// Copyright 2016 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #include "VideoBackends/Vulkan/Renderer.h" #include #include #include #include #include #include "Common/Assert.h" #include "Common/CommonTypes.h" #include "Common/Logging/Log.h" #include "Common/MsgHandler.h" #include "Core/Core.h" #include "VideoBackends/Vulkan/BoundingBox.h" #include "VideoBackends/Vulkan/CommandBufferManager.h" #include "VideoBackends/Vulkan/FramebufferManager.h" #include "VideoBackends/Vulkan/ObjectCache.h" #include "VideoBackends/Vulkan/PostProcessing.h" #include "VideoBackends/Vulkan/RasterFont.h" #include "VideoBackends/Vulkan/StagingTexture2D.h" #include "VideoBackends/Vulkan/StateTracker.h" #include "VideoBackends/Vulkan/SwapChain.h" #include "VideoBackends/Vulkan/TextureCache.h" #include "VideoBackends/Vulkan/Util.h" #include "VideoBackends/Vulkan/VulkanContext.h" #include "VideoCommon/AVIDump.h" #include "VideoCommon/BPFunctions.h" #include "VideoCommon/BPMemory.h" #include "VideoCommon/OnScreenDisplay.h" #include "VideoCommon/PixelEngine.h" #include "VideoCommon/PixelShaderManager.h" #include "VideoCommon/RenderState.h" #include "VideoCommon/SamplerCommon.h" #include "VideoCommon/TextureCacheBase.h" #include "VideoCommon/VideoBackendBase.h" #include "VideoCommon/VideoConfig.h" #include "VideoCommon/XFMemory.h" namespace Vulkan { Renderer::Renderer(std::unique_ptr swap_chain) : ::Renderer(swap_chain ? static_cast(swap_chain->GetWidth()) : 1, swap_chain ? static_cast(swap_chain->GetHeight()) : 0), m_swap_chain(std::move(swap_chain)) { g_Config.bRunning = true; UpdateActiveConfig(); // Set to something invalid, forcing all states to be re-initialized. for (size_t i = 0; i < m_sampler_states.size(); i++) m_sampler_states[i].bits = std::numeric_limits::max(); } Renderer::~Renderer() { g_Config.bRunning = false; UpdateActiveConfig(); // Ensure all frames are written to frame dump at shutdown. if (m_frame_dumping_active) EndFrameDumping(); DestroyFrameDumpResources(); DestroyShaders(); DestroySemaphores(); } Renderer* Renderer::GetInstance() { return static_cast(g_renderer.get()); } bool Renderer::Initialize() { BindEFBToStateTracker(); if (!CreateSemaphores()) { PanicAlert("Failed to create semaphores."); return false; } if (!CompileShaders()) { PanicAlert("Failed to compile shaders."); return false; } m_raster_font = std::make_unique(); if (!m_raster_font->Initialize()) { PanicAlert("Failed to initialize raster font."); return false; } m_bounding_box = std::make_unique(); if (!m_bounding_box->Initialize()) { PanicAlert("Failed to initialize bounding box."); return false; } if (g_vulkan_context->SupportsBoundingBox()) { // Bind bounding box to state tracker StateTracker::GetInstance()->SetBBoxBuffer(m_bounding_box->GetGPUBuffer(), m_bounding_box->GetGPUBufferOffset(), m_bounding_box->GetGPUBufferSize()); } // Ensure all pipelines previously used by the game have been created. StateTracker::GetInstance()->LoadPipelineUIDCache(); // Initialize post processing. m_post_processor = std::make_unique(); if (!static_cast(m_post_processor.get()) ->Initialize(m_raster_font->GetTexture())) { PanicAlert("failed to initialize post processor."); return false; } // Various initialization routines will have executed commands on the command buffer. // Execute what we have done before beginning the first frame. g_command_buffer_mgr->PrepareToSubmitCommandBuffer(); g_command_buffer_mgr->SubmitCommandBuffer(false); BeginFrame(); return true; } bool Renderer::CreateSemaphores() { // Create two semaphores, one that is triggered when the swapchain buffer is ready, another after // submit and before present VkSemaphoreCreateInfo semaphore_info = { VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO, // VkStructureType sType nullptr, // const void* pNext 0 // VkSemaphoreCreateFlags flags }; VkResult res; if ((res = vkCreateSemaphore(g_vulkan_context->GetDevice(), &semaphore_info, nullptr, &m_image_available_semaphore)) != VK_SUCCESS || (res = vkCreateSemaphore(g_vulkan_context->GetDevice(), &semaphore_info, nullptr, &m_rendering_finished_semaphore)) != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkCreateSemaphore failed: "); return false; } return true; } void Renderer::DestroySemaphores() { if (m_image_available_semaphore) { vkDestroySemaphore(g_vulkan_context->GetDevice(), m_image_available_semaphore, nullptr); m_image_available_semaphore = VK_NULL_HANDLE; } if (m_rendering_finished_semaphore) { vkDestroySemaphore(g_vulkan_context->GetDevice(), m_rendering_finished_semaphore, nullptr); m_rendering_finished_semaphore = VK_NULL_HANDLE; } } void Renderer::RenderText(const std::string& text, int left, int top, u32 color) { u32 backbuffer_width = m_swap_chain->GetWidth(); u32 backbuffer_height = m_swap_chain->GetHeight(); m_raster_font->PrintMultiLineText(m_swap_chain->GetRenderPass(), text, left * 2.0f / static_cast(backbuffer_width) - 1, 1 - top * 2.0f / static_cast(backbuffer_height), backbuffer_width, backbuffer_height, color); } u32 Renderer::AccessEFB(EFBAccessType type, u32 x, u32 y, u32 poke_data) { if (type == EFBAccessType::PeekColor) { u32 color = FramebufferManager::GetInstance()->PeekEFBColor(x, y); // a little-endian value is expected to be returned color = ((color & 0xFF00FF00) | ((color >> 16) & 0xFF) | ((color << 16) & 0xFF0000)); // check what to do with the alpha channel (GX_PokeAlphaRead) PixelEngine::UPEAlphaReadReg alpha_read_mode = PixelEngine::GetAlphaReadMode(); if (bpmem.zcontrol.pixel_format == PEControl::RGBA6_Z24) { color = RGBA8ToRGBA6ToRGBA8(color); } else if (bpmem.zcontrol.pixel_format == PEControl::RGB565_Z16) { color = RGBA8ToRGB565ToRGBA8(color); } if (bpmem.zcontrol.pixel_format != PEControl::RGBA6_Z24) { color |= 0xFF000000; } if (alpha_read_mode.ReadMode == 2) { return color; // GX_READ_NONE } else if (alpha_read_mode.ReadMode == 1) { return color | 0xFF000000; // GX_READ_FF } else /*if(alpha_read_mode.ReadMode == 0)*/ { return color & 0x00FFFFFF; // GX_READ_00 } } else // if (type == EFBAccessType::PeekZ) { // Depth buffer is inverted for improved precision near far plane float depth = 1.0f - FramebufferManager::GetInstance()->PeekEFBDepth(x, y); u32 ret = 0; if (bpmem.zcontrol.pixel_format == PEControl::RGB565_Z16) { // if Z is in 16 bit format you must return a 16 bit integer ret = MathUtil::Clamp(static_cast(depth * 65536.0f), 0, 0xFFFF); } else { ret = MathUtil::Clamp(static_cast(depth * 16777216.0f), 0, 0xFFFFFF); } return ret; } } void Renderer::PokeEFB(EFBAccessType type, const EfbPokeData* points, size_t num_points) { if (type == EFBAccessType::PokeColor) { for (size_t i = 0; i < num_points; i++) { // Convert to expected format (BGRA->RGBA) // TODO: Check alpha, depending on mode? const EfbPokeData& point = points[i]; u32 color = ((point.data & 0xFF00FF00) | ((point.data >> 16) & 0xFF) | ((point.data << 16) & 0xFF0000)); FramebufferManager::GetInstance()->PokeEFBColor(point.x, point.y, color); } } else // if (type == EFBAccessType::PokeZ) { for (size_t i = 0; i < num_points; i++) { // Convert to floating-point depth. const EfbPokeData& point = points[i]; float depth = (1.0f - float(point.data & 0xFFFFFF) / 16777216.0f); FramebufferManager::GetInstance()->PokeEFBDepth(point.x, point.y, depth); } } } u16 Renderer::BBoxRead(int index) { s32 value = m_bounding_box->Get(static_cast(index)); // Here we get the min/max value of the truncated position of the upscaled framebuffer. // So we have to correct them to the unscaled EFB sizes. if (index < 2) { // left/right value = value * EFB_WIDTH / m_target_width; } else { // up/down value = value * EFB_HEIGHT / m_target_height; } // fix max values to describe the outer border if (index & 1) value++; return static_cast(value); } void Renderer::BBoxWrite(int index, u16 value) { s32 scaled_value = static_cast(value); // fix max values to describe the outer border if (index & 1) scaled_value--; // scale to internal resolution if (index < 2) { // left/right scaled_value = scaled_value * m_target_width / EFB_WIDTH; } else { // up/down scaled_value = scaled_value * m_target_height / EFB_HEIGHT; } m_bounding_box->Set(static_cast(index), scaled_value); } TargetRectangle Renderer::ConvertEFBRectangle(const EFBRectangle& rc) { TargetRectangle result; result.left = EFBToScaledX(rc.left); result.top = EFBToScaledY(rc.top); result.right = EFBToScaledX(rc.right); result.bottom = EFBToScaledY(rc.bottom); return result; } void Renderer::BeginFrame() { // Activate a new command list, and restore state ready for the next draw g_command_buffer_mgr->ActivateCommandBuffer(); // Ensure that the state tracker rebinds everything, and allocates a new set // of descriptors out of the next pool. StateTracker::GetInstance()->InvalidateDescriptorSets(); StateTracker::GetInstance()->InvalidateConstants(); StateTracker::GetInstance()->SetPendingRebind(); } void Renderer::ClearScreen(const EFBRectangle& rc, bool color_enable, bool alpha_enable, bool z_enable, u32 color, u32 z) { // Native -> EFB coordinates TargetRectangle target_rc = Renderer::ConvertEFBRectangle(rc); // Size we pass this size to vkBeginRenderPass, it has to be clamped to the framebuffer // dimensions. The other backends just silently ignore this case. target_rc.ClampUL(0, 0, m_target_width, m_target_height); VkRect2D target_vk_rc = { {target_rc.left, target_rc.top}, {static_cast(target_rc.GetWidth()), static_cast(target_rc.GetHeight())}}; // Determine whether the EFB has an alpha channel. If it doesn't, we can clear the alpha // channel to 0xFF. This hopefully allows us to use the fast path in most cases. if (bpmem.zcontrol.pixel_format == PEControl::RGB565_Z16 || bpmem.zcontrol.pixel_format == PEControl::RGB8_Z24 || bpmem.zcontrol.pixel_format == PEControl::Z24) { // Force alpha writes, and clear the alpha channel. This is different to the other backends, // where the existing values of the alpha channel are preserved. alpha_enable = true; color &= 0x00FFFFFF; } // Convert RGBA8 -> floating-point values. VkClearValue clear_color_value = {}; VkClearValue clear_depth_value = {}; clear_color_value.color.float32[0] = static_cast((color >> 16) & 0xFF) / 255.0f; clear_color_value.color.float32[1] = static_cast((color >> 8) & 0xFF) / 255.0f; clear_color_value.color.float32[2] = static_cast((color >> 0) & 0xFF) / 255.0f; clear_color_value.color.float32[3] = static_cast((color >> 24) & 0xFF) / 255.0f; clear_depth_value.depthStencil.depth = (1.0f - (static_cast(z & 0xFFFFFF) / 16777216.0f)); // If we're not in a render pass (start of the frame), we can use a clear render pass // to discard the data, rather than loading and then clearing. bool use_clear_render_pass = (color_enable && alpha_enable && z_enable); if (StateTracker::GetInstance()->InRenderPass()) { // Prefer not to end a render pass just to do a clear. use_clear_render_pass = false; } // Fastest path: Use a render pass to clear the buffers. if (use_clear_render_pass) { VkClearValue clear_values[2] = {clear_color_value, clear_depth_value}; StateTracker::GetInstance()->BeginClearRenderPass(target_vk_rc, clear_values); return; } // Fast path: Use vkCmdClearAttachments to clear the buffers within a render path // We can't use this when preserving alpha but clearing color. { VkClearAttachment clear_attachments[2]; uint32_t num_clear_attachments = 0; if (color_enable && alpha_enable) { clear_attachments[num_clear_attachments].aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; clear_attachments[num_clear_attachments].colorAttachment = 0; clear_attachments[num_clear_attachments].clearValue = clear_color_value; num_clear_attachments++; color_enable = false; alpha_enable = false; } if (z_enable) { clear_attachments[num_clear_attachments].aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT; clear_attachments[num_clear_attachments].colorAttachment = 0; clear_attachments[num_clear_attachments].clearValue = clear_depth_value; num_clear_attachments++; z_enable = false; } if (num_clear_attachments > 0) { VkClearRect vk_rect = {target_vk_rc, 0, FramebufferManager::GetInstance()->GetEFBLayers()}; if (!StateTracker::GetInstance()->IsWithinRenderArea( target_vk_rc.offset.x, target_vk_rc.offset.y, target_vk_rc.extent.width, target_vk_rc.extent.height)) { StateTracker::GetInstance()->EndClearRenderPass(); } StateTracker::GetInstance()->BeginRenderPass(); vkCmdClearAttachments(g_command_buffer_mgr->GetCurrentCommandBuffer(), num_clear_attachments, clear_attachments, 1, &vk_rect); } } // Anything left over for the slow path? if (!color_enable && !alpha_enable && !z_enable) return; // Clearing must occur within a render pass. if (!StateTracker::GetInstance()->IsWithinRenderArea(target_vk_rc.offset.x, target_vk_rc.offset.y, target_vk_rc.extent.width, target_vk_rc.extent.height)) { StateTracker::GetInstance()->EndClearRenderPass(); } StateTracker::GetInstance()->BeginRenderPass(); StateTracker::GetInstance()->SetPendingRebind(); // Mask away the appropriate colors and use a shader BlendingState blend_state = Util::GetNoBlendingBlendState(); blend_state.colorupdate = color_enable; blend_state.alphaupdate = alpha_enable; DepthStencilState depth_state = Util::GetNoDepthTestingDepthStencilState(); depth_state.test_enable = z_enable ? VK_TRUE : VK_FALSE; depth_state.write_enable = z_enable ? VK_TRUE : VK_FALSE; depth_state.compare_op = VK_COMPARE_OP_ALWAYS; RasterizationState rs_state = Util::GetNoCullRasterizationState(); rs_state.per_sample_shading = g_ActiveConfig.bSSAA ? VK_TRUE : VK_FALSE; rs_state.samples = FramebufferManager::GetInstance()->GetEFBSamples(); // No need to start a new render pass, but we do need to restore viewport state UtilityShaderDraw draw(g_command_buffer_mgr->GetCurrentCommandBuffer(), g_object_cache->GetPipelineLayout(PIPELINE_LAYOUT_STANDARD), FramebufferManager::GetInstance()->GetEFBLoadRenderPass(), g_object_cache->GetPassthroughVertexShader(), g_object_cache->GetPassthroughGeometryShader(), m_clear_fragment_shader); draw.SetRasterizationState(rs_state); draw.SetDepthStencilState(depth_state); draw.SetBlendState(blend_state); draw.DrawColoredQuad(target_rc.left, target_rc.top, target_rc.GetWidth(), target_rc.GetHeight(), clear_color_value.color.float32[0], clear_color_value.color.float32[1], clear_color_value.color.float32[2], clear_color_value.color.float32[3], clear_depth_value.depthStencil.depth); } void Renderer::ReinterpretPixelData(unsigned int convtype) { StateTracker::GetInstance()->EndRenderPass(); StateTracker::GetInstance()->SetPendingRebind(); FramebufferManager::GetInstance()->ReinterpretPixelData(convtype); // EFB framebuffer has now changed, so update accordingly. BindEFBToStateTracker(); } void Renderer::SwapImpl(u32 xfb_addr, u32 fb_width, u32 fb_stride, u32 fb_height, const EFBRectangle& rc, u64 ticks, float gamma) { // Pending/batched EFB pokes should be included in the final image. FramebufferManager::GetInstance()->FlushEFBPokes(); // Check that we actually have an image to render in XFB-on modes. if ((!m_xfb_written && !g_ActiveConfig.RealXFBEnabled()) || !fb_width || !fb_height) { Core::Callback_VideoCopiedToXFB(false); return; } u32 xfb_count = 0; const XFBSourceBase* const* xfb_sources = FramebufferManager::GetXFBSource(xfb_addr, fb_stride, fb_height, &xfb_count); if (g_ActiveConfig.VirtualXFBEnabled() && (!xfb_sources || xfb_count == 0)) { Core::Callback_VideoCopiedToXFB(false); return; } // End the current render pass. StateTracker::GetInstance()->EndRenderPass(); StateTracker::GetInstance()->OnEndFrame(); // There are a few variables which can alter the final window draw rectangle, and some of them // are determined by guest state. Currently, the only way to catch these is to update every frame. UpdateDrawRectangle(); // Scale the source rectangle to the internal resolution when XFB is disabled. TargetRectangle scaled_efb_rect = Renderer::ConvertEFBRectangle(rc); // If MSAA is enabled, and we're not using XFB, we need to resolve the EFB framebuffer before // rendering the final image to the screen, or dumping the frame. This is because we can't resolve // an image within a render pass, which will have already started by the time it is used. if (g_ActiveConfig.iMultisamples > 1 && !g_ActiveConfig.bUseXFB) ResolveEFBForSwap(scaled_efb_rect); // Render the frame dump image if enabled. if (IsFrameDumping()) { // If we haven't dumped a single frame yet, set up frame dumping. if (!m_frame_dumping_active) StartFrameDumping(); DrawFrameDump(scaled_efb_rect, xfb_addr, xfb_sources, xfb_count, fb_width, fb_stride, fb_height, ticks); } else { // If frame dumping was previously enabled, flush all frames and remove the fence callback. if (m_frame_dumping_active) EndFrameDumping(); } // Ensure the worker thread is not still submitting a previous command buffer. // In other words, the last frame has been submitted (otherwise the next call would // be a race, as the image may not have been consumed yet). g_command_buffer_mgr->PrepareToSubmitCommandBuffer(); // Draw to the screen if we have a swap chain. if (m_swap_chain) { DrawScreen(scaled_efb_rect, xfb_addr, xfb_sources, xfb_count, fb_width, fb_stride, fb_height); // Submit the current command buffer, signaling rendering finished semaphore when it's done // Because this final command buffer is rendering to the swap chain, we need to wait for // the available semaphore to be signaled before executing the buffer. This final submission // can happen off-thread in the background while we're preparing the next frame. g_command_buffer_mgr->SubmitCommandBuffer( true, m_image_available_semaphore, m_rendering_finished_semaphore, m_swap_chain->GetSwapChain(), m_swap_chain->GetCurrentImageIndex()); } else { // No swap chain, just execute command buffer. g_command_buffer_mgr->SubmitCommandBuffer(true); } // NOTE: It is important that no rendering calls are made to the EFB between submitting the // (now-previous) frame and after the below config checks are completed. If the target size // changes, as the resize methods to not defer the destruction of the framebuffer, the current // command buffer will contain references to a now non-existent framebuffer. // Prep for the next frame (get command buffer ready) before doing anything else. BeginFrame(); // Determine what (if anything) has changed in the config. CheckForConfigChanges(); // Handle host window resizes. CheckForSurfaceChange(); // Handle output size changes from the guest. // There is a downside to doing this here is that if the game changes its XFB source area, // the changes will be delayed by one frame. For the moment it has to be done here because // this can cause a target size change, which would result in a black frame if done earlier. CheckForTargetResize(fb_width, fb_stride, fb_height); // Update the window size based on the frame that was just rendered. // Due to depending on guest state, we need to call this every frame. SetWindowSize(static_cast(fb_stride), static_cast(fb_height)); // Clean up stale textures. TextureCache::GetInstance()->Cleanup(frameCount); } void Renderer::ResolveEFBForSwap(const TargetRectangle& scaled_rect) { // While the source rect can be out-of-range when drawing, the resolve rectangle must be within // the bounds of the texture. VkRect2D region = { {scaled_rect.left, scaled_rect.top}, {static_cast(scaled_rect.GetWidth()), static_cast(scaled_rect.GetHeight())}}; region = Util::ClampRect2D(region, FramebufferManager::GetInstance()->GetEFBWidth(), FramebufferManager::GetInstance()->GetEFBHeight()); FramebufferManager::GetInstance()->ResolveEFBColorTexture(region); } void Renderer::DrawFrame(VkRenderPass render_pass, const TargetRectangle& target_rect, const TargetRectangle& scaled_efb_rect, u32 xfb_addr, const XFBSourceBase* const* xfb_sources, u32 xfb_count, u32 fb_width, u32 fb_stride, u32 fb_height) { if (!g_ActiveConfig.bUseXFB) DrawEFB(render_pass, target_rect, scaled_efb_rect); else if (!g_ActiveConfig.bUseRealXFB) DrawVirtualXFB(render_pass, target_rect, xfb_addr, xfb_sources, xfb_count, fb_width, fb_stride, fb_height); else DrawRealXFB(render_pass, target_rect, xfb_sources, xfb_count, fb_width, fb_stride, fb_height); } void Renderer::DrawEFB(VkRenderPass render_pass, const TargetRectangle& target_rect, const TargetRectangle& scaled_efb_rect) { // Transition the EFB render target to a shader resource. Texture2D* efb_color_texture = g_ActiveConfig.iMultisamples > 1 ? FramebufferManager::GetInstance()->GetResolvedEFBColorTexture() : FramebufferManager::GetInstance()->GetEFBColorTexture(); efb_color_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(), VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL); // Copy EFB -> backbuffer BlitScreen(render_pass, target_rect, scaled_efb_rect, efb_color_texture); // Restore the EFB color texture to color attachment ready for rendering the next frame. if (efb_color_texture == FramebufferManager::GetInstance()->GetEFBColorTexture()) { FramebufferManager::GetInstance()->GetEFBColorTexture()->TransitionToLayout( g_command_buffer_mgr->GetCurrentCommandBuffer(), VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL); } } void Renderer::DrawVirtualXFB(VkRenderPass render_pass, const TargetRectangle& target_rect, u32 xfb_addr, const XFBSourceBase* const* xfb_sources, u32 xfb_count, u32 fb_width, u32 fb_stride, u32 fb_height) { for (u32 i = 0; i < xfb_count; ++i) { const XFBSource* xfb_source = static_cast(xfb_sources[i]); xfb_source->GetTexture()->GetTexture()->TransitionToLayout( g_command_buffer_mgr->GetCurrentCommandBuffer(), VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL); TargetRectangle source_rect = xfb_source->sourceRc; TargetRectangle draw_rect; int xfb_width = static_cast(xfb_source->srcWidth); int xfb_height = static_cast(xfb_source->srcHeight); int h_offset = (static_cast(xfb_source->srcAddr) - static_cast(xfb_addr)) / (static_cast(fb_stride) * 2); draw_rect.top = target_rect.top + h_offset * target_rect.GetHeight() / static_cast(fb_height); draw_rect.bottom = target_rect.top + (h_offset + xfb_height) * target_rect.GetHeight() / static_cast(fb_height); draw_rect.left = target_rect.left + (target_rect.GetWidth() - xfb_width * target_rect.GetWidth() / static_cast(fb_stride)) / 2; draw_rect.right = target_rect.left + (target_rect.GetWidth() + xfb_width * target_rect.GetWidth() / static_cast(fb_stride)) / 2; source_rect.right -= Renderer::EFBToScaledX(fb_stride - fb_width); BlitScreen(render_pass, draw_rect, source_rect, xfb_source->GetTexture()->GetTexture()); } } void Renderer::DrawRealXFB(VkRenderPass render_pass, const TargetRectangle& target_rect, const XFBSourceBase* const* xfb_sources, u32 xfb_count, u32 fb_width, u32 fb_stride, u32 fb_height) { for (u32 i = 0; i < xfb_count; ++i) { const XFBSource* xfb_source = static_cast(xfb_sources[i]); xfb_source->GetTexture()->GetTexture()->TransitionToLayout( g_command_buffer_mgr->GetCurrentCommandBuffer(), VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL); TargetRectangle source_rect = xfb_source->sourceRc; TargetRectangle draw_rect = target_rect; source_rect.right -= fb_stride - fb_width; BlitScreen(render_pass, draw_rect, source_rect, xfb_source->GetTexture()->GetTexture()); } } void Renderer::DrawScreen(const TargetRectangle& scaled_efb_rect, u32 xfb_addr, const XFBSourceBase* const* xfb_sources, u32 xfb_count, u32 fb_width, u32 fb_stride, u32 fb_height) { // Grab the next image from the swap chain in preparation for drawing the window. VkResult res = m_swap_chain->AcquireNextImage(m_image_available_semaphore); if (res == VK_SUBOPTIMAL_KHR || res == VK_ERROR_OUT_OF_DATE_KHR) { // There's an issue here. We can't resize the swap chain while the GPU is still busy with it, // but calling WaitForGPUIdle would create a deadlock as PrepareToSubmitCommandBuffer has been // called by SwapImpl. WaitForGPUIdle waits on the semaphore, which PrepareToSubmitCommandBuffer // has already done, so it blocks indefinitely. To work around this, we submit the current // command buffer, resize the swap chain (which calls WaitForGPUIdle), and then finally call // PrepareToSubmitCommandBuffer to return to the state that the caller expects. g_command_buffer_mgr->SubmitCommandBuffer(false); ResizeSwapChain(); g_command_buffer_mgr->PrepareToSubmitCommandBuffer(); res = m_swap_chain->AcquireNextImage(m_image_available_semaphore); } if (res != VK_SUCCESS) PanicAlert("Failed to grab image from swap chain"); // Transition from undefined (or present src, but it can be substituted) to // color attachment ready for writing. These transitions must occur outside // a render pass, unless the render pass declares a self-dependency. Texture2D* backbuffer = m_swap_chain->GetCurrentTexture(); backbuffer->OverrideImageLayout(VK_IMAGE_LAYOUT_UNDEFINED); backbuffer->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(), VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL); // Begin render pass for rendering to the swap chain. VkClearValue clear_value = {{{0.0f, 0.0f, 0.0f, 1.0f}}}; VkRenderPassBeginInfo info = {VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO, nullptr, m_swap_chain->GetRenderPass(), m_swap_chain->GetCurrentFramebuffer(), {{0, 0}, {backbuffer->GetWidth(), backbuffer->GetHeight()}}, 1, &clear_value}; vkCmdBeginRenderPass(g_command_buffer_mgr->GetCurrentCommandBuffer(), &info, VK_SUBPASS_CONTENTS_INLINE); // Draw guest buffers (EFB or XFB) DrawFrame(m_swap_chain->GetRenderPass(), GetTargetRectangle(), scaled_efb_rect, xfb_addr, xfb_sources, xfb_count, fb_width, fb_stride, fb_height); // Draw OSD Util::SetViewportAndScissor(g_command_buffer_mgr->GetCurrentCommandBuffer(), 0, 0, backbuffer->GetWidth(), backbuffer->GetHeight()); DrawDebugText(); OSD::DoCallbacks(OSD::CallbackType::OnFrame); OSD::DrawMessages(); // End drawing to backbuffer vkCmdEndRenderPass(g_command_buffer_mgr->GetCurrentCommandBuffer()); // Transition the backbuffer to PRESENT_SRC to ensure all commands drawing // to it have finished before present. backbuffer->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(), VK_IMAGE_LAYOUT_PRESENT_SRC_KHR); } bool Renderer::DrawFrameDump(const TargetRectangle& scaled_efb_rect, u32 xfb_addr, const XFBSourceBase* const* xfb_sources, u32 xfb_count, u32 fb_width, u32 fb_stride, u32 fb_height, u64 ticks) { TargetRectangle target_rect = CalculateFrameDumpDrawRectangle(); u32 width = std::max(1u, static_cast(target_rect.GetWidth())); u32 height = std::max(1u, static_cast(target_rect.GetHeight())); if (!ResizeFrameDumpBuffer(width, height)) return false; // If there was a previous frame dumped, we'll still be in TRANSFER_SRC layout. m_frame_dump_render_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(), VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL); VkClearValue clear_value = {{{0.0f, 0.0f, 0.0f, 1.0f}}}; VkClearRect clear_rect = {{{0, 0}, {width, height}}, 0, 1}; VkClearAttachment clear_attachment = {VK_IMAGE_ASPECT_COLOR_BIT, 0, clear_value}; VkRenderPassBeginInfo info = { VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO, nullptr, FramebufferManager::GetInstance()->GetColorCopyForReadbackRenderPass(), m_frame_dump_framebuffer, {{0, 0}, {width, height}}, 1, &clear_value}; vkCmdBeginRenderPass(g_command_buffer_mgr->GetCurrentCommandBuffer(), &info, VK_SUBPASS_CONTENTS_INLINE); vkCmdClearAttachments(g_command_buffer_mgr->GetCurrentCommandBuffer(), 1, &clear_attachment, 1, &clear_rect); DrawFrame(FramebufferManager::GetInstance()->GetColorCopyForReadbackRenderPass(), target_rect, scaled_efb_rect, xfb_addr, xfb_sources, xfb_count, fb_width, fb_stride, fb_height); vkCmdEndRenderPass(g_command_buffer_mgr->GetCurrentCommandBuffer()); // Prepare the readback texture for copying. StagingTexture2D* readback_texture = PrepareFrameDumpImage(width, height, ticks); if (!readback_texture) return false; // Queue a copy to the current frame dump buffer. It will be written to the frame dump later. m_frame_dump_render_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(), VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL); readback_texture->CopyFromImage(g_command_buffer_mgr->GetCurrentCommandBuffer(), m_frame_dump_render_texture->GetImage(), VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, width, height, 0, 0); return true; } void Renderer::StartFrameDumping() { _assert_(!m_frame_dumping_active); // Register fence callback so that we know when frames are ready to be written to the dump. // This is done by clearing the fence pointer, so WriteFrameDumpFrame doesn't have to wait. auto queued_callback = [](VkCommandBuffer, VkFence) {}; auto signaled_callback = std::bind(&Renderer::OnFrameDumpImageReady, this, std::placeholders::_1); // We use the array pointer as a key here, that way if Renderer needed fence callbacks in // the future it could be used without conflicting. // We're not interested in when fences are submitted, so the first callback is a no-op. g_command_buffer_mgr->AddFencePointCallback( m_frame_dump_images.data(), std::move(queued_callback), std::move(signaled_callback)); m_frame_dumping_active = true; } void Renderer::EndFrameDumping() { _assert_(m_frame_dumping_active); // Write any pending frames to the frame dump. FlushFrameDump(); // Remove the fence callback that we registered earlier, one less function that needs to be // called when preparing a command buffer. g_command_buffer_mgr->RemoveFencePointCallback(m_frame_dump_images.data()); m_frame_dumping_active = false; } void Renderer::OnFrameDumpImageReady(VkFence fence) { for (FrameDumpImage& frame : m_frame_dump_images) { // fence being a null handle means that we don't have to wait to re-use this image. if (frame.fence == fence) frame.fence = VK_NULL_HANDLE; } } void Renderer::WriteFrameDumpImage(size_t index) { FrameDumpImage& frame = m_frame_dump_images[index]; _assert_(frame.pending); // Check fence has been signaled. // The callback here should set fence to null. if (frame.fence != VK_NULL_HANDLE) { g_command_buffer_mgr->WaitForFence(frame.fence); _assert_(frame.fence == VK_NULL_HANDLE); } // Copy the now-populated image data to the output file. DumpFrameData(reinterpret_cast(frame.readback_texture->GetMapPointer()), static_cast(frame.readback_texture->GetWidth()), static_cast(frame.readback_texture->GetHeight()), static_cast(frame.readback_texture->GetRowStride()), frame.dump_state); frame.pending = false; } StagingTexture2D* Renderer::PrepareFrameDumpImage(u32 width, u32 height, u64 ticks) { // Ensure the last frame that was sent to the frame dump has completed encoding before we send // the next image to it. FinishFrameData(); // If the last image hasn't been written to the frame dump yet, write it now. // This is necessary so that the worker thread is no more than one frame behind, and the pointer // (which is actually the buffer) is safe for us to re-use next time. if (m_frame_dump_images[m_current_frame_dump_image].pending) WriteFrameDumpImage(m_current_frame_dump_image); // Move to the next image buffer m_current_frame_dump_image = (m_current_frame_dump_image + 1) % FRAME_DUMP_BUFFERED_FRAMES; FrameDumpImage& image = m_frame_dump_images[m_current_frame_dump_image]; // Ensure the dimensions of the readback texture are sufficient. if (!image.readback_texture || width != image.readback_texture->GetWidth() || height != image.readback_texture->GetHeight()) { // Allocate a new readback texture. // The reset() call is here so that the memory is released before allocating the new texture. image.readback_texture.reset(); image.readback_texture = StagingTexture2D::Create(STAGING_BUFFER_TYPE_READBACK, width, height, EFB_COLOR_TEXTURE_FORMAT); if (!image.readback_texture || !image.readback_texture->Map()) { // Not actually fatal, just means we can't dump this frame. PanicAlert("Failed to allocate frame dump readback texture."); image.readback_texture.reset(); return nullptr; } } // The copy happens immediately after this function returns, so flag this frame as pending. image.fence = g_command_buffer_mgr->GetCurrentCommandBufferFence(); image.dump_state = AVIDump::FetchState(ticks); image.pending = true; return image.readback_texture.get(); } void Renderer::FlushFrameDump() { // We must write frames in order, so this is why we use a counter rather than a range. for (size_t i = 0; i < FRAME_DUMP_BUFFERED_FRAMES; i++) { if (m_frame_dump_images[m_current_frame_dump_image].pending) WriteFrameDumpImage(m_current_frame_dump_image); m_current_frame_dump_image = (m_current_frame_dump_image + 1) % FRAME_DUMP_BUFFERED_FRAMES; } // Since everything has been written now, may as well start at index zero. // count-1 here because the index is incremented before usage. m_current_frame_dump_image = FRAME_DUMP_BUFFERED_FRAMES - 1; } void Renderer::BlitScreen(VkRenderPass render_pass, const TargetRectangle& dst_rect, const TargetRectangle& src_rect, const Texture2D* src_tex) { VulkanPostProcessing* post_processor = static_cast(m_post_processor.get()); if (g_ActiveConfig.iStereoMode == STEREO_SBS || g_ActiveConfig.iStereoMode == STEREO_TAB) { TargetRectangle left_rect; TargetRectangle right_rect; std::tie(left_rect, right_rect) = ConvertStereoRectangle(dst_rect); post_processor->BlitFromTexture(left_rect, src_rect, src_tex, 0, render_pass); post_processor->BlitFromTexture(right_rect, src_rect, src_tex, 1, render_pass); } else { post_processor->BlitFromTexture(dst_rect, src_rect, src_tex, 0, render_pass); } } bool Renderer::ResizeFrameDumpBuffer(u32 new_width, u32 new_height) { if (m_frame_dump_render_texture && m_frame_dump_render_texture->GetWidth() == new_width && m_frame_dump_render_texture->GetHeight() == new_height) { return true; } // Ensure all previous frames have been dumped, since we are destroying a framebuffer // that may still be in use. FlushFrameDump(); if (m_frame_dump_framebuffer != VK_NULL_HANDLE) { vkDestroyFramebuffer(g_vulkan_context->GetDevice(), m_frame_dump_framebuffer, nullptr); m_frame_dump_framebuffer = VK_NULL_HANDLE; } m_frame_dump_render_texture = Texture2D::Create(new_width, new_height, 1, 1, EFB_COLOR_TEXTURE_FORMAT, VK_SAMPLE_COUNT_1_BIT, VK_IMAGE_VIEW_TYPE_2D, VK_IMAGE_TILING_OPTIMAL, VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT); if (!m_frame_dump_render_texture) { WARN_LOG(VIDEO, "Failed to resize frame dump render texture"); m_frame_dump_render_texture.reset(); return false; } VkImageView attachment = m_frame_dump_render_texture->GetView(); VkFramebufferCreateInfo info = {}; info.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO; info.renderPass = FramebufferManager::GetInstance()->GetColorCopyForReadbackRenderPass(); info.attachmentCount = 1; info.pAttachments = &attachment; info.width = new_width; info.height = new_height; info.layers = 1; VkResult res = vkCreateFramebuffer(g_vulkan_context->GetDevice(), &info, nullptr, &m_frame_dump_framebuffer); if (res != VK_SUCCESS) { WARN_LOG(VIDEO, "Failed to create frame dump framebuffer"); m_frame_dump_render_texture.reset(); return false; } // Render pass expects texture is in transfer src to start with. m_frame_dump_render_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(), VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL); return true; } void Renderer::DestroyFrameDumpResources() { if (m_frame_dump_framebuffer != VK_NULL_HANDLE) { vkDestroyFramebuffer(g_vulkan_context->GetDevice(), m_frame_dump_framebuffer, nullptr); m_frame_dump_framebuffer = VK_NULL_HANDLE; } m_frame_dump_render_texture.reset(); for (FrameDumpImage& image : m_frame_dump_images) { image.readback_texture.reset(); image.fence = VK_NULL_HANDLE; image.dump_state = {}; image.pending = false; } m_current_frame_dump_image = FRAME_DUMP_BUFFERED_FRAMES - 1; } void Renderer::CheckForTargetResize(u32 fb_width, u32 fb_stride, u32 fb_height) { if (FramebufferManagerBase::LastXfbWidth() == fb_stride && FramebufferManagerBase::LastXfbHeight() == fb_height) { return; } u32 new_width = (fb_stride < 1 || fb_stride > MAX_XFB_WIDTH) ? MAX_XFB_WIDTH : fb_stride; u32 new_height = (fb_height < 1 || fb_height > MAX_XFB_HEIGHT) ? MAX_XFB_HEIGHT : fb_height; FramebufferManagerBase::SetLastXfbWidth(new_width); FramebufferManagerBase::SetLastXfbHeight(new_height); // Changing the XFB source area may alter the target size. if (CalculateTargetSize()) ResizeEFBTextures(); } void Renderer::CheckForSurfaceChange() { if (!m_surface_needs_change.IsSet()) return; u32 old_width = m_swap_chain ? m_swap_chain->GetWidth() : 0; u32 old_height = m_swap_chain ? m_swap_chain->GetHeight() : 0; // Fast path, if the surface handle is the same, the window has just been resized. if (m_swap_chain && m_new_surface_handle == m_swap_chain->GetNativeHandle()) { INFO_LOG(VIDEO, "Detected window resize."); ResizeSwapChain(); // Notify the main thread we are done. m_surface_needs_change.Clear(); m_new_surface_handle = nullptr; m_surface_changed.Set(); } else { // Wait for the GPU to catch up since we're going to destroy the swap chain. g_command_buffer_mgr->WaitForGPUIdle(); // Did we previously have a swap chain? if (m_swap_chain) { if (!m_new_surface_handle) { // If there is no surface now, destroy the swap chain. m_swap_chain.reset(); } else { // Recreate the surface. If this fails we're in trouble. if (!m_swap_chain->RecreateSurface(m_new_surface_handle)) PanicAlert("Failed to recreate Vulkan surface. Cannot continue."); } } else { // Previously had no swap chain. So create one. VkSurfaceKHR surface = SwapChain::CreateVulkanSurface(g_vulkan_context->GetVulkanInstance(), m_new_surface_handle); if (surface != VK_NULL_HANDLE) { m_swap_chain = SwapChain::Create(m_new_surface_handle, surface, g_ActiveConfig.IsVSync()); if (!m_swap_chain) PanicAlert("Failed to create swap chain."); } else { PanicAlert("Failed to create surface."); } } // Notify calling thread. m_surface_needs_change.Clear(); m_new_surface_handle = nullptr; m_surface_changed.Set(); } if (m_swap_chain) { // Handle case where the dimensions are now different if (old_width != m_swap_chain->GetWidth() || old_height != m_swap_chain->GetHeight()) OnSwapChainResized(); } } void Renderer::CheckForConfigChanges() { // Save the video config so we can compare against to determine which settings have changed. u32 old_multisamples = g_ActiveConfig.iMultisamples; int old_anisotropy = g_ActiveConfig.iMaxAnisotropy; int old_stereo_mode = g_ActiveConfig.iStereoMode; int old_aspect_ratio = g_ActiveConfig.iAspectRatio; int old_efb_scale = g_ActiveConfig.iEFBScale; bool old_force_filtering = g_ActiveConfig.bForceFiltering; bool old_ssaa = g_ActiveConfig.bSSAA; bool old_use_xfb = g_ActiveConfig.bUseXFB; bool old_use_realxfb = g_ActiveConfig.bUseRealXFB; // Copy g_Config to g_ActiveConfig. // NOTE: This can potentially race with the UI thread, however if it does, the changes will be // delayed until the next time CheckForConfigChanges is called. UpdateActiveConfig(); // Determine which (if any) settings have changed. bool msaa_changed = old_multisamples != g_ActiveConfig.iMultisamples; bool ssaa_changed = old_ssaa != g_ActiveConfig.bSSAA; bool anisotropy_changed = old_anisotropy != g_ActiveConfig.iMaxAnisotropy; bool force_texture_filtering_changed = old_force_filtering != g_ActiveConfig.bForceFiltering; bool stereo_changed = old_stereo_mode != g_ActiveConfig.iStereoMode; bool efb_scale_changed = old_efb_scale != g_ActiveConfig.iEFBScale; bool aspect_changed = old_aspect_ratio != g_ActiveConfig.iAspectRatio; bool use_xfb_changed = old_use_xfb != g_ActiveConfig.bUseXFB; bool use_realxfb_changed = old_use_realxfb != g_ActiveConfig.bUseRealXFB; // Update texture cache settings with any changed options. TextureCache::GetInstance()->OnConfigChanged(g_ActiveConfig); // Handle settings that can cause the target rectangle to change. if (efb_scale_changed || aspect_changed || use_xfb_changed || use_realxfb_changed) { if (CalculateTargetSize()) ResizeEFBTextures(); } // MSAA samples changed, we need to recreate the EFB render pass. // If the stereoscopy mode changed, we need to recreate the buffers as well. if (msaa_changed || stereo_changed) { g_command_buffer_mgr->WaitForGPUIdle(); FramebufferManager::GetInstance()->RecreateRenderPass(); FramebufferManager::GetInstance()->ResizeEFBTextures(); BindEFBToStateTracker(); } // SSAA changed on/off, we can leave the buffers/render pass, but have to recompile shaders. // Changing stereoscopy from off<->on also requires shaders to be recompiled. if (msaa_changed || ssaa_changed || stereo_changed) { g_command_buffer_mgr->WaitForGPUIdle(); RecompileShaders(); FramebufferManager::GetInstance()->RecompileShaders(); g_object_cache->RecompileSharedShaders(); StateTracker::GetInstance()->LoadPipelineUIDCache(); } // For vsync, we need to change the present mode, which means recreating the swap chain. if (m_swap_chain && g_ActiveConfig.IsVSync() != m_swap_chain->IsVSyncEnabled()) { g_command_buffer_mgr->WaitForGPUIdle(); m_swap_chain->SetVSync(g_ActiveConfig.IsVSync()); } // Wipe sampler cache if force texture filtering or anisotropy changes. if (anisotropy_changed || force_texture_filtering_changed) ResetSamplerStates(); // Check for a changed post-processing shader and recompile if needed. static_cast(m_post_processor.get())->UpdateConfig(); } void Renderer::OnSwapChainResized() { m_backbuffer_width = m_swap_chain->GetWidth(); m_backbuffer_height = m_swap_chain->GetHeight(); UpdateDrawRectangle(); if (CalculateTargetSize()) ResizeEFBTextures(); } void Renderer::BindEFBToStateTracker() { // Update framebuffer in state tracker VkRect2D framebuffer_size = {{0, 0}, {FramebufferManager::GetInstance()->GetEFBWidth(), FramebufferManager::GetInstance()->GetEFBHeight()}}; StateTracker::GetInstance()->SetRenderPass( FramebufferManager::GetInstance()->GetEFBLoadRenderPass(), FramebufferManager::GetInstance()->GetEFBClearRenderPass()); StateTracker::GetInstance()->SetFramebuffer( FramebufferManager::GetInstance()->GetEFBFramebuffer(), framebuffer_size); // Update rasterization state with MSAA info RasterizationState rs_state = {}; rs_state.bits = StateTracker::GetInstance()->GetRasterizationState().bits; rs_state.samples = FramebufferManager::GetInstance()->GetEFBSamples(); rs_state.per_sample_shading = g_ActiveConfig.bSSAA ? VK_TRUE : VK_FALSE; StateTracker::GetInstance()->SetRasterizationState(rs_state); } void Renderer::ResizeEFBTextures() { // Ensure the GPU is finished with the current EFB textures. g_command_buffer_mgr->WaitForGPUIdle(); FramebufferManager::GetInstance()->ResizeEFBTextures(); BindEFBToStateTracker(); // Viewport and scissor rect have to be reset since they will be scaled differently. SetViewport(); BPFunctions::SetScissor(); } void Renderer::ResizeSwapChain() { // The worker thread may still be submitting a present on this swap chain. g_command_buffer_mgr->WaitForGPUIdle(); // It's now safe to resize the swap chain. if (!m_swap_chain->ResizeSwapChain()) PanicAlert("Failed to resize swap chain."); OnSwapChainResized(); } void Renderer::ApplyState() { } void Renderer::ResetAPIState() { // End the EFB render pass if active StateTracker::GetInstance()->EndRenderPass(); } void Renderer::RestoreAPIState() { // Instruct the state tracker to re-bind everything before the next draw StateTracker::GetInstance()->SetPendingRebind(); } void Renderer::SetGenerationMode() { RasterizationState new_rs_state = {}; new_rs_state.bits = StateTracker::GetInstance()->GetRasterizationState().bits; switch (bpmem.genMode.cullmode) { case GenMode::CULL_NONE: new_rs_state.cull_mode = VK_CULL_MODE_NONE; break; case GenMode::CULL_BACK: new_rs_state.cull_mode = VK_CULL_MODE_BACK_BIT; break; case GenMode::CULL_FRONT: new_rs_state.cull_mode = VK_CULL_MODE_FRONT_BIT; break; case GenMode::CULL_ALL: new_rs_state.cull_mode = VK_CULL_MODE_FRONT_AND_BACK; break; default: new_rs_state.cull_mode = VK_CULL_MODE_NONE; break; } StateTracker::GetInstance()->SetRasterizationState(new_rs_state); } void Renderer::SetDepthMode() { DepthStencilState new_ds_state = {}; new_ds_state.test_enable = bpmem.zmode.testenable ? VK_TRUE : VK_FALSE; new_ds_state.write_enable = bpmem.zmode.updateenable ? VK_TRUE : VK_FALSE; // Inverted depth, hence these are swapped switch (bpmem.zmode.func) { case ZMode::NEVER: new_ds_state.compare_op = VK_COMPARE_OP_NEVER; break; case ZMode::LESS: new_ds_state.compare_op = VK_COMPARE_OP_GREATER; break; case ZMode::EQUAL: new_ds_state.compare_op = VK_COMPARE_OP_EQUAL; break; case ZMode::LEQUAL: new_ds_state.compare_op = VK_COMPARE_OP_GREATER_OR_EQUAL; break; case ZMode::GREATER: new_ds_state.compare_op = VK_COMPARE_OP_LESS; break; case ZMode::NEQUAL: new_ds_state.compare_op = VK_COMPARE_OP_NOT_EQUAL; break; case ZMode::GEQUAL: new_ds_state.compare_op = VK_COMPARE_OP_LESS_OR_EQUAL; break; case ZMode::ALWAYS: new_ds_state.compare_op = VK_COMPARE_OP_ALWAYS; break; default: new_ds_state.compare_op = VK_COMPARE_OP_ALWAYS; break; } StateTracker::GetInstance()->SetDepthStencilState(new_ds_state); } void Renderer::SetBlendMode(bool force_update) { BlendingState state; state.Generate(bpmem); StateTracker::GetInstance()->SetBlendState(state); } void Renderer::SetSamplerState(int stage, int texindex, bool custom_tex) { const FourTexUnits& tex = bpmem.tex[texindex]; const TexMode0& tm0 = tex.texMode0[stage]; const TexMode1& tm1 = tex.texMode1[stage]; SamplerState new_state = {}; if (g_ActiveConfig.bForceFiltering) { new_state.min_filter = VK_FILTER_LINEAR; new_state.mag_filter = VK_FILTER_LINEAR; new_state.mipmap_mode = SamplerCommon::AreBpTexMode0MipmapsEnabled(tm0) ? VK_SAMPLER_MIPMAP_MODE_LINEAR : VK_SAMPLER_MIPMAP_MODE_NEAREST; } else { // Constants for these? new_state.min_filter = (tm0.min_filter & 4) != 0 ? VK_FILTER_LINEAR : VK_FILTER_NEAREST; new_state.mipmap_mode = SamplerCommon::AreBpTexMode0MipmapsEnabled(tm0) ? VK_SAMPLER_MIPMAP_MODE_LINEAR : VK_SAMPLER_MIPMAP_MODE_NEAREST; new_state.mag_filter = tm0.mag_filter != 0 ? VK_FILTER_LINEAR : VK_FILTER_NEAREST; } // If mipmaps are disabled, clamp min/max lod new_state.max_lod = SamplerCommon::AreBpTexMode0MipmapsEnabled(tm0) ? tm1.max_lod : 0; new_state.min_lod = std::min(new_state.max_lod.Value(), tm1.min_lod); new_state.lod_bias = SamplerCommon::AreBpTexMode0MipmapsEnabled(tm0) ? tm0.lod_bias : 0; // Custom textures may have a greater number of mips if (custom_tex) new_state.max_lod = 255; // Address modes static const VkSamplerAddressMode address_modes[] = { VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE, VK_SAMPLER_ADDRESS_MODE_REPEAT, VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT, VK_SAMPLER_ADDRESS_MODE_REPEAT}; new_state.wrap_u = address_modes[tm0.wrap_s]; new_state.wrap_v = address_modes[tm0.wrap_t]; // Only use anisotropic filtering for textures that would be linearly filtered. new_state.enable_anisotropic_filtering = SamplerCommon::IsBpTexMode0PointFiltering(tm0) ? 0 : 1; // Skip lookup if the state hasn't changed. size_t bind_index = (texindex * 4) + stage; if (m_sampler_states[bind_index].bits == new_state.bits) return; // Look up new state and replace in state tracker. VkSampler sampler = g_object_cache->GetSampler(new_state); if (sampler == VK_NULL_HANDLE) { ERROR_LOG(VIDEO, "Failed to create sampler"); sampler = g_object_cache->GetPointSampler(); } StateTracker::GetInstance()->SetSampler(bind_index, sampler); m_sampler_states[bind_index].bits = new_state.bits; } void Renderer::ResetSamplerStates() { // Ensure none of the sampler objects are in use. // This assumes that none of the samplers are in use on the command list currently being recorded. g_command_buffer_mgr->WaitForGPUIdle(); // Invalidate all sampler states, next draw will re-initialize them. for (size_t i = 0; i < m_sampler_states.size(); i++) { m_sampler_states[i].bits = std::numeric_limits::max(); StateTracker::GetInstance()->SetSampler(i, g_object_cache->GetPointSampler()); } // Invalidate all sampler objects (some will be unused now). g_object_cache->ClearSamplerCache(); } void Renderer::SetInterlacingMode() { } void Renderer::SetScissorRect(const EFBRectangle& rc) { TargetRectangle target_rc = ConvertEFBRectangle(rc); VkRect2D scissor = { {target_rc.left, target_rc.top}, {static_cast(target_rc.GetWidth()), static_cast(target_rc.GetHeight())}}; StateTracker::GetInstance()->SetScissor(scissor); } void Renderer::SetViewport() { int scissor_x_offset = bpmem.scissorOffset.x * 2; int scissor_y_offset = bpmem.scissorOffset.y * 2; float x = Renderer::EFBToScaledXf(xfmem.viewport.xOrig - xfmem.viewport.wd - scissor_x_offset); float y = Renderer::EFBToScaledYf(xfmem.viewport.yOrig + xfmem.viewport.ht - scissor_y_offset); float width = Renderer::EFBToScaledXf(2.0f * xfmem.viewport.wd); float height = Renderer::EFBToScaledYf(-2.0f * xfmem.viewport.ht); float min_depth = (xfmem.viewport.farZ - xfmem.viewport.zRange) / 16777216.0f; float max_depth = xfmem.viewport.farZ / 16777216.0f; if (width < 0.0f) { x += width; width = -width; } if (height < 0.0f) { y += height; height = -height; } // If an oversized or inverted depth range is used, we need to calculate the depth range in the // vertex shader. // TODO: Inverted depth ranges are bugged in all drivers, which should be added to DriverDetails. if (UseVertexDepthRange()) { // We need to ensure depth values are clamped the maximum value supported by the console GPU. min_depth = 0.0f; max_depth = GX_MAX_DEPTH; } // We use an inverted depth range here to apply the Reverse Z trick. // This trick makes sure we match the precision provided by the 1:0 // clipping depth range on the hardware. VkViewport viewport = {x, y, width, height, 1.0f - max_depth, 1.0f - min_depth}; StateTracker::GetInstance()->SetViewport(viewport); } void Renderer::ChangeSurface(void* new_surface_handle) { // Called by the main thread when the window is resized. m_new_surface_handle = new_surface_handle; m_surface_needs_change.Set(); m_surface_changed.Set(); } void Renderer::RecompileShaders() { DestroyShaders(); if (!CompileShaders()) PanicAlert("Failed to recompile shaders."); } bool Renderer::CompileShaders() { static const char CLEAR_FRAGMENT_SHADER_SOURCE[] = R"( layout(location = 0) in float3 uv0; layout(location = 1) in float4 col0; layout(location = 0) out float4 ocol0; void main() { ocol0 = col0; } )"; std::string source = g_object_cache->GetUtilityShaderHeader() + CLEAR_FRAGMENT_SHADER_SOURCE; m_clear_fragment_shader = Util::CompileAndCreateFragmentShader(source); return m_clear_fragment_shader != VK_NULL_HANDLE; } void Renderer::DestroyShaders() { auto DestroyShader = [this](VkShaderModule& shader) { if (shader != VK_NULL_HANDLE) { vkDestroyShaderModule(g_vulkan_context->GetDevice(), shader, nullptr); shader = VK_NULL_HANDLE; } }; DestroyShader(m_clear_fragment_shader); } } // namespace Vulkan