// Copyright 2016 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #include #include #include #include #include #include #include "Common/Assert.h" #include "Common/CommonTypes.h" #include "Common/Logging/Log.h" #include "Common/MsgHandler.h" #include "Core/Core.h" #include "VideoBackends/Vulkan/BoundingBox.h" #include "VideoBackends/Vulkan/CommandBufferManager.h" #include "VideoBackends/Vulkan/FramebufferManager.h" #include "VideoBackends/Vulkan/ObjectCache.h" #include "VideoBackends/Vulkan/PostProcessing.h" #include "VideoBackends/Vulkan/Renderer.h" #include "VideoBackends/Vulkan/StateTracker.h" #include "VideoBackends/Vulkan/StreamBuffer.h" #include "VideoBackends/Vulkan/SwapChain.h" #include "VideoBackends/Vulkan/TextureCache.h" #include "VideoBackends/Vulkan/Util.h" #include "VideoBackends/Vulkan/VKPipeline.h" #include "VideoBackends/Vulkan/VKShader.h" #include "VideoBackends/Vulkan/VKTexture.h" #include "VideoBackends/Vulkan/VulkanContext.h" #include "VideoCommon/BPFunctions.h" #include "VideoCommon/BPMemory.h" #include "VideoCommon/DriverDetails.h" #include "VideoCommon/OnScreenDisplay.h" #include "VideoCommon/PixelEngine.h" #include "VideoCommon/RenderState.h" #include "VideoCommon/TextureCacheBase.h" #include "VideoCommon/VideoBackendBase.h" #include "VideoCommon/VideoCommon.h" #include "VideoCommon/VideoConfig.h" #include "VideoCommon/XFMemory.h" namespace Vulkan { Renderer::Renderer(std::unique_ptr swap_chain, float backbuffer_scale) : ::Renderer(swap_chain ? static_cast(swap_chain->GetWidth()) : 1, swap_chain ? static_cast(swap_chain->GetHeight()) : 0, backbuffer_scale, swap_chain ? swap_chain->GetTextureFormat() : AbstractTextureFormat::Undefined), m_swap_chain(std::move(swap_chain)) { UpdateActiveConfig(); for (size_t i = 0; i < m_sampler_states.size(); i++) m_sampler_states[i].hex = RenderState::GetPointSamplerState().hex; } Renderer::~Renderer() = default; Renderer* Renderer::GetInstance() { return static_cast(g_renderer.get()); } bool Renderer::IsHeadless() const { return m_swap_chain == nullptr; } bool Renderer::Initialize() { if (!::Renderer::Initialize()) return false; BindEFBToStateTracker(); if (!CreateSemaphores()) { PanicAlert("Failed to create semaphores."); return false; } if (!CompileShaders()) { PanicAlert("Failed to compile shaders."); return false; } // Swap chain render pass. if (m_swap_chain) { m_swap_chain_render_pass = g_object_cache->GetRenderPass(m_swap_chain->GetSurfaceFormat().format, VK_FORMAT_UNDEFINED, 1, VK_ATTACHMENT_LOAD_OP_LOAD); m_swap_chain_clear_render_pass = g_object_cache->GetRenderPass(m_swap_chain->GetSurfaceFormat().format, VK_FORMAT_UNDEFINED, 1, VK_ATTACHMENT_LOAD_OP_CLEAR); if (m_swap_chain_render_pass == VK_NULL_HANDLE || m_swap_chain_clear_render_pass == VK_NULL_HANDLE) { PanicAlert("Failed to create swap chain render passes."); return false; } } m_bounding_box = std::make_unique(); if (!m_bounding_box->Initialize()) { PanicAlert("Failed to initialize bounding box."); return false; } if (g_vulkan_context->SupportsBoundingBox()) { // Bind bounding box to state tracker StateTracker::GetInstance()->SetBBoxBuffer(m_bounding_box->GetGPUBuffer(), m_bounding_box->GetGPUBufferOffset(), m_bounding_box->GetGPUBufferSize()); } // Initialize post processing. m_post_processor = std::make_unique(); if (!static_cast(m_post_processor.get())->Initialize()) { PanicAlert("failed to initialize post processor."); return false; } // Various initialization routines will have executed commands on the command buffer. // Execute what we have done before beginning the first frame. g_command_buffer_mgr->PrepareToSubmitCommandBuffer(); g_command_buffer_mgr->SubmitCommandBuffer(false); BeginFrame(); return true; } void Renderer::Shutdown() { ::Renderer::Shutdown(); // Submit the current command buffer, in case there's a partial frame. StateTracker::GetInstance()->EndRenderPass(); g_command_buffer_mgr->ExecuteCommandBuffer(false, true); DestroyShaders(); DestroySemaphores(); } bool Renderer::CreateSemaphores() { // Create two semaphores, one that is triggered when the swapchain buffer is ready, another after // submit and before present VkSemaphoreCreateInfo semaphore_info = { VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO, // VkStructureType sType nullptr, // const void* pNext 0 // VkSemaphoreCreateFlags flags }; VkResult res; if ((res = vkCreateSemaphore(g_vulkan_context->GetDevice(), &semaphore_info, nullptr, &m_image_available_semaphore)) != VK_SUCCESS || (res = vkCreateSemaphore(g_vulkan_context->GetDevice(), &semaphore_info, nullptr, &m_rendering_finished_semaphore)) != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkCreateSemaphore failed: "); return false; } return true; } void Renderer::DestroySemaphores() { if (m_image_available_semaphore) { vkDestroySemaphore(g_vulkan_context->GetDevice(), m_image_available_semaphore, nullptr); m_image_available_semaphore = VK_NULL_HANDLE; } if (m_rendering_finished_semaphore) { vkDestroySemaphore(g_vulkan_context->GetDevice(), m_rendering_finished_semaphore, nullptr); m_rendering_finished_semaphore = VK_NULL_HANDLE; } } std::unique_ptr Renderer::CreateTexture(const TextureConfig& config) { return VKTexture::Create(config); } std::unique_ptr Renderer::CreateStagingTexture(StagingTextureType type, const TextureConfig& config) { return VKStagingTexture::Create(type, config); } std::unique_ptr Renderer::CreateShaderFromSource(ShaderStage stage, const char* source, size_t length) { return VKShader::CreateFromSource(stage, source, length); } std::unique_ptr Renderer::CreateShaderFromBinary(ShaderStage stage, const void* data, size_t length) { return VKShader::CreateFromBinary(stage, data, length); } std::unique_ptr Renderer::CreatePipeline(const AbstractPipelineConfig& config) { return VKPipeline::Create(config); } std::unique_ptr Renderer::CreateFramebuffer(const AbstractTexture* color_attachment, const AbstractTexture* depth_attachment) { return VKFramebuffer::Create(static_cast(color_attachment), static_cast(depth_attachment)); } void Renderer::SetPipeline(const AbstractPipeline* pipeline) { StateTracker::GetInstance()->SetPipeline(static_cast(pipeline)); } u32 Renderer::AccessEFB(EFBAccessType type, u32 x, u32 y, u32 poke_data) { if (type == EFBAccessType::PeekColor) { u32 color = FramebufferManager::GetInstance()->PeekEFBColor(x, y); // a little-endian value is expected to be returned color = ((color & 0xFF00FF00) | ((color >> 16) & 0xFF) | ((color << 16) & 0xFF0000)); // check what to do with the alpha channel (GX_PokeAlphaRead) PixelEngine::UPEAlphaReadReg alpha_read_mode = PixelEngine::GetAlphaReadMode(); if (bpmem.zcontrol.pixel_format == PEControl::RGBA6_Z24) { color = RGBA8ToRGBA6ToRGBA8(color); } else if (bpmem.zcontrol.pixel_format == PEControl::RGB565_Z16) { color = RGBA8ToRGB565ToRGBA8(color); } if (bpmem.zcontrol.pixel_format != PEControl::RGBA6_Z24) { color |= 0xFF000000; } if (alpha_read_mode.ReadMode == 2) { return color; // GX_READ_NONE } else if (alpha_read_mode.ReadMode == 1) { return color | 0xFF000000; // GX_READ_FF } else /*if(alpha_read_mode.ReadMode == 0)*/ { return color & 0x00FFFFFF; // GX_READ_00 } } else // if (type == EFBAccessType::PeekZ) { // Depth buffer is inverted for improved precision near far plane float depth = 1.0f - FramebufferManager::GetInstance()->PeekEFBDepth(x, y); u32 ret = 0; if (bpmem.zcontrol.pixel_format == PEControl::RGB565_Z16) { // if Z is in 16 bit format you must return a 16 bit integer ret = MathUtil::Clamp(static_cast(depth * 65536.0f), 0, 0xFFFF); } else { ret = MathUtil::Clamp(static_cast(depth * 16777216.0f), 0, 0xFFFFFF); } return ret; } } void Renderer::PokeEFB(EFBAccessType type, const EfbPokeData* points, size_t num_points) { if (type == EFBAccessType::PokeColor) { for (size_t i = 0; i < num_points; i++) { // Convert to expected format (BGRA->RGBA) // TODO: Check alpha, depending on mode? const EfbPokeData& point = points[i]; u32 color = ((point.data & 0xFF00FF00) | ((point.data >> 16) & 0xFF) | ((point.data << 16) & 0xFF0000)); FramebufferManager::GetInstance()->PokeEFBColor(point.x, point.y, color); } } else // if (type == EFBAccessType::PokeZ) { for (size_t i = 0; i < num_points; i++) { // Convert to floating-point depth. const EfbPokeData& point = points[i]; float depth = (1.0f - float(point.data & 0xFFFFFF) / 16777216.0f); FramebufferManager::GetInstance()->PokeEFBDepth(point.x, point.y, depth); } } } u16 Renderer::BBoxRead(int index) { s32 value = m_bounding_box->Get(static_cast(index)); // Here we get the min/max value of the truncated position of the upscaled framebuffer. // So we have to correct them to the unscaled EFB sizes. if (index < 2) { // left/right value = value * EFB_WIDTH / m_target_width; } else { // up/down value = value * EFB_HEIGHT / m_target_height; } // fix max values to describe the outer border if (index & 1) value++; return static_cast(value); } void Renderer::BBoxWrite(int index, u16 value) { s32 scaled_value = static_cast(value); // fix max values to describe the outer border if (index & 1) scaled_value--; // scale to internal resolution if (index < 2) { // left/right scaled_value = scaled_value * m_target_width / EFB_WIDTH; } else { // up/down scaled_value = scaled_value * m_target_height / EFB_HEIGHT; } m_bounding_box->Set(static_cast(index), scaled_value); } TargetRectangle Renderer::ConvertEFBRectangle(const EFBRectangle& rc) { TargetRectangle result; result.left = EFBToScaledX(rc.left); result.top = EFBToScaledY(rc.top); result.right = EFBToScaledX(rc.right); result.bottom = EFBToScaledY(rc.bottom); return result; } void Renderer::BeginFrame() { // Activate a new command list, and restore state ready for the next draw g_command_buffer_mgr->ActivateCommandBuffer(); // Ensure that the state tracker rebinds everything, and allocates a new set // of descriptors out of the next pool. StateTracker::GetInstance()->InvalidateDescriptorSets(); StateTracker::GetInstance()->InvalidateConstants(); StateTracker::GetInstance()->SetPendingRebind(); } void Renderer::ClearScreen(const EFBRectangle& rc, bool color_enable, bool alpha_enable, bool z_enable, u32 color, u32 z) { // Native -> EFB coordinates TargetRectangle target_rc = Renderer::ConvertEFBRectangle(rc); // Size we pass this size to vkBeginRenderPass, it has to be clamped to the framebuffer // dimensions. The other backends just silently ignore this case. target_rc.ClampUL(0, 0, m_target_width, m_target_height); VkRect2D target_vk_rc = { {target_rc.left, target_rc.top}, {static_cast(target_rc.GetWidth()), static_cast(target_rc.GetHeight())}}; // Determine whether the EFB has an alpha channel. If it doesn't, we can clear the alpha // channel to 0xFF. This hopefully allows us to use the fast path in most cases. if (bpmem.zcontrol.pixel_format == PEControl::RGB565_Z16 || bpmem.zcontrol.pixel_format == PEControl::RGB8_Z24 || bpmem.zcontrol.pixel_format == PEControl::Z24) { // Force alpha writes, and clear the alpha channel. This is different to the other backends, // where the existing values of the alpha channel are preserved. alpha_enable = true; color &= 0x00FFFFFF; } // Convert RGBA8 -> floating-point values. VkClearValue clear_color_value = {}; VkClearValue clear_depth_value = {}; clear_color_value.color.float32[0] = static_cast((color >> 16) & 0xFF) / 255.0f; clear_color_value.color.float32[1] = static_cast((color >> 8) & 0xFF) / 255.0f; clear_color_value.color.float32[2] = static_cast((color >> 0) & 0xFF) / 255.0f; clear_color_value.color.float32[3] = static_cast((color >> 24) & 0xFF) / 255.0f; clear_depth_value.depthStencil.depth = (1.0f - (static_cast(z & 0xFFFFFF) / 16777216.0f)); // If we're not in a render pass (start of the frame), we can use a clear render pass // to discard the data, rather than loading and then clearing. bool use_clear_attachments = (color_enable && alpha_enable) || z_enable; bool use_clear_render_pass = !StateTracker::GetInstance()->InRenderPass() && color_enable && alpha_enable && z_enable; // The NVIDIA Vulkan driver causes the GPU to lock up, or throw exceptions if MSAA is enabled, // a non-full clear rect is specified, and a clear loadop or vkCmdClearAttachments is used. if (g_ActiveConfig.iMultisamples > 1 && DriverDetails::HasBug(DriverDetails::BUG_BROKEN_MSAA_CLEAR)) { use_clear_render_pass = false; use_clear_attachments = false; } // This path cannot be used if the driver implementation doesn't guarantee pixels with no drawn // geometry in "this" renderpass won't be cleared if (DriverDetails::HasBug(DriverDetails::BUG_BROKEN_CLEAR_LOADOP_RENDERPASS)) use_clear_render_pass = false; // Fastest path: Use a render pass to clear the buffers. if (use_clear_render_pass) { const std::array clear_values = {{clear_color_value, clear_depth_value}}; StateTracker::GetInstance()->BeginClearRenderPass(target_vk_rc, clear_values.data(), static_cast(clear_values.size())); return; } // Fast path: Use vkCmdClearAttachments to clear the buffers within a render path // We can't use this when preserving alpha but clearing color. if (use_clear_attachments) { VkClearAttachment clear_attachments[2]; uint32_t num_clear_attachments = 0; if (color_enable && alpha_enable) { clear_attachments[num_clear_attachments].aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; clear_attachments[num_clear_attachments].colorAttachment = 0; clear_attachments[num_clear_attachments].clearValue = clear_color_value; num_clear_attachments++; color_enable = false; alpha_enable = false; } if (z_enable) { clear_attachments[num_clear_attachments].aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT; clear_attachments[num_clear_attachments].colorAttachment = 0; clear_attachments[num_clear_attachments].clearValue = clear_depth_value; num_clear_attachments++; z_enable = false; } if (num_clear_attachments > 0) { VkClearRect vk_rect = {target_vk_rc, 0, FramebufferManager::GetInstance()->GetEFBLayers()}; if (!StateTracker::GetInstance()->IsWithinRenderArea( target_vk_rc.offset.x, target_vk_rc.offset.y, target_vk_rc.extent.width, target_vk_rc.extent.height)) { StateTracker::GetInstance()->EndClearRenderPass(); } StateTracker::GetInstance()->BeginRenderPass(); vkCmdClearAttachments(g_command_buffer_mgr->GetCurrentCommandBuffer(), num_clear_attachments, clear_attachments, 1, &vk_rect); } } // Anything left over for the slow path? if (!color_enable && !alpha_enable && !z_enable) return; // Clearing must occur within a render pass. if (!StateTracker::GetInstance()->IsWithinRenderArea(target_vk_rc.offset.x, target_vk_rc.offset.y, target_vk_rc.extent.width, target_vk_rc.extent.height)) { StateTracker::GetInstance()->EndClearRenderPass(); } StateTracker::GetInstance()->BeginRenderPass(); StateTracker::GetInstance()->SetPendingRebind(); // Mask away the appropriate colors and use a shader BlendingState blend_state = RenderState::GetNoBlendingBlendState(); blend_state.colorupdate = color_enable; blend_state.alphaupdate = alpha_enable; DepthState depth_state = RenderState::GetNoDepthTestingDepthStencilState(); depth_state.testenable = z_enable; depth_state.updateenable = z_enable; depth_state.func = ZMode::ALWAYS; // No need to start a new render pass, but we do need to restore viewport state UtilityShaderDraw draw(g_command_buffer_mgr->GetCurrentCommandBuffer(), g_object_cache->GetPipelineLayout(PIPELINE_LAYOUT_STANDARD), FramebufferManager::GetInstance()->GetEFBLoadRenderPass(), g_shader_cache->GetPassthroughVertexShader(), g_shader_cache->GetPassthroughGeometryShader(), m_clear_fragment_shader); draw.SetMultisamplingState(FramebufferManager::GetInstance()->GetEFBMultisamplingState()); draw.SetDepthState(depth_state); draw.SetBlendState(blend_state); draw.DrawColoredQuad(target_rc.left, target_rc.top, target_rc.GetWidth(), target_rc.GetHeight(), clear_color_value.color.float32[0], clear_color_value.color.float32[1], clear_color_value.color.float32[2], clear_color_value.color.float32[3], clear_depth_value.depthStencil.depth); } void Renderer::ReinterpretPixelData(unsigned int convtype) { StateTracker::GetInstance()->EndRenderPass(); StateTracker::GetInstance()->SetPendingRebind(); FramebufferManager::GetInstance()->ReinterpretPixelData(convtype); // EFB framebuffer has now changed, so update accordingly. BindEFBToStateTracker(); } void Renderer::Flush() { Util::ExecuteCurrentCommandsAndRestoreState(true, false); } void Renderer::BindBackbuffer(const ClearColor& clear_color) { StateTracker::GetInstance()->EndRenderPass(); // Handle host window resizes. CheckForSurfaceChange(); CheckForSurfaceResize(); // Ensure the worker thread is not still submitting a previous command buffer. // In other words, the last frame has been submitted (otherwise the next call would // be a race, as the image may not have been consumed yet). g_command_buffer_mgr->PrepareToSubmitCommandBuffer(); VkResult res; if (!g_command_buffer_mgr->CheckLastPresentFail()) { // Grab the next image from the swap chain in preparation for drawing the window. res = m_swap_chain->AcquireNextImage(m_image_available_semaphore); } else { // If the last present failed, we need to recreate the swap chain. res = VK_ERROR_OUT_OF_DATE_KHR; } if (res == VK_SUBOPTIMAL_KHR || res == VK_ERROR_OUT_OF_DATE_KHR) { // There's an issue here. We can't resize the swap chain while the GPU is still busy with it, // but calling WaitForGPUIdle would create a deadlock as PrepareToSubmitCommandBuffer has been // called by SwapImpl. WaitForGPUIdle waits on the semaphore, which PrepareToSubmitCommandBuffer // has already done, so it blocks indefinitely. To work around this, we submit the current // command buffer, resize the swap chain (which calls WaitForGPUIdle), and then finally call // PrepareToSubmitCommandBuffer to return to the state that the caller expects. g_command_buffer_mgr->SubmitCommandBuffer(false); m_swap_chain->ResizeSwapChain(); BeginFrame(); g_command_buffer_mgr->PrepareToSubmitCommandBuffer(); res = m_swap_chain->AcquireNextImage(m_image_available_semaphore); } if (res != VK_SUCCESS) PanicAlert("Failed to grab image from swap chain"); // Transition from undefined (or present src, but it can be substituted) to // color attachment ready for writing. These transitions must occur outside // a render pass, unless the render pass declares a self-dependency. Texture2D* backbuffer = m_swap_chain->GetCurrentTexture(); backbuffer->OverrideImageLayout(VK_IMAGE_LAYOUT_UNDEFINED); backbuffer->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(), VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL); m_current_framebuffer = nullptr; m_current_framebuffer_width = backbuffer->GetWidth(); m_current_framebuffer_height = backbuffer->GetHeight(); // Draw to the backbuffer. VkRect2D region = {{0, 0}, {backbuffer->GetWidth(), backbuffer->GetHeight()}}; StateTracker::GetInstance()->SetRenderPass(m_swap_chain_render_pass, m_swap_chain_clear_render_pass); StateTracker::GetInstance()->SetFramebuffer(m_swap_chain->GetCurrentFramebuffer(), region); // Begin render pass for rendering to the swap chain. VkClearValue clear_value = {{{0.0f, 0.0f, 0.0f, 1.0f}}}; StateTracker::GetInstance()->BeginClearRenderPass(region, &clear_value, 1); } void Renderer::PresentBackbuffer() { // End drawing to backbuffer StateTracker::GetInstance()->EndRenderPass(); StateTracker::GetInstance()->OnEndFrame(); // Transition the backbuffer to PRESENT_SRC to ensure all commands drawing // to it have finished before present. Texture2D* backbuffer = m_swap_chain->GetCurrentTexture(); backbuffer->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(), VK_IMAGE_LAYOUT_PRESENT_SRC_KHR); // Submit the current command buffer, signaling rendering finished semaphore when it's done // Because this final command buffer is rendering to the swap chain, we need to wait for // the available semaphore to be signaled before executing the buffer. This final submission // can happen off-thread in the background while we're preparing the next frame. g_command_buffer_mgr->SubmitCommandBuffer( true, m_image_available_semaphore, m_rendering_finished_semaphore, m_swap_chain->GetSwapChain(), m_swap_chain->GetCurrentImageIndex()); BeginFrame(); } void Renderer::RenderXFBToScreen(const AbstractTexture* texture, const EFBRectangle& rc) { const TargetRectangle target_rc = GetTargetRectangle(); VulkanPostProcessing* post_processor = static_cast(m_post_processor.get()); if (g_ActiveConfig.stereo_mode == StereoMode::SBS || g_ActiveConfig.stereo_mode == StereoMode::TAB) { TargetRectangle left_rect; TargetRectangle right_rect; std::tie(left_rect, right_rect) = ConvertStereoRectangle(target_rc); post_processor->BlitFromTexture(left_rect, rc, static_cast(texture)->GetRawTexIdentifier(), 0, m_swap_chain_render_pass); post_processor->BlitFromTexture(right_rect, rc, static_cast(texture)->GetRawTexIdentifier(), 1, m_swap_chain_render_pass); } else if (g_ActiveConfig.stereo_mode == StereoMode::QuadBuffer) { post_processor->BlitFromTexture(target_rc, rc, static_cast(texture)->GetRawTexIdentifier(), -1, m_swap_chain_render_pass); } else { post_processor->BlitFromTexture(target_rc, rc, static_cast(texture)->GetRawTexIdentifier(), 0, m_swap_chain_render_pass); } // The post-processor uses the old-style Vulkan draws, which mess with the tracked state. StateTracker::GetInstance()->SetPendingRebind(); } void Renderer::CheckForSurfaceChange() { if (!m_surface_changed.TestAndClear() || !m_swap_chain) return; // Submit the current draws up until rendering the XFB. g_command_buffer_mgr->ExecuteCommandBuffer(false, false); g_command_buffer_mgr->WaitForGPUIdle(); // Clear the present failed flag, since we don't want to resize after recreating. g_command_buffer_mgr->CheckLastPresentFail(); // Recreate the surface. If this fails we're in trouble. if (!m_swap_chain->RecreateSurface(m_new_surface_handle)) PanicAlert("Failed to recreate Vulkan surface. Cannot continue."); m_new_surface_handle = nullptr; // Handle case where the dimensions are now different. OnSwapChainResized(); } void Renderer::CheckForSurfaceResize() { if (!m_surface_resized.TestAndClear()) return; // If we don't have a surface, how can we resize the swap chain? // CheckForSurfaceChange should handle this case. if (!m_swap_chain) { WARN_LOG(VIDEO, "Surface resize event received without active surface, ignoring"); return; } // Wait for the GPU to catch up since we're going to destroy the swap chain. g_command_buffer_mgr->ExecuteCommandBuffer(false, false); g_command_buffer_mgr->WaitForGPUIdle(); // Clear the present failed flag, since we don't want to resize after recreating. g_command_buffer_mgr->CheckLastPresentFail(); // Resize the swap chain. m_swap_chain->RecreateSwapChain(); OnSwapChainResized(); } void Renderer::OnConfigChanged(u32 bits) { // Update texture cache settings with any changed options. TextureCache::GetInstance()->OnConfigChanged(g_ActiveConfig); // Handle settings that can cause the EFB framebuffer to change. if (bits & CONFIG_CHANGE_BIT_TARGET_SIZE) RecreateEFBFramebuffer(); // MSAA samples changed, we need to recreate the EFB render pass. // If the stereoscopy mode changed, we need to recreate the buffers as well. // SSAA changed on/off, we have to recompile shaders. // Changing stereoscopy from off<->on also requires shaders to be recompiled. if (bits & (CONFIG_CHANGE_BIT_HOST_CONFIG | CONFIG_CHANGE_BIT_MULTISAMPLES)) { RecreateEFBFramebuffer(); RecompileShaders(); FramebufferManager::GetInstance()->RecompileShaders(); g_shader_cache->ReloadPipelineCache(); g_shader_cache->RecompileSharedShaders(); } // For vsync, we need to change the present mode, which means recreating the swap chain. if (m_swap_chain && bits & CONFIG_CHANGE_BIT_VSYNC) { g_command_buffer_mgr->WaitForGPUIdle(); m_swap_chain->SetVSync(g_ActiveConfig.IsVSync()); } // For quad-buffered stereo we need to change the layer count, so recreate the swap chain. if (m_swap_chain && bits & CONFIG_CHANGE_BIT_STEREO_MODE) { g_command_buffer_mgr->WaitForGPUIdle(); m_swap_chain->RecreateSwapChain(); } // Wipe sampler cache if force texture filtering or anisotropy changes. if (bits & (CONFIG_CHANGE_BIT_ANISOTROPY | CONFIG_CHANGE_BIT_FORCE_TEXTURE_FILTERING)) ResetSamplerStates(); // Check for a changed post-processing shader and recompile if needed. static_cast(m_post_processor.get())->UpdateConfig(); } void Renderer::OnSwapChainResized() { m_backbuffer_width = m_swap_chain->GetWidth(); m_backbuffer_height = m_swap_chain->GetHeight(); } void Renderer::BindEFBToStateTracker() { // Update framebuffer in state tracker VkRect2D framebuffer_size = {{0, 0}, {FramebufferManager::GetInstance()->GetEFBWidth(), FramebufferManager::GetInstance()->GetEFBHeight()}}; StateTracker::GetInstance()->SetRenderPass( FramebufferManager::GetInstance()->GetEFBLoadRenderPass(), FramebufferManager::GetInstance()->GetEFBClearRenderPass()); StateTracker::GetInstance()->SetFramebuffer( FramebufferManager::GetInstance()->GetEFBFramebuffer(), framebuffer_size); m_current_framebuffer = nullptr; m_current_framebuffer_width = FramebufferManager::GetInstance()->GetEFBWidth(); m_current_framebuffer_height = FramebufferManager::GetInstance()->GetEFBHeight(); } void Renderer::RecreateEFBFramebuffer() { // Ensure the GPU is finished with the current EFB textures. g_command_buffer_mgr->WaitForGPUIdle(); FramebufferManager::GetInstance()->RecreateEFBFramebuffer(); BindEFBToStateTracker(); // Viewport and scissor rect have to be reset since they will be scaled differently. BPFunctions::SetViewport(); BPFunctions::SetScissor(); } void Renderer::ApplyState() { } void Renderer::ResetAPIState() { // End the EFB render pass if active StateTracker::GetInstance()->EndRenderPass(); } void Renderer::RestoreAPIState() { StateTracker::GetInstance()->EndRenderPass(); if (m_current_framebuffer) static_cast(m_current_framebuffer)->TransitionForSample(); BindEFBToStateTracker(); BPFunctions::SetViewport(); BPFunctions::SetScissor(); // Instruct the state tracker to re-bind everything before the next draw StateTracker::GetInstance()->SetPendingRebind(); } void Renderer::BindFramebuffer(const VKFramebuffer* fb) { const VkRect2D render_area = {static_cast(fb->GetWidth()), static_cast(fb->GetHeight())}; StateTracker::GetInstance()->EndRenderPass(); if (m_current_framebuffer) static_cast(m_current_framebuffer)->TransitionForSample(); fb->TransitionForRender(); StateTracker::GetInstance()->SetFramebuffer(fb->GetFB(), render_area); StateTracker::GetInstance()->SetRenderPass(fb->GetLoadRenderPass(), fb->GetClearRenderPass()); m_current_framebuffer = fb; m_current_framebuffer_width = fb->GetWidth(); m_current_framebuffer_height = fb->GetHeight(); } void Renderer::SetFramebuffer(const AbstractFramebuffer* framebuffer) { const VKFramebuffer* vkfb = static_cast(framebuffer); BindFramebuffer(vkfb); StateTracker::GetInstance()->BeginRenderPass(); } void Renderer::SetAndDiscardFramebuffer(const AbstractFramebuffer* framebuffer) { const VKFramebuffer* vkfb = static_cast(framebuffer); BindFramebuffer(vkfb); // If we're discarding, begin the discard pass, then switch to a load pass. // This way if the command buffer is flushed, we don't start another discard pass. StateTracker::GetInstance()->SetRenderPass(vkfb->GetDiscardRenderPass(), vkfb->GetClearRenderPass()); StateTracker::GetInstance()->BeginRenderPass(); StateTracker::GetInstance()->SetRenderPass(vkfb->GetLoadRenderPass(), vkfb->GetClearRenderPass()); } void Renderer::SetAndClearFramebuffer(const AbstractFramebuffer* framebuffer, const ClearColor& color_value, float depth_value) { const VKFramebuffer* vkfb = static_cast(framebuffer); BindFramebuffer(vkfb); const VkRect2D render_area = {static_cast(vkfb->GetWidth()), static_cast(vkfb->GetHeight())}; std::array clear_values; u32 num_clear_values = 0; if (vkfb->GetColorFormat() != AbstractTextureFormat::Undefined) { std::memcpy(clear_values[num_clear_values].color.float32, color_value.data(), sizeof(clear_values[num_clear_values].color.float32)); num_clear_values++; } if (vkfb->GetDepthFormat() != AbstractTextureFormat::Undefined) { clear_values[num_clear_values].depthStencil.depth = depth_value; clear_values[num_clear_values].depthStencil.stencil = 0; num_clear_values++; } StateTracker::GetInstance()->BeginClearRenderPass(render_area, clear_values.data(), num_clear_values); } void Renderer::SetTexture(u32 index, const AbstractTexture* texture) { // Texture should always be in SHADER_READ_ONLY layout prior to use. // This is so we don't need to transition during render passes. auto* tex = texture ? static_cast(texture)->GetRawTexIdentifier() : nullptr; DEBUG_ASSERT(!tex || tex->GetLayout() == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL); StateTracker::GetInstance()->SetTexture(index, tex ? tex->GetView() : VK_NULL_HANDLE); } void Renderer::SetSamplerState(u32 index, const SamplerState& state) { // Skip lookup if the state hasn't changed. if (m_sampler_states[index].hex == state.hex) return; // Look up new state and replace in state tracker. VkSampler sampler = g_object_cache->GetSampler(state); if (sampler == VK_NULL_HANDLE) { ERROR_LOG(VIDEO, "Failed to create sampler"); sampler = g_object_cache->GetPointSampler(); } StateTracker::GetInstance()->SetSampler(index, sampler); m_sampler_states[index].hex = state.hex; } void Renderer::UnbindTexture(const AbstractTexture* texture) { StateTracker::GetInstance()->UnbindTexture( static_cast(texture)->GetRawTexIdentifier()->GetView()); } void Renderer::ResetSamplerStates() { // Ensure none of the sampler objects are in use. // This assumes that none of the samplers are in use on the command list currently being recorded. g_command_buffer_mgr->WaitForGPUIdle(); // Invalidate all sampler states, next draw will re-initialize them. for (size_t i = 0; i < m_sampler_states.size(); i++) { m_sampler_states[i].hex = RenderState::GetPointSamplerState().hex; StateTracker::GetInstance()->SetSampler(i, g_object_cache->GetPointSampler()); } // Invalidate all sampler objects (some will be unused now). g_object_cache->ClearSamplerCache(); } void Renderer::SetInterlacingMode() { } void Renderer::SetScissorRect(const MathUtil::Rectangle& rc) { VkRect2D scissor = {{rc.left, rc.top}, {static_cast(rc.GetWidth()), static_cast(rc.GetHeight())}}; StateTracker::GetInstance()->SetScissor(scissor); } void Renderer::SetViewport(float x, float y, float width, float height, float near_depth, float far_depth) { VkViewport viewport = {x, y, std::max(width, 1.0f), std::max(height, 1.0f), near_depth, far_depth}; StateTracker::GetInstance()->SetViewport(viewport); } void Renderer::Draw(u32 base_vertex, u32 num_vertices) { if (StateTracker::GetInstance()->Bind()) return; vkCmdDraw(g_command_buffer_mgr->GetCurrentCommandBuffer(), num_vertices, 1, base_vertex, 0); } void Renderer::DrawIndexed(u32 base_index, u32 num_indices, u32 base_vertex) { if (!StateTracker::GetInstance()->Bind()) return; vkCmdDrawIndexed(g_command_buffer_mgr->GetCurrentCommandBuffer(), num_indices, 1, base_index, base_vertex, 0); } void Renderer::RecompileShaders() { DestroyShaders(); if (!CompileShaders()) PanicAlert("Failed to recompile shaders."); } bool Renderer::CompileShaders() { static const char CLEAR_FRAGMENT_SHADER_SOURCE[] = R"( layout(location = 0) in float3 uv0; layout(location = 1) in float4 col0; layout(location = 0) out float4 ocol0; void main() { ocol0 = col0; } )"; std::string source = g_shader_cache->GetUtilityShaderHeader() + CLEAR_FRAGMENT_SHADER_SOURCE; m_clear_fragment_shader = Util::CompileAndCreateFragmentShader(source); return m_clear_fragment_shader != VK_NULL_HANDLE; } void Renderer::DestroyShaders() { auto DestroyShader = [this](VkShaderModule& shader) { if (shader != VK_NULL_HANDLE) { vkDestroyShaderModule(g_vulkan_context->GetDevice(), shader, nullptr); shader = VK_NULL_HANDLE; } }; DestroyShader(m_clear_fragment_shader); } } // namespace Vulkan