer->ResetAPIState(); // Copy EFB data to XFB and restore render target again glBindFramebuffer(GL_READ_FRAMEBUFFER, FramebufferManager::GetEFBFramebuffer()); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, FramebufferManager::GetXFBFramebuffer()); // Bind texture. FramebufferManager::FramebufferTexture(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D_ARRAY, texture, 0); glBlitFramebuffer( 0, 0, texWidth, texHeight, 0, 0, texWidth, texHeight, GL_COLOR_BUFFER_BIT, GL_NEAREST ); // Return to EFB. FramebufferManager::SetFramebuffer(0); g_renderer->RestoreAPIState(); } XFBSourceBase* FramebufferManager::CreateXFBSource(unsigned int target_width, unsigned int target_height) { GLuint texture; glGenTextures(1, &texture); glActiveTexture(GL_TEXTURE0 + 9); glBindTexture(GL_TEXTURE_2D_ARRAY, texture); glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MAX_LEVEL, 0); glTexImage3D(GL_TEXTURE_2D_ARRAY, 0, GL_RGBA, target_width, target_height, m_EFBLayers, 0, GL_RGBA, GL_UNSIGNED_BYTE, nullptr); return new XFBSource(texture, m_EFBLayers); } void FramebufferManager::GetTargetSize(unsigned int *width, unsigned int *height, const EFBRectangle& sourceRc) { *width = m_targetWidth; *height = m_targetHeight; } } // namespace OGL