// Copyright 2015 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #include #include #include #include #include "Common/Assert.h" #include "Common/Logging/Log.h" #include "InputCommon/ControllerInterface/ControllerInterface.h" #include "InputCommon/ControllerInterface/evdev/evdev.h" namespace ciface { namespace evdev { static std::string GetName(const std::string& devnode) { int fd = open(devnode.c_str(), O_RDWR | O_NONBLOCK); libevdev* dev = nullptr; int ret = libevdev_new_from_fd(fd, &dev); if (ret != 0) { close(fd); return std::string(); } std::string res = libevdev_get_name(dev); libevdev_free(dev); close(fd); return res; } void Init() { // this is used to number the joysticks // multiple joysticks with the same name shall get unique ids starting at 0 std::map name_counts; int num_controllers = 0; // We use Udev to find any devices. In the future this will allow for hotplugging. // But for now it is essentially iterating over /dev/input/event0 to event31. However if the // naming scheme is ever updated in the future, this *should* be forwards compatable. struct udev* udev = udev_new(); _assert_msg_(PAD, udev != 0, "Couldn't initilize libudev."); // List all input devices udev_enumerate* enumerate = udev_enumerate_new(udev); udev_enumerate_add_match_subsystem(enumerate, "input"); udev_enumerate_scan_devices(enumerate); udev_list_entry* devices = udev_enumerate_get_list_entry(enumerate); // Iterate over all input devices udev_list_entry* dev_list_entry; udev_list_entry_foreach(dev_list_entry, devices) { const char* path = udev_list_entry_get_name(dev_list_entry); udev_device* dev = udev_device_new_from_syspath(udev, path); const char* devnode = udev_device_get_devnode(dev); // We only care about devices which we have read/write access to. if (devnode && access(devnode, W_OK) == 0) { // Unfortunately udev gives us no way to filter out the non event device interfaces. // So we open it and see if it works with evdev ioctls or not. std::string name = GetName(devnode); evdevDevice* input = new evdevDevice(devnode, name_counts[name]++); if (input->IsInteresting()) { g_controller_interface.AddDevice(input); num_controllers++; } else { // Either it wasn't a evdev device, or it didn't have at least 8 buttons or two axis. delete input; } } udev_device_unref(dev); } udev_enumerate_unref(enumerate); udev_unref(udev); } evdevDevice::evdevDevice(const std::string& devnode, int id) : m_devfile(devnode), m_id(id) { // The device file will be read on one of the main threads, so we open in non-blocking mode. m_fd = open(devnode.c_str(), O_RDWR | O_NONBLOCK); int ret = libevdev_new_from_fd(m_fd, &m_dev); if (ret != 0) { // This useally fails because the device node isn't an evdev device, such as /dev/input/js0 m_initialized = false; close(m_fd); return; } m_name = libevdev_get_name(m_dev); // Controller buttons (and keyboard keys) int num_buttons = 0; for (int key = 0; key < KEY_MAX; key++) if (libevdev_has_event_code(m_dev, EV_KEY, key)) AddInput(new Button(num_buttons++, key, m_dev)); // Absolute axis (thumbsticks) int num_axis = 0; for (int axis = 0; axis < 0x100; axis++) if (libevdev_has_event_code(m_dev, EV_ABS, axis)) { AddAnalogInputs(new Axis(num_axis, axis, false, m_dev), new Axis(num_axis, axis, true, m_dev)); num_axis++; } // Force feedback if (libevdev_has_event_code(m_dev, EV_FF, FF_PERIODIC)) { for (auto type : {FF_SINE, FF_SQUARE, FF_TRIANGLE, FF_SAW_UP, FF_SAW_DOWN}) if (libevdev_has_event_code(m_dev, EV_FF, type)) AddOutput(new ForceFeedback(type, m_dev)); } if (libevdev_has_event_code(m_dev, EV_FF, FF_RUMBLE)) { AddOutput(new ForceFeedback(FF_RUMBLE, m_dev)); } // TODO: Add leds as output devices m_initialized = true; m_interesting = num_axis >= 2 || num_buttons >= 8; } evdevDevice::~evdevDevice() { if (m_initialized) { libevdev_free(m_dev); close(m_fd); } } void evdevDevice::UpdateInput() { // Run through all evdev events // libevdev will keep track of the actual controller state internally which can be queried // later with libevdev_fetch_event_value() input_event ev; int rc = LIBEVDEV_READ_STATUS_SUCCESS; do { if (rc == LIBEVDEV_READ_STATUS_SYNC) rc = libevdev_next_event(m_dev, LIBEVDEV_READ_FLAG_SYNC, &ev); else rc = libevdev_next_event(m_dev, LIBEVDEV_READ_FLAG_NORMAL, &ev); } while (rc >= 0); } std::string evdevDevice::Button::GetName() const { // Buttons below 0x100 are mostly keyboard keys, and the names make sense if (m_code < 0x100) { const char* name = libevdev_event_code_get_name(EV_KEY, m_code); if (name) return std::string(name); } // But controllers use codes above 0x100, and the standard label often doesn't match. // We are better off with Button 0 and so on. return "Button " + std::to_string(m_index); } ControlState evdevDevice::Button::GetState() const { int value = 0; libevdev_fetch_event_value(m_dev, EV_KEY, m_code, &value); return value; } evdevDevice::Axis::Axis(u8 index, u16 code, bool upper, libevdev* dev) : m_code(code), m_index(index), m_upper(upper), m_dev(dev) { m_min = libevdev_get_abs_minimum(m_dev, m_code); m_range = libevdev_get_abs_maximum(m_dev, m_code) + abs(m_min); } std::string evdevDevice::Axis::GetName() const { return "Axis " + std::to_string(m_index) + (m_upper ? "+" : "-"); } ControlState evdevDevice::Axis::GetState() const { int value = 0; libevdev_fetch_event_value(m_dev, EV_ABS, m_code, &value); // Value from 0.0 to 1.0 ControlState fvalue = double(value - m_min) / double(m_range); // Split into two axis, each covering half the range from 0.0 to 1.0 if (m_upper) return std::max(0.0, fvalue - 0.5) * 2.0; else return (0.5 - std::min(0.5, fvalue)) * 2.0; } std::string evdevDevice::ForceFeedback::GetName() const { // We have some default names. switch (m_type) { case FF_SINE: return "Sine"; case FF_TRIANGLE: return "Triangle"; case FF_SQUARE: return "Square"; case FF_RUMBLE: return "LeftRight"; default: { const char* name = libevdev_event_code_get_name(EV_FF, m_type); if (name) return std::string(name); return "Unknown"; } } } void evdevDevice::ForceFeedback::SetState(ControlState state) { // libevdev doesn't have nice helpers for forcefeedback // we will use the file descriptors directly. if (m_id != -1) // delete the previous effect (which also stops it) { ioctl(m_fd, EVIOCRMFF, m_id); m_id = -1; } if (state > 0) // Upload and start an effect. { ff_effect effect; effect.id = -1; effect.direction = 0; // down effect.replay.length = 500; // 500ms effect.replay.delay = 0; effect.trigger.button = 0; // don't trigger on button press effect.trigger.interval = 0; // This is the the interface that XInput uses, with 2 motors of differing sizes/frequencies that // are controlled seperatally if (m_type == FF_RUMBLE) { effect.type = FF_RUMBLE; // max ranges tuned to 'feel' similar in magnitude to triangle/sine on xbox360 controller effect.u.rumble.strong_magnitude = u16(state * 0x4000); effect.u.rumble.weak_magnitude = u16(state * 0xFFFF); } else // FF_PERIODIC, a more generic interface. { effect.type = FF_PERIODIC; effect.u.periodic.waveform = m_type; effect.u.periodic.phase = 0x7fff; // 180 degrees effect.u.periodic.offset = 0; effect.u.periodic.period = 10; effect.u.periodic.magnitude = s16(state * 0x7FFF); effect.u.periodic.envelope.attack_length = 0; // no attack effect.u.periodic.envelope.attack_level = 0; effect.u.periodic.envelope.fade_length = 0; effect.u.periodic.envelope.fade_level = 0; } ioctl(m_fd, EVIOCSFF, &effect); m_id = effect.id; input_event play; play.type = EV_FF; play.code = m_id; play.value = 1; write(m_fd, (const void*)&play, sizeof(play)); } } evdevDevice::ForceFeedback::~ForceFeedback() { // delete the uploaded effect, so we don't leak it. if (m_id != -1) { ioctl(m_fd, EVIOCRMFF, m_id); } } } }