mirror of
https://github.com/dolphin-emu/dolphin.git
synced 2025-01-12 09:09:12 +01:00
05b4d14bf0
Fixes a situation where the following invalid GLSL code is generated: ```glsl float3 texSample0 = texture(samp0, float3(uv0 + float2(0, 0) * sample_offset, 0.0)).rgb; float3 texSample0 = floor(float3 texSample0 * 63.0) / 63.0; float3 texSample1 = texture(samp0, float3(uv0 + float2(1, 0) * sample_offset, 0.0)).rgb; float3 texSample1 = floor(float3 texSample1 * 63.0) / 63.0; ```
1302 lines
42 KiB
C++
1302 lines
42 KiB
C++
// Copyright 2009 Dolphin Emulator Project
|
|
// Licensed under GPLv2+
|
|
// Refer to the license.txt file included.
|
|
|
|
#include <array>
|
|
#include <cmath>
|
|
#include <cstdio>
|
|
#include <map>
|
|
#include <sstream>
|
|
|
|
#include "Common/CommonFuncs.h"
|
|
#include "Common/CommonTypes.h"
|
|
#include "Common/MathUtil.h"
|
|
#include "Common/MsgHandler.h"
|
|
#include "VideoCommon/RenderBase.h"
|
|
#include "VideoCommon/TextureConversionShader.h"
|
|
#include "VideoCommon/VideoCommon.h"
|
|
|
|
#define WRITE p += sprintf
|
|
|
|
static char text[16384];
|
|
static bool IntensityConstantAdded = false;
|
|
|
|
namespace TextureConversionShader
|
|
{
|
|
u16 GetEncodedSampleCount(u32 format)
|
|
{
|
|
switch (format)
|
|
{
|
|
case GX_TF_I4:
|
|
return 8;
|
|
case GX_TF_I8:
|
|
return 4;
|
|
case GX_TF_IA4:
|
|
return 4;
|
|
case GX_TF_IA8:
|
|
return 2;
|
|
case GX_TF_RGB565:
|
|
return 2;
|
|
case GX_TF_RGB5A3:
|
|
return 2;
|
|
case GX_TF_RGBA8:
|
|
return 1;
|
|
case GX_CTF_R4:
|
|
return 8;
|
|
case GX_CTF_RA4:
|
|
return 4;
|
|
case GX_CTF_RA8:
|
|
return 2;
|
|
case GX_CTF_A8:
|
|
return 4;
|
|
case GX_CTF_R8:
|
|
return 4;
|
|
case GX_CTF_G8:
|
|
return 4;
|
|
case GX_CTF_B8:
|
|
return 4;
|
|
case GX_CTF_RG8:
|
|
return 2;
|
|
case GX_CTF_GB8:
|
|
return 2;
|
|
case GX_TF_Z8:
|
|
return 4;
|
|
case GX_TF_Z16:
|
|
return 2;
|
|
case GX_TF_Z24X8:
|
|
return 1;
|
|
case GX_CTF_Z4:
|
|
return 8;
|
|
case GX_CTF_Z8M:
|
|
return 4;
|
|
case GX_CTF_Z8L:
|
|
return 4;
|
|
case GX_CTF_Z16L:
|
|
return 2;
|
|
default:
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
static bool EFBFormatHasAlpha(u32 format)
|
|
{
|
|
return format == PEControl::RGBA6_Z24;
|
|
}
|
|
|
|
// block dimensions : widthStride, heightStride
|
|
// texture dims : width, height, x offset, y offset
|
|
static void WriteSwizzler(char*& p, u32 format, APIType ApiType)
|
|
{
|
|
// left, top, of source rectangle within source texture
|
|
// width of the destination rectangle, scale_factor (1 or 2)
|
|
if (ApiType == APIType::Vulkan)
|
|
WRITE(p, "layout(std140, push_constant) uniform PCBlock { int4 position; } PC;\n");
|
|
else
|
|
WRITE(p, "uniform int4 position;\n");
|
|
|
|
int blkW = TexDecoder_GetBlockWidthInTexels(format);
|
|
int blkH = TexDecoder_GetBlockHeightInTexels(format);
|
|
int samples = GetEncodedSampleCount(format);
|
|
|
|
if (ApiType == APIType::OpenGL)
|
|
{
|
|
WRITE(p, "#define samp0 samp9\n");
|
|
WRITE(p, "SAMPLER_BINDING(9) uniform sampler2DArray samp0;\n");
|
|
|
|
WRITE(p, "FRAGMENT_OUTPUT_LOCATION(0) out vec4 ocol0;\n");
|
|
WRITE(p, "void main()\n");
|
|
WRITE(p, "{\n"
|
|
" int2 sampleUv;\n"
|
|
" int2 uv1 = int2(gl_FragCoord.xy);\n");
|
|
}
|
|
else if (ApiType == APIType::Vulkan)
|
|
{
|
|
WRITE(p, "SAMPLER_BINDING(0) uniform sampler2DArray samp0;\n");
|
|
WRITE(p, "FRAGMENT_OUTPUT_LOCATION(0) out vec4 ocol0;\n");
|
|
|
|
WRITE(p, "void main()\n");
|
|
WRITE(p, "{\n"
|
|
" int2 sampleUv;\n"
|
|
" int2 uv1 = int2(gl_FragCoord.xy);\n"
|
|
" int4 position = PC.position;\n");
|
|
}
|
|
else // D3D
|
|
{
|
|
WRITE(p, "sampler samp0 : register(s0);\n");
|
|
WRITE(p, "Texture2DArray Tex0 : register(t0);\n");
|
|
|
|
WRITE(p, "void main(\n");
|
|
WRITE(p, " out float4 ocol0 : SV_Target, in float4 rawpos : SV_Position)\n");
|
|
WRITE(p, "{\n"
|
|
" int2 sampleUv;\n"
|
|
" int2 uv1 = int2(rawpos.xy);\n");
|
|
}
|
|
|
|
WRITE(p, " int x_block_position = (uv1.x >> %d) << %d;\n", IntLog2(blkH * blkW / samples),
|
|
IntLog2(blkW));
|
|
WRITE(p, " int y_block_position = uv1.y << %d;\n", IntLog2(blkH));
|
|
if (samples == 1)
|
|
{
|
|
// With samples == 1, we write out pairs of blocks; one A8R8, one G8B8.
|
|
WRITE(p, " bool first = (uv1.x & %d) == 0;\n", blkH * blkW / 2);
|
|
samples = 2;
|
|
}
|
|
WRITE(p, " int offset_in_block = uv1.x & %d;\n", (blkH * blkW / samples) - 1);
|
|
WRITE(p, " int y_offset_in_block = offset_in_block >> %d;\n", IntLog2(blkW / samples));
|
|
WRITE(p, " int x_offset_in_block = (offset_in_block & %d) << %d;\n", (blkW / samples) - 1,
|
|
IntLog2(samples));
|
|
|
|
WRITE(p, " sampleUv.x = x_block_position + x_offset_in_block;\n");
|
|
WRITE(p, " sampleUv.y = y_block_position + y_offset_in_block;\n");
|
|
|
|
WRITE(p,
|
|
" float2 uv0 = float2(sampleUv);\n"); // sampleUv is the sample position in (int)gx_coords
|
|
WRITE(p, " uv0 += float2(0.5, 0.5);\n"); // move to center of pixel
|
|
WRITE(p, " uv0 *= float(position.w);\n"); // scale by two if needed (also move to pixel borders
|
|
// so that linear filtering will average adjacent
|
|
// pixel)
|
|
WRITE(p, " uv0 += float2(position.xy);\n"); // move to copied rect
|
|
WRITE(p, " uv0 /= float2(%d, %d);\n", EFB_WIDTH, EFB_HEIGHT); // normalize to [0:1]
|
|
if (ApiType == APIType::OpenGL) // ogl has to flip up and down
|
|
{
|
|
WRITE(p, " uv0.y = 1.0-uv0.y;\n");
|
|
}
|
|
|
|
WRITE(p, " float sample_offset = float(position.w) / float(%d);\n", EFB_WIDTH);
|
|
}
|
|
|
|
static void WriteSampleColor(char*& p, const char* colorComp, const char* dest, int xoffset,
|
|
APIType ApiType, const EFBCopyFormat& format, bool depth)
|
|
{
|
|
if (ApiType == APIType::OpenGL || ApiType == APIType::Vulkan)
|
|
{
|
|
WRITE(p, " %s = texture(samp0, float3(uv0 + float2(%d, 0) * sample_offset, 0.0)).%s;\n", dest,
|
|
xoffset, colorComp);
|
|
}
|
|
else
|
|
{
|
|
WRITE(p, " %s = Tex0.Sample(samp0, float3(uv0 + float2(%d, 0) * sample_offset, 0.0)).%s;\n",
|
|
dest, xoffset, colorComp);
|
|
}
|
|
|
|
if (ApiType == APIType::D3D || ApiType == APIType::Vulkan)
|
|
{
|
|
// Handle D3D depth inversion.
|
|
if (depth)
|
|
WRITE(p, " %s = 1.0 - %s;\n", dest, dest);
|
|
}
|
|
|
|
// Truncate 8-bits to 5/6-bits per channel.
|
|
switch (format.efb_format)
|
|
{
|
|
case PEControl::RGBA6_Z24:
|
|
WRITE(p, " %s = floor(%s * 63.0) / 63.0;\n", dest, dest);
|
|
break;
|
|
|
|
case PEControl::RGB565_Z16:
|
|
WRITE(
|
|
p,
|
|
" %s = floor(%s * float4(31.0, 63.0, 31.0, 1.0).%s) / float4(31.0, 63.0, 31.0, 1.0).%s;\n",
|
|
dest, dest, colorComp, colorComp);
|
|
break;
|
|
}
|
|
|
|
// Alpha channel is set to 1 in the copy if the EFB does not have an alpha channel.
|
|
if (std::strchr(colorComp, 'a') && !EFBFormatHasAlpha(format.efb_format))
|
|
WRITE(p, " %s.a = 1.0;\n", dest);
|
|
}
|
|
|
|
static void WriteColorToIntensity(char*& p, const char* src, const char* dest)
|
|
{
|
|
if (!IntensityConstantAdded)
|
|
{
|
|
WRITE(p, " float4 IntensityConst = float4(0.257f,0.504f,0.098f,0.0625f);\n");
|
|
IntensityConstantAdded = true;
|
|
}
|
|
WRITE(p, " %s = dot(IntensityConst.rgb, %s.rgb);\n", dest, src);
|
|
// don't add IntensityConst.a yet, because doing it later is faster and uses less instructions,
|
|
// due to vectorization
|
|
}
|
|
|
|
static void WriteToBitDepth(char*& p, u8 depth, const char* src, const char* dest)
|
|
{
|
|
WRITE(p, " %s = floor(%s * 255.0 / exp2(8.0 - %d.0));\n", dest, src, depth);
|
|
}
|
|
|
|
static void WriteEncoderEnd(char*& p)
|
|
{
|
|
WRITE(p, "}\n");
|
|
IntensityConstantAdded = false;
|
|
}
|
|
|
|
static void WriteI8Encoder(char*& p, APIType ApiType, const EFBCopyFormat& format)
|
|
{
|
|
WriteSwizzler(p, GX_TF_I8, ApiType);
|
|
WRITE(p, " float3 texSample;\n");
|
|
|
|
WriteSampleColor(p, "rgb", "texSample", 0, ApiType, format, false);
|
|
WriteColorToIntensity(p, "texSample", "ocol0.b");
|
|
|
|
WriteSampleColor(p, "rgb", "texSample", 1, ApiType, format, false);
|
|
WriteColorToIntensity(p, "texSample", "ocol0.g");
|
|
|
|
WriteSampleColor(p, "rgb", "texSample", 2, ApiType, format, false);
|
|
WriteColorToIntensity(p, "texSample", "ocol0.r");
|
|
|
|
WriteSampleColor(p, "rgb", "texSample", 3, ApiType, format, false);
|
|
WriteColorToIntensity(p, "texSample", "ocol0.a");
|
|
|
|
WRITE(p, " ocol0.rgba += IntensityConst.aaaa;\n"); // see WriteColorToIntensity
|
|
|
|
WriteEncoderEnd(p);
|
|
}
|
|
|
|
static void WriteI4Encoder(char*& p, APIType ApiType, const EFBCopyFormat& format)
|
|
{
|
|
WriteSwizzler(p, GX_TF_I4, ApiType);
|
|
WRITE(p, " float3 texSample;\n");
|
|
WRITE(p, " float4 color0;\n");
|
|
WRITE(p, " float4 color1;\n");
|
|
|
|
WriteSampleColor(p, "rgb", "texSample", 0, ApiType, format, false);
|
|
WriteColorToIntensity(p, "texSample", "color0.b");
|
|
|
|
WriteSampleColor(p, "rgb", "texSample", 1, ApiType, format, false);
|
|
WriteColorToIntensity(p, "texSample", "color1.b");
|
|
|
|
WriteSampleColor(p, "rgb", "texSample", 2, ApiType, format, false);
|
|
WriteColorToIntensity(p, "texSample", "color0.g");
|
|
|
|
WriteSampleColor(p, "rgb", "texSample", 3, ApiType, format, false);
|
|
WriteColorToIntensity(p, "texSample", "color1.g");
|
|
|
|
WriteSampleColor(p, "rgb", "texSample", 4, ApiType, format, false);
|
|
WriteColorToIntensity(p, "texSample", "color0.r");
|
|
|
|
WriteSampleColor(p, "rgb", "texSample", 5, ApiType, format, false);
|
|
WriteColorToIntensity(p, "texSample", "color1.r");
|
|
|
|
WriteSampleColor(p, "rgb", "texSample", 6, ApiType, format, false);
|
|
WriteColorToIntensity(p, "texSample", "color0.a");
|
|
|
|
WriteSampleColor(p, "rgb", "texSample", 7, ApiType, format, false);
|
|
WriteColorToIntensity(p, "texSample", "color1.a");
|
|
|
|
WRITE(p, " color0.rgba += IntensityConst.aaaa;\n");
|
|
WRITE(p, " color1.rgba += IntensityConst.aaaa;\n");
|
|
|
|
WriteToBitDepth(p, 4, "color0", "color0");
|
|
WriteToBitDepth(p, 4, "color1", "color1");
|
|
|
|
WRITE(p, " ocol0 = (color0 * 16.0 + color1) / 255.0;\n");
|
|
WriteEncoderEnd(p);
|
|
}
|
|
|
|
static void WriteIA8Encoder(char*& p, APIType ApiType, const EFBCopyFormat& format)
|
|
{
|
|
WriteSwizzler(p, GX_TF_IA8, ApiType);
|
|
WRITE(p, " float4 texSample;\n");
|
|
|
|
WriteSampleColor(p, "rgba", "texSample", 0, ApiType, format, false);
|
|
WRITE(p, " ocol0.b = texSample.a;\n");
|
|
WriteColorToIntensity(p, "texSample", "ocol0.g");
|
|
|
|
WriteSampleColor(p, "rgba", "texSample", 1, ApiType, format, false);
|
|
WRITE(p, " ocol0.r = texSample.a;\n");
|
|
WriteColorToIntensity(p, "texSample", "ocol0.a");
|
|
|
|
WRITE(p, " ocol0.ga += IntensityConst.aa;\n");
|
|
|
|
WriteEncoderEnd(p);
|
|
}
|
|
|
|
static void WriteIA4Encoder(char*& p, APIType ApiType, const EFBCopyFormat& format)
|
|
{
|
|
WriteSwizzler(p, GX_TF_IA4, ApiType);
|
|
WRITE(p, " float4 texSample;\n");
|
|
WRITE(p, " float4 color0;\n");
|
|
WRITE(p, " float4 color1;\n");
|
|
|
|
WriteSampleColor(p, "rgba", "texSample", 0, ApiType, format, false);
|
|
WRITE(p, " color0.b = texSample.a;\n");
|
|
WriteColorToIntensity(p, "texSample", "color1.b");
|
|
|
|
WriteSampleColor(p, "rgba", "texSample", 1, ApiType, format, false);
|
|
WRITE(p, " color0.g = texSample.a;\n");
|
|
WriteColorToIntensity(p, "texSample", "color1.g");
|
|
|
|
WriteSampleColor(p, "rgba", "texSample", 2, ApiType, format, false);
|
|
WRITE(p, " color0.r = texSample.a;\n");
|
|
WriteColorToIntensity(p, "texSample", "color1.r");
|
|
|
|
WriteSampleColor(p, "rgba", "texSample", 3, ApiType, format, false);
|
|
WRITE(p, " color0.a = texSample.a;\n");
|
|
WriteColorToIntensity(p, "texSample", "color1.a");
|
|
|
|
WRITE(p, " color1.rgba += IntensityConst.aaaa;\n");
|
|
|
|
WriteToBitDepth(p, 4, "color0", "color0");
|
|
WriteToBitDepth(p, 4, "color1", "color1");
|
|
|
|
WRITE(p, " ocol0 = (color0 * 16.0 + color1) / 255.0;\n");
|
|
WriteEncoderEnd(p);
|
|
}
|
|
|
|
static void WriteRGB565Encoder(char*& p, APIType ApiType, const EFBCopyFormat& format)
|
|
{
|
|
WriteSwizzler(p, GX_TF_RGB565, ApiType);
|
|
WRITE(p, " float3 texSample0;\n");
|
|
WRITE(p, " float3 texSample1;\n");
|
|
|
|
WriteSampleColor(p, "rgb", "texSample0", 0, ApiType, format, false);
|
|
WriteSampleColor(p, "rgb", "texSample1", 1, ApiType, format, false);
|
|
WRITE(p, " float2 texRs = float2(texSample0.r, texSample1.r);\n");
|
|
WRITE(p, " float2 texGs = float2(texSample0.g, texSample1.g);\n");
|
|
WRITE(p, " float2 texBs = float2(texSample0.b, texSample1.b);\n");
|
|
|
|
WriteToBitDepth(p, 6, "texGs", "float2 gInt");
|
|
WRITE(p, " float2 gUpper = floor(gInt / 8.0);\n");
|
|
WRITE(p, " float2 gLower = gInt - gUpper * 8.0;\n");
|
|
|
|
WriteToBitDepth(p, 5, "texRs", "ocol0.br");
|
|
WRITE(p, " ocol0.br = ocol0.br * 8.0 + gUpper;\n");
|
|
WriteToBitDepth(p, 5, "texBs", "ocol0.ga");
|
|
WRITE(p, " ocol0.ga = ocol0.ga + gLower * 32.0;\n");
|
|
|
|
WRITE(p, " ocol0 = ocol0 / 255.0;\n");
|
|
WriteEncoderEnd(p);
|
|
}
|
|
|
|
static void WriteRGB5A3Encoder(char*& p, APIType ApiType, const EFBCopyFormat& format)
|
|
{
|
|
WriteSwizzler(p, GX_TF_RGB5A3, ApiType);
|
|
|
|
WRITE(p, " float4 texSample;\n");
|
|
WRITE(p, " float color0;\n");
|
|
WRITE(p, " float gUpper;\n");
|
|
WRITE(p, " float gLower;\n");
|
|
|
|
WriteSampleColor(p, "rgba", "texSample", 0, ApiType, format, false);
|
|
|
|
// 0.8784 = 224 / 255 which is the maximum alpha value that can be represented in 3 bits
|
|
WRITE(p, "if(texSample.a > 0.878f) {\n");
|
|
|
|
WriteToBitDepth(p, 5, "texSample.g", "color0");
|
|
WRITE(p, " gUpper = floor(color0 / 8.0);\n");
|
|
WRITE(p, " gLower = color0 - gUpper * 8.0;\n");
|
|
|
|
WriteToBitDepth(p, 5, "texSample.r", "ocol0.b");
|
|
WRITE(p, " ocol0.b = ocol0.b * 4.0 + gUpper + 128.0;\n");
|
|
WriteToBitDepth(p, 5, "texSample.b", "ocol0.g");
|
|
WRITE(p, " ocol0.g = ocol0.g + gLower * 32.0;\n");
|
|
|
|
WRITE(p, "} else {\n");
|
|
|
|
WriteToBitDepth(p, 4, "texSample.r", "ocol0.b");
|
|
WriteToBitDepth(p, 4, "texSample.b", "ocol0.g");
|
|
|
|
WriteToBitDepth(p, 3, "texSample.a", "color0");
|
|
WRITE(p, "ocol0.b = ocol0.b + color0 * 16.0;\n");
|
|
WriteToBitDepth(p, 4, "texSample.g", "color0");
|
|
WRITE(p, "ocol0.g = ocol0.g + color0 * 16.0;\n");
|
|
|
|
WRITE(p, "}\n");
|
|
|
|
WriteSampleColor(p, "rgba", "texSample", 1, ApiType, format, false);
|
|
WRITE(p, " texSample.a = 1.0;\n");
|
|
|
|
WRITE(p, "if(texSample.a > 0.878f) {\n");
|
|
|
|
WriteToBitDepth(p, 5, "texSample.g", "color0");
|
|
WRITE(p, " gUpper = floor(color0 / 8.0);\n");
|
|
WRITE(p, " gLower = color0 - gUpper * 8.0;\n");
|
|
|
|
WriteToBitDepth(p, 5, "texSample.r", "ocol0.r");
|
|
WRITE(p, " ocol0.r = ocol0.r * 4.0 + gUpper + 128.0;\n");
|
|
WriteToBitDepth(p, 5, "texSample.b", "ocol0.a");
|
|
WRITE(p, " ocol0.a = ocol0.a + gLower * 32.0;\n");
|
|
|
|
WRITE(p, "} else {\n");
|
|
|
|
WriteToBitDepth(p, 4, "texSample.r", "ocol0.r");
|
|
WriteToBitDepth(p, 4, "texSample.b", "ocol0.a");
|
|
|
|
WriteToBitDepth(p, 3, "texSample.a", "color0");
|
|
WRITE(p, "ocol0.r = ocol0.r + color0 * 16.0;\n");
|
|
WriteToBitDepth(p, 4, "texSample.g", "color0");
|
|
WRITE(p, "ocol0.a = ocol0.a + color0 * 16.0;\n");
|
|
|
|
WRITE(p, "}\n");
|
|
|
|
WRITE(p, " ocol0 = ocol0 / 255.0;\n");
|
|
WriteEncoderEnd(p);
|
|
}
|
|
|
|
static void WriteRGBA8Encoder(char*& p, APIType ApiType, const EFBCopyFormat& format)
|
|
{
|
|
WriteSwizzler(p, GX_TF_RGBA8, ApiType);
|
|
|
|
WRITE(p, " float4 texSample;\n");
|
|
WRITE(p, " float4 color0;\n");
|
|
WRITE(p, " float4 color1;\n");
|
|
|
|
WriteSampleColor(p, "rgba", "texSample", 0, ApiType, format, false);
|
|
WRITE(p, " color0.b = texSample.a;\n");
|
|
WRITE(p, " color0.g = texSample.r;\n");
|
|
WRITE(p, " color1.b = texSample.g;\n");
|
|
WRITE(p, " color1.g = texSample.b;\n");
|
|
|
|
WriteSampleColor(p, "rgba", "texSample", 1, ApiType, format, false);
|
|
WRITE(p, " color0.r = texSample.a;\n");
|
|
WRITE(p, " color0.a = texSample.r;\n");
|
|
WRITE(p, " color1.r = texSample.g;\n");
|
|
WRITE(p, " color1.a = texSample.b;\n");
|
|
|
|
WRITE(p, " ocol0 = first ? color0 : color1;\n");
|
|
|
|
WriteEncoderEnd(p);
|
|
}
|
|
|
|
static void WriteC4Encoder(char*& p, const char* comp, APIType ApiType, const EFBCopyFormat& format,
|
|
bool depth)
|
|
{
|
|
WriteSwizzler(p, GX_CTF_R4, ApiType);
|
|
WRITE(p, " float4 color0;\n");
|
|
WRITE(p, " float4 color1;\n");
|
|
|
|
WriteSampleColor(p, comp, "color0.b", 0, ApiType, format, depth);
|
|
WriteSampleColor(p, comp, "color1.b", 1, ApiType, format, depth);
|
|
WriteSampleColor(p, comp, "color0.g", 2, ApiType, format, depth);
|
|
WriteSampleColor(p, comp, "color1.g", 3, ApiType, format, depth);
|
|
WriteSampleColor(p, comp, "color0.r", 4, ApiType, format, depth);
|
|
WriteSampleColor(p, comp, "color1.r", 5, ApiType, format, depth);
|
|
WriteSampleColor(p, comp, "color0.a", 6, ApiType, format, depth);
|
|
WriteSampleColor(p, comp, "color1.a", 7, ApiType, format, depth);
|
|
|
|
WriteToBitDepth(p, 4, "color0", "color0");
|
|
WriteToBitDepth(p, 4, "color1", "color1");
|
|
|
|
WRITE(p, " ocol0 = (color0 * 16.0 + color1) / 255.0;\n");
|
|
WriteEncoderEnd(p);
|
|
}
|
|
|
|
static void WriteC8Encoder(char*& p, const char* comp, APIType ApiType, const EFBCopyFormat& format,
|
|
bool depth)
|
|
{
|
|
WriteSwizzler(p, GX_CTF_R8, ApiType);
|
|
|
|
WriteSampleColor(p, comp, "ocol0.b", 0, ApiType, format, depth);
|
|
WriteSampleColor(p, comp, "ocol0.g", 1, ApiType, format, depth);
|
|
WriteSampleColor(p, comp, "ocol0.r", 2, ApiType, format, depth);
|
|
WriteSampleColor(p, comp, "ocol0.a", 3, ApiType, format, depth);
|
|
|
|
WriteEncoderEnd(p);
|
|
}
|
|
|
|
static void WriteCC4Encoder(char*& p, const char* comp, APIType ApiType,
|
|
const EFBCopyFormat& format)
|
|
{
|
|
WriteSwizzler(p, GX_CTF_RA4, ApiType);
|
|
WRITE(p, " float2 texSample;\n");
|
|
WRITE(p, " float4 color0;\n");
|
|
WRITE(p, " float4 color1;\n");
|
|
|
|
WriteSampleColor(p, comp, "texSample", 0, ApiType, format, false);
|
|
WRITE(p, " color0.b = texSample.x;\n");
|
|
WRITE(p, " color1.b = texSample.y;\n");
|
|
|
|
WriteSampleColor(p, comp, "texSample", 1, ApiType, format, false);
|
|
WRITE(p, " color0.g = texSample.x;\n");
|
|
WRITE(p, " color1.g = texSample.y;\n");
|
|
|
|
WriteSampleColor(p, comp, "texSample", 2, ApiType, format, false);
|
|
WRITE(p, " color0.r = texSample.x;\n");
|
|
WRITE(p, " color1.r = texSample.y;\n");
|
|
|
|
WriteSampleColor(p, comp, "texSample", 3, ApiType, format, false);
|
|
WRITE(p, " color0.a = texSample.x;\n");
|
|
WRITE(p, " color1.a = texSample.y;\n");
|
|
|
|
WriteToBitDepth(p, 4, "color0", "color0");
|
|
WriteToBitDepth(p, 4, "color1", "color1");
|
|
|
|
WRITE(p, " ocol0 = (color0 * 16.0 + color1) / 255.0;\n");
|
|
WriteEncoderEnd(p);
|
|
}
|
|
|
|
static void WriteCC8Encoder(char*& p, const char* comp, APIType ApiType,
|
|
const EFBCopyFormat& format)
|
|
{
|
|
WriteSwizzler(p, GX_CTF_RA8, ApiType);
|
|
|
|
WriteSampleColor(p, comp, "ocol0.bg", 0, ApiType, format, false);
|
|
WriteSampleColor(p, comp, "ocol0.ra", 1, ApiType, format, false);
|
|
|
|
WriteEncoderEnd(p);
|
|
}
|
|
|
|
static void WriteZ8Encoder(char*& p, const char* multiplier, APIType ApiType,
|
|
const EFBCopyFormat& format)
|
|
{
|
|
WriteSwizzler(p, GX_CTF_Z8M, ApiType);
|
|
|
|
WRITE(p, " float depth;\n");
|
|
|
|
WriteSampleColor(p, "r", "depth", 0, ApiType, format, true);
|
|
WRITE(p, "ocol0.b = frac(depth * %s);\n", multiplier);
|
|
|
|
WriteSampleColor(p, "r", "depth", 1, ApiType, format, true);
|
|
WRITE(p, "ocol0.g = frac(depth * %s);\n", multiplier);
|
|
|
|
WriteSampleColor(p, "r", "depth", 2, ApiType, format, true);
|
|
WRITE(p, "ocol0.r = frac(depth * %s);\n", multiplier);
|
|
|
|
WriteSampleColor(p, "r", "depth", 3, ApiType, format, true);
|
|
WRITE(p, "ocol0.a = frac(depth * %s);\n", multiplier);
|
|
|
|
WriteEncoderEnd(p);
|
|
}
|
|
|
|
static void WriteZ16Encoder(char*& p, APIType ApiType, const EFBCopyFormat& format)
|
|
{
|
|
WriteSwizzler(p, GX_TF_Z16, ApiType);
|
|
|
|
WRITE(p, " float depth;\n");
|
|
WRITE(p, " float3 expanded;\n");
|
|
|
|
// byte order is reversed
|
|
|
|
WriteSampleColor(p, "r", "depth", 0, ApiType, format, true);
|
|
|
|
WRITE(p, " depth *= 16777216.0;\n");
|
|
WRITE(p, " expanded.r = floor(depth / (256.0 * 256.0));\n");
|
|
WRITE(p, " depth -= expanded.r * 256.0 * 256.0;\n");
|
|
WRITE(p, " expanded.g = floor(depth / 256.0);\n");
|
|
|
|
WRITE(p, " ocol0.b = expanded.g / 255.0;\n");
|
|
WRITE(p, " ocol0.g = expanded.r / 255.0;\n");
|
|
|
|
WriteSampleColor(p, "r", "depth", 1, ApiType, format, true);
|
|
|
|
WRITE(p, " depth *= 16777216.0;\n");
|
|
WRITE(p, " expanded.r = floor(depth / (256.0 * 256.0));\n");
|
|
WRITE(p, " depth -= expanded.r * 256.0 * 256.0;\n");
|
|
WRITE(p, " expanded.g = floor(depth / 256.0);\n");
|
|
|
|
WRITE(p, " ocol0.r = expanded.g / 255.0;\n");
|
|
WRITE(p, " ocol0.a = expanded.r / 255.0;\n");
|
|
|
|
WriteEncoderEnd(p);
|
|
}
|
|
|
|
static void WriteZ16LEncoder(char*& p, APIType ApiType, const EFBCopyFormat& format)
|
|
{
|
|
WriteSwizzler(p, GX_CTF_Z16L, ApiType);
|
|
|
|
WRITE(p, " float depth;\n");
|
|
WRITE(p, " float3 expanded;\n");
|
|
|
|
// byte order is reversed
|
|
|
|
WriteSampleColor(p, "r", "depth", 0, ApiType, format, true);
|
|
|
|
WRITE(p, " depth *= 16777216.0;\n");
|
|
WRITE(p, " expanded.r = floor(depth / (256.0 * 256.0));\n");
|
|
WRITE(p, " depth -= expanded.r * 256.0 * 256.0;\n");
|
|
WRITE(p, " expanded.g = floor(depth / 256.0);\n");
|
|
WRITE(p, " depth -= expanded.g * 256.0;\n");
|
|
WRITE(p, " expanded.b = depth;\n");
|
|
|
|
WRITE(p, " ocol0.b = expanded.b / 255.0;\n");
|
|
WRITE(p, " ocol0.g = expanded.g / 255.0;\n");
|
|
|
|
WriteSampleColor(p, "r", "depth", 1, ApiType, format, true);
|
|
|
|
WRITE(p, " depth *= 16777216.0;\n");
|
|
WRITE(p, " expanded.r = floor(depth / (256.0 * 256.0));\n");
|
|
WRITE(p, " depth -= expanded.r * 256.0 * 256.0;\n");
|
|
WRITE(p, " expanded.g = floor(depth / 256.0);\n");
|
|
WRITE(p, " depth -= expanded.g * 256.0;\n");
|
|
WRITE(p, " expanded.b = depth;\n");
|
|
|
|
WRITE(p, " ocol0.r = expanded.b / 255.0;\n");
|
|
WRITE(p, " ocol0.a = expanded.g / 255.0;\n");
|
|
|
|
WriteEncoderEnd(p);
|
|
}
|
|
|
|
static void WriteZ24Encoder(char*& p, APIType ApiType, const EFBCopyFormat& format)
|
|
{
|
|
WriteSwizzler(p, GX_TF_Z24X8, ApiType);
|
|
|
|
WRITE(p, " float depth0;\n");
|
|
WRITE(p, " float depth1;\n");
|
|
WRITE(p, " float3 expanded0;\n");
|
|
WRITE(p, " float3 expanded1;\n");
|
|
|
|
WriteSampleColor(p, "r", "depth0", 0, ApiType, format, true);
|
|
WriteSampleColor(p, "r", "depth1", 1, ApiType, format, true);
|
|
|
|
for (int i = 0; i < 2; i++)
|
|
{
|
|
WRITE(p, " depth%i *= 16777216.0;\n", i);
|
|
|
|
WRITE(p, " expanded%i.r = floor(depth%i / (256.0 * 256.0));\n", i, i);
|
|
WRITE(p, " depth%i -= expanded%i.r * 256.0 * 256.0;\n", i, i);
|
|
WRITE(p, " expanded%i.g = floor(depth%i / 256.0);\n", i, i);
|
|
WRITE(p, " depth%i -= expanded%i.g * 256.0;\n", i, i);
|
|
WRITE(p, " expanded%i.b = depth%i;\n", i, i);
|
|
}
|
|
|
|
WRITE(p, " if (!first) {\n");
|
|
// upper 16
|
|
WRITE(p, " ocol0.b = expanded0.g / 255.0;\n");
|
|
WRITE(p, " ocol0.g = expanded0.b / 255.0;\n");
|
|
WRITE(p, " ocol0.r = expanded1.g / 255.0;\n");
|
|
WRITE(p, " ocol0.a = expanded1.b / 255.0;\n");
|
|
WRITE(p, " } else {\n");
|
|
// lower 8
|
|
WRITE(p, " ocol0.b = 1.0;\n");
|
|
WRITE(p, " ocol0.g = expanded0.r / 255.0;\n");
|
|
WRITE(p, " ocol0.r = 1.0;\n");
|
|
WRITE(p, " ocol0.a = expanded1.r / 255.0;\n");
|
|
WRITE(p, " }\n");
|
|
|
|
WriteEncoderEnd(p);
|
|
}
|
|
|
|
const char* GenerateEncodingShader(const EFBCopyFormat& format, APIType api_type)
|
|
{
|
|
text[sizeof(text) - 1] = 0x7C; // canary
|
|
|
|
char* p = text;
|
|
|
|
switch (format.copy_format)
|
|
{
|
|
case GX_TF_I4:
|
|
WriteI4Encoder(p, api_type, format);
|
|
break;
|
|
case GX_TF_I8:
|
|
WriteI8Encoder(p, api_type, format);
|
|
break;
|
|
case GX_TF_IA4:
|
|
WriteIA4Encoder(p, api_type, format);
|
|
break;
|
|
case GX_TF_IA8:
|
|
WriteIA8Encoder(p, api_type, format);
|
|
break;
|
|
case GX_TF_RGB565:
|
|
WriteRGB565Encoder(p, api_type, format);
|
|
break;
|
|
case GX_TF_RGB5A3:
|
|
WriteRGB5A3Encoder(p, api_type, format);
|
|
break;
|
|
case GX_TF_RGBA8:
|
|
WriteRGBA8Encoder(p, api_type, format);
|
|
break;
|
|
case GX_CTF_R4:
|
|
WriteC4Encoder(p, "r", api_type, format, false);
|
|
break;
|
|
case GX_CTF_RA4:
|
|
WriteCC4Encoder(p, "ar", api_type, format);
|
|
break;
|
|
case GX_CTF_RA8:
|
|
WriteCC8Encoder(p, "ar", api_type, format);
|
|
break;
|
|
case GX_CTF_A8:
|
|
WriteC8Encoder(p, "a", api_type, format, false);
|
|
break;
|
|
case GX_CTF_R8:
|
|
WriteC8Encoder(p, "r", api_type, format, false);
|
|
break;
|
|
case GX_CTF_G8:
|
|
WriteC8Encoder(p, "g", api_type, format, false);
|
|
break;
|
|
case GX_CTF_B8:
|
|
WriteC8Encoder(p, "b", api_type, format, false);
|
|
break;
|
|
case GX_CTF_RG8:
|
|
WriteCC8Encoder(p, "rg", api_type, format);
|
|
break;
|
|
case GX_CTF_GB8:
|
|
WriteCC8Encoder(p, "gb", api_type, format);
|
|
break;
|
|
case GX_CTF_Z8H:
|
|
case GX_TF_Z8:
|
|
WriteC8Encoder(p, "r", api_type, format, true);
|
|
break;
|
|
case GX_CTF_Z16R:
|
|
case GX_TF_Z16:
|
|
WriteZ16Encoder(p, api_type, format);
|
|
break;
|
|
case GX_TF_Z24X8:
|
|
WriteZ24Encoder(p, api_type, format);
|
|
break;
|
|
case GX_CTF_Z4:
|
|
WriteC4Encoder(p, "r", api_type, format, true);
|
|
break;
|
|
case GX_CTF_Z8M:
|
|
WriteZ8Encoder(p, "256.0", api_type, format);
|
|
break;
|
|
case GX_CTF_Z8L:
|
|
WriteZ8Encoder(p, "65536.0", api_type, format);
|
|
break;
|
|
case GX_CTF_Z16L:
|
|
WriteZ16LEncoder(p, api_type, format);
|
|
break;
|
|
default:
|
|
PanicAlert("Unknown texture copy format: 0x%x\n", static_cast<u32>(format.copy_format));
|
|
break;
|
|
}
|
|
|
|
if (text[sizeof(text) - 1] != 0x7C)
|
|
PanicAlert("TextureConversionShader generator - buffer too small, canary has been eaten!");
|
|
|
|
return text;
|
|
}
|
|
|
|
// NOTE: In these uniforms, a row refers to a row of blocks, not texels.
|
|
static const char decoding_shader_header[] = R"(
|
|
#ifdef VULKAN
|
|
|
|
layout(std140, push_constant) uniform PushConstants {
|
|
uvec2 dst_size;
|
|
uvec2 src_size;
|
|
uint src_offset;
|
|
uint src_row_stride;
|
|
uint palette_offset;
|
|
} push_constants;
|
|
#define u_dst_size (push_constants.dst_size)
|
|
#define u_src_size (push_constants.src_size)
|
|
#define u_src_offset (push_constants.src_offset)
|
|
#define u_src_row_stride (push_constants.src_row_stride)
|
|
#define u_palette_offset (push_constants.palette_offset)
|
|
|
|
TEXEL_BUFFER_BINDING(0) uniform usamplerBuffer s_input_buffer;
|
|
TEXEL_BUFFER_BINDING(1) uniform usamplerBuffer s_palette_buffer;
|
|
|
|
IMAGE_BINDING(rgba8, 0) uniform writeonly image2DArray output_image;
|
|
|
|
#else
|
|
|
|
uniform uvec2 u_dst_size;
|
|
uniform uvec2 u_src_size;
|
|
uniform uint u_src_offset;
|
|
uniform uint u_src_row_stride;
|
|
uniform uint u_palette_offset;
|
|
|
|
SAMPLER_BINDING(9) uniform usamplerBuffer s_input_buffer;
|
|
SAMPLER_BINDING(10) uniform usamplerBuffer s_palette_buffer;
|
|
|
|
layout(rgba8, binding = 0) uniform writeonly image2DArray output_image;
|
|
|
|
#endif
|
|
|
|
uint Swap16(uint v)
|
|
{
|
|
// Convert BE to LE.
|
|
return ((v >> 8) | (v << 8)) & 0xFFFFu;
|
|
}
|
|
|
|
uint Convert3To8(uint v)
|
|
{
|
|
// Swizzle bits: 00000123 -> 12312312
|
|
return (v << 5) | (v << 2) | (v >> 1);
|
|
}
|
|
uint Convert4To8(uint v)
|
|
{
|
|
// Swizzle bits: 00001234 -> 12341234
|
|
return (v << 4) | v;
|
|
}
|
|
uint Convert5To8(uint v)
|
|
{
|
|
// Swizzle bits: 00012345 -> 12345123
|
|
return (v << 3) | (v >> 2);
|
|
}
|
|
uint Convert6To8(uint v)
|
|
{
|
|
// Swizzle bits: 00123456 -> 12345612
|
|
return (v << 2) | (v >> 4);
|
|
}
|
|
|
|
uint GetTiledTexelOffset(uvec2 block_size, uvec2 coords)
|
|
{
|
|
uvec2 block = coords / block_size;
|
|
uvec2 offset = coords % block_size;
|
|
uint buffer_pos = u_src_offset;
|
|
buffer_pos += block.y * u_src_row_stride;
|
|
buffer_pos += block.x * (block_size.x * block_size.y);
|
|
buffer_pos += offset.y * block_size.x;
|
|
buffer_pos += offset.x;
|
|
return buffer_pos;
|
|
}
|
|
|
|
uvec4 GetPaletteColor(uint index)
|
|
{
|
|
// Fetch and swap BE to LE.
|
|
uint val = Swap16(texelFetch(s_palette_buffer, int(u_palette_offset + index)).x);
|
|
|
|
uvec4 color;
|
|
#if defined(PALETTE_FORMAT_IA8)
|
|
uint a = bitfieldExtract(val, 8, 8);
|
|
uint i = bitfieldExtract(val, 0, 8);
|
|
color = uvec4(i, i, i, a);
|
|
#elif defined(PALETTE_FORMAT_RGB565)
|
|
color.x = Convert5To8(bitfieldExtract(val, 11, 5));
|
|
color.y = Convert6To8(bitfieldExtract(val, 5, 6));
|
|
color.z = Convert5To8(bitfieldExtract(val, 0, 5));
|
|
color.a = 255u;
|
|
|
|
#elif defined(PALETTE_FORMAT_RGB5A3)
|
|
if ((val & 0x8000u) != 0u)
|
|
{
|
|
color.x = Convert5To8(bitfieldExtract(val, 10, 5));
|
|
color.y = Convert5To8(bitfieldExtract(val, 5, 5));
|
|
color.z = Convert5To8(bitfieldExtract(val, 0, 5));
|
|
color.a = 255u;
|
|
}
|
|
else
|
|
{
|
|
color.a = Convert3To8(bitfieldExtract(val, 12, 3));
|
|
color.r = Convert4To8(bitfieldExtract(val, 8, 4));
|
|
color.g = Convert4To8(bitfieldExtract(val, 4, 4));
|
|
color.b = Convert4To8(bitfieldExtract(val, 0, 4));
|
|
}
|
|
#else
|
|
// Not used.
|
|
color = uvec4(0, 0, 0, 0);
|
|
#endif
|
|
|
|
return color;
|
|
}
|
|
|
|
vec4 GetPaletteColorNormalized(uint index)
|
|
{
|
|
uvec4 color = GetPaletteColor(index);
|
|
return vec4(color) / 255.0;
|
|
}
|
|
|
|
)";
|
|
|
|
static const std::map<TextureFormat, DecodingShaderInfo> s_decoding_shader_info{
|
|
{GX_TF_I4,
|
|
{BUFFER_FORMAT_R8_UINT, 0, 8, 8, false,
|
|
R"(
|
|
layout(local_size_x = 8, local_size_y = 8) in;
|
|
|
|
void main()
|
|
{
|
|
uvec2 coords = gl_GlobalInvocationID.xy;
|
|
|
|
// Tiled in 8x8 blocks, 4 bits per pixel
|
|
// We need to do the tiling manually here because the texel size is smaller than
|
|
// the size of the buffer elements.
|
|
uint2 block = coords.xy / 8u;
|
|
uint2 offset = coords.xy % 8u;
|
|
uint buffer_pos = u_src_offset;
|
|
buffer_pos += block.y * u_src_row_stride;
|
|
buffer_pos += block.x * 32u;
|
|
buffer_pos += offset.y * 4u;
|
|
buffer_pos += offset.x / 2u;
|
|
|
|
// Select high nibble for odd texels, low for even.
|
|
uint val = texelFetch(s_input_buffer, int(buffer_pos)).x;
|
|
uint i;
|
|
if ((coords.x & 1u) == 0u)
|
|
i = Convert4To8((val >> 4));
|
|
else
|
|
i = Convert4To8((val & 0x0Fu));
|
|
|
|
uvec4 color = uvec4(i, i, i, i);
|
|
vec4 norm_color = vec4(color) / 255.0;
|
|
|
|
imageStore(output_image, ivec3(ivec2(coords), 0), norm_color);
|
|
}
|
|
|
|
)"}},
|
|
{GX_TF_IA4,
|
|
{BUFFER_FORMAT_R8_UINT, 0, 8, 8, false,
|
|
R"(
|
|
layout(local_size_x = 8, local_size_y = 8) in;
|
|
|
|
void main()
|
|
{
|
|
uvec2 coords = gl_GlobalInvocationID.xy;
|
|
|
|
// Tiled in 8x4 blocks, 8 bits per pixel
|
|
uint buffer_pos = GetTiledTexelOffset(uvec2(8u, 4u), coords);
|
|
uint val = texelFetch(s_input_buffer, int(buffer_pos)).x;
|
|
uint i = Convert4To8((val & 0x0Fu));
|
|
uint a = Convert4To8((val >> 4));
|
|
uvec4 color = uvec4(i, i, i, a);
|
|
vec4 norm_color = vec4(color) / 255.0;
|
|
|
|
imageStore(output_image, ivec3(ivec2(coords), 0), norm_color);
|
|
}
|
|
)"}},
|
|
{GX_TF_I8,
|
|
{BUFFER_FORMAT_R8_UINT, 0, 8, 8, false,
|
|
R"(
|
|
layout(local_size_x = 8, local_size_y = 8) in;
|
|
|
|
void main()
|
|
{
|
|
uvec2 coords = gl_GlobalInvocationID.xy;
|
|
|
|
// Tiled in 8x4 blocks, 8 bits per pixel
|
|
uint buffer_pos = GetTiledTexelOffset(uvec2(8u, 4u), coords);
|
|
uint i = texelFetch(s_input_buffer, int(buffer_pos)).x;
|
|
uvec4 color = uvec4(i, i, i, i);
|
|
vec4 norm_color = vec4(color) / 255.0;
|
|
|
|
imageStore(output_image, ivec3(ivec2(coords), 0), norm_color);
|
|
}
|
|
)"}},
|
|
{GX_TF_IA8,
|
|
{BUFFER_FORMAT_R16_UINT, 0, 8, 8, false,
|
|
R"(
|
|
layout(local_size_x = 8, local_size_y = 8) in;
|
|
|
|
void main()
|
|
{
|
|
uvec2 coords = gl_GlobalInvocationID.xy;
|
|
|
|
// Tiled in 4x4 blocks, 16 bits per pixel
|
|
uint buffer_pos = GetTiledTexelOffset(uvec2(4u, 4u), coords);
|
|
uint val = texelFetch(s_input_buffer, int(buffer_pos)).x;
|
|
uint a = (val & 0xFFu);
|
|
uint i = (val >> 8);
|
|
uvec4 color = uvec4(i, i, i, a);
|
|
vec4 norm_color = vec4(color) / 255.0;
|
|
imageStore(output_image, ivec3(ivec2(coords), 0), norm_color);
|
|
}
|
|
)"}},
|
|
{GX_TF_RGB565,
|
|
{BUFFER_FORMAT_R16_UINT, 0, 8, 8, false,
|
|
R"(
|
|
layout(local_size_x = 8, local_size_y = 8) in;
|
|
|
|
void main()
|
|
{
|
|
uvec2 coords = gl_GlobalInvocationID.xy;
|
|
|
|
// Tiled in 4x4 blocks
|
|
uint buffer_pos = GetTiledTexelOffset(uvec2(4u, 4u), coords);
|
|
uint val = Swap16(texelFetch(s_input_buffer, int(buffer_pos)).x);
|
|
|
|
uvec4 color;
|
|
color.x = Convert5To8(bitfieldExtract(val, 11, 5));
|
|
color.y = Convert6To8(bitfieldExtract(val, 5, 6));
|
|
color.z = Convert5To8(bitfieldExtract(val, 0, 5));
|
|
color.a = 255u;
|
|
|
|
vec4 norm_color = vec4(color) / 255.0;
|
|
imageStore(output_image, ivec3(ivec2(coords), 0), norm_color);
|
|
}
|
|
|
|
)"}},
|
|
{GX_TF_RGB5A3,
|
|
{BUFFER_FORMAT_R16_UINT, 0, 8, 8, false,
|
|
R"(
|
|
layout(local_size_x = 8, local_size_y = 8) in;
|
|
|
|
void main()
|
|
{
|
|
uvec2 coords = gl_GlobalInvocationID.xy;
|
|
|
|
// Tiled in 4x4 blocks
|
|
uint buffer_pos = GetTiledTexelOffset(uvec2(4u, 4u), coords);
|
|
uint val = Swap16(texelFetch(s_input_buffer, int(buffer_pos)).x);
|
|
|
|
uvec4 color;
|
|
if ((val & 0x8000u) != 0u)
|
|
{
|
|
color.x = Convert5To8(bitfieldExtract(val, 10, 5));
|
|
color.y = Convert5To8(bitfieldExtract(val, 5, 5));
|
|
color.z = Convert5To8(bitfieldExtract(val, 0, 5));
|
|
color.a = 255u;
|
|
}
|
|
else
|
|
{
|
|
color.a = Convert3To8(bitfieldExtract(val, 12, 3));
|
|
color.r = Convert4To8(bitfieldExtract(val, 8, 4));
|
|
color.g = Convert4To8(bitfieldExtract(val, 4, 4));
|
|
color.b = Convert4To8(bitfieldExtract(val, 0, 4));
|
|
}
|
|
|
|
vec4 norm_color = vec4(color) / 255.0;
|
|
imageStore(output_image, ivec3(ivec2(coords), 0), norm_color);
|
|
}
|
|
|
|
)"}},
|
|
{GX_TF_RGBA8,
|
|
{BUFFER_FORMAT_R16_UINT, 0, 8, 8, false,
|
|
R"(
|
|
layout(local_size_x = 8, local_size_y = 8) in;
|
|
|
|
void main()
|
|
{
|
|
uvec2 coords = gl_GlobalInvocationID.xy;
|
|
|
|
// Tiled in 4x4 blocks
|
|
// We can't use the normal calculation function, as these are packed as the AR channels
|
|
// for the entire block, then the GB channels afterwards.
|
|
uint2 block = coords.xy / 4u;
|
|
uint2 offset = coords.xy % 4u;
|
|
uint buffer_pos = u_src_offset;
|
|
|
|
// Our buffer has 16-bit elements, so the offsets here are half what they would be in bytes.
|
|
buffer_pos += block.y * u_src_row_stride;
|
|
buffer_pos += block.x * 32u;
|
|
buffer_pos += offset.y * 4u;
|
|
buffer_pos += offset.x;
|
|
|
|
// The two GB channels follow after the block's AR channels.
|
|
uint val1 = texelFetch(s_input_buffer, int(buffer_pos + 0u)).x;
|
|
uint val2 = texelFetch(s_input_buffer, int(buffer_pos + 16u)).x;
|
|
|
|
uvec4 color;
|
|
color.a = (val1 & 0xFFu);
|
|
color.r = (val1 >> 8);
|
|
color.g = (val2 & 0xFFu);
|
|
color.b = (val2 >> 8);
|
|
|
|
vec4 norm_color = vec4(color) / 255.0;
|
|
imageStore(output_image, ivec3(ivec2(coords), 0), norm_color);
|
|
}
|
|
)"}},
|
|
{GX_TF_CMPR,
|
|
{BUFFER_FORMAT_R32G32_UINT, 0, 64, 1, true,
|
|
R"(
|
|
// In the compute version of this decoder, we flatten the blocks to a one-dimension array.
|
|
// Each group is subdivided into 16, and the first thread in each group fetches the DXT data.
|
|
// All threads then calculate the possible colors for the block and write to the output image.
|
|
|
|
#define GROUP_SIZE 64u
|
|
#define BLOCK_SIZE_X 4u
|
|
#define BLOCK_SIZE_Y 4u
|
|
#define BLOCK_SIZE (BLOCK_SIZE_X * BLOCK_SIZE_Y)
|
|
#define BLOCKS_PER_GROUP (GROUP_SIZE / BLOCK_SIZE)
|
|
|
|
layout(local_size_x = GROUP_SIZE, local_size_y = 1) in;
|
|
|
|
shared uvec2 shared_temp[BLOCKS_PER_GROUP];
|
|
|
|
uint DXTBlend(uint v1, uint v2)
|
|
{
|
|
// 3/8 blend, which is close to 1/3
|
|
return ((v1 * 3u + v2 * 5u) >> 3);
|
|
}
|
|
|
|
void main()
|
|
{
|
|
uint local_thread_id = gl_LocalInvocationID.x;
|
|
uint block_in_group = local_thread_id / BLOCK_SIZE;
|
|
uint thread_in_block = local_thread_id % BLOCK_SIZE;
|
|
uint block_index = gl_WorkGroupID.x * BLOCKS_PER_GROUP + block_in_group;
|
|
|
|
// Annoyingly, we can't precalculate this as a uniform because the DXT block size differs
|
|
// from the block size of the overall texture (4 vs 8). We can however use a multiply and
|
|
// subtraction to avoid the modulo for calculating the block's X coordinate.
|
|
uint blocks_wide = u_src_size.x / BLOCK_SIZE_X;
|
|
uvec2 block_coords;
|
|
block_coords.y = block_index / blocks_wide;
|
|
block_coords.x = block_index - (block_coords.y * blocks_wide);
|
|
|
|
// Only the first thread for each block reads from the texel buffer.
|
|
if (thread_in_block == 0u)
|
|
{
|
|
// Calculate tiled block coordinates.
|
|
uvec2 tile_block_coords = block_coords / 2u;
|
|
uvec2 subtile_block_coords = block_coords % 2u;
|
|
uint buffer_pos = u_src_offset;
|
|
buffer_pos += tile_block_coords.y * u_src_row_stride;
|
|
buffer_pos += tile_block_coords.x * 4u;
|
|
buffer_pos += subtile_block_coords.y * 2u;
|
|
buffer_pos += subtile_block_coords.x;
|
|
|
|
// Read the entire DXT block to shared memory.
|
|
uvec2 raw_data = texelFetch(s_input_buffer, int(buffer_pos)).xy;
|
|
shared_temp[block_in_group] = raw_data;
|
|
}
|
|
|
|
// Ensure store is completed before the remaining threads in the block continue.
|
|
memoryBarrierShared();
|
|
barrier();
|
|
|
|
// Unpack colors and swap BE to LE.
|
|
uvec2 raw_data = shared_temp[block_in_group];
|
|
uint swapped = ((raw_data.x & 0xFF00FF00u) >> 8) | ((raw_data.x & 0x00FF00FFu) << 8);
|
|
uint c1 = swapped & 0xFFFFu;
|
|
uint c2 = swapped >> 16;
|
|
|
|
// Expand 5/6 bit channels to 8-bits per channel.
|
|
uint blue1 = Convert5To8(bitfieldExtract(c1, 0, 5));
|
|
uint blue2 = Convert5To8(bitfieldExtract(c2, 0, 5));
|
|
uint green1 = Convert6To8(bitfieldExtract(c1, 5, 6));
|
|
uint green2 = Convert6To8(bitfieldExtract(c2, 5, 6));
|
|
uint red1 = Convert5To8(bitfieldExtract(c1, 11, 5));
|
|
uint red2 = Convert5To8(bitfieldExtract(c2, 11, 5));
|
|
|
|
// Determine the four colors the block can use.
|
|
// It's quicker to just precalculate all four colors rather than branching on the index.
|
|
// NOTE: These must be masked with 0xFF. This is done at the normalization stage below.
|
|
uvec4 color0, color1, color2, color3;
|
|
color0 = uvec4(red1, green1, blue1, 255u);
|
|
color1 = uvec4(red2, green2, blue2, 255u);
|
|
if (c1 > c2)
|
|
{
|
|
color2 = uvec4(DXTBlend(red2, red1), DXTBlend(green2, green1), DXTBlend(blue2, blue1), 255u);
|
|
color3 = uvec4(DXTBlend(red1, red2), DXTBlend(green1, green2), DXTBlend(blue1, blue2), 255u);
|
|
}
|
|
else
|
|
{
|
|
color2 = uvec4((red1 + red2) / 2u, (green1 + green2) / 2u, (blue1 + blue2) / 2u, 255u);
|
|
color3 = uvec4((red1 + red2) / 2u, (green1 + green2) / 2u, (blue1 + blue2) / 2u, 0u);
|
|
}
|
|
|
|
// Calculate the texel coordinates that we will write to.
|
|
// The divides/modulo here should be turned into a shift/binary AND.
|
|
uint local_y = thread_in_block / BLOCK_SIZE_X;
|
|
uint local_x = thread_in_block % BLOCK_SIZE_X;
|
|
uint global_x = block_coords.x * BLOCK_SIZE_X + local_x;
|
|
uint global_y = block_coords.y * BLOCK_SIZE_Y + local_y;
|
|
|
|
// Use the coordinates within the block to shift the 32-bit value containing
|
|
// all 16 indices to a single 2-bit index.
|
|
uint index = bitfieldExtract(raw_data.y, int((local_y * 8u) + (6u - local_x * 2u)), 2);
|
|
|
|
// Select the un-normalized color from the precalculated color array.
|
|
// Using a switch statement here removes the need for dynamic indexing of an array.
|
|
uvec4 color;
|
|
switch (index)
|
|
{
|
|
case 0u: color = color0; break;
|
|
case 1u: color = color1; break;
|
|
case 2u: color = color2; break;
|
|
case 3u: color = color3; break;
|
|
default: color = color0; break;
|
|
}
|
|
|
|
// Normalize and write to the output image.
|
|
vec4 norm_color = vec4(color & 0xFFu) / 255.0;
|
|
imageStore(output_image, ivec3(ivec2(uvec2(global_x, global_y)), 0), norm_color);
|
|
}
|
|
)"}},
|
|
{GX_TF_C4,
|
|
{BUFFER_FORMAT_R8_UINT, static_cast<u32>(TexDecoder_GetPaletteSize(GX_TF_C4)), 8, 8, false,
|
|
R"(
|
|
layout(local_size_x = 8, local_size_y = 8) in;
|
|
|
|
void main()
|
|
{
|
|
uvec2 coords = gl_GlobalInvocationID.xy;
|
|
|
|
// Tiled in 8x8 blocks, 4 bits per pixel
|
|
// We need to do the tiling manually here because the texel size is smaller than
|
|
// the size of the buffer elements.
|
|
uint2 block = coords.xy / 8u;
|
|
uint2 offset = coords.xy % 8u;
|
|
uint buffer_pos = u_src_offset;
|
|
buffer_pos += block.y * u_src_row_stride;
|
|
buffer_pos += block.x * 32u;
|
|
buffer_pos += offset.y * 4u;
|
|
buffer_pos += offset.x / 2u;
|
|
|
|
// Select high nibble for odd texels, low for even.
|
|
uint val = texelFetch(s_input_buffer, int(buffer_pos)).x;
|
|
uint index = ((coords.x & 1u) == 0u) ? (val >> 4) : (val & 0x0Fu);
|
|
vec4 norm_color = GetPaletteColorNormalized(index);
|
|
imageStore(output_image, ivec3(ivec2(coords), 0), norm_color);
|
|
}
|
|
|
|
)"}},
|
|
{GX_TF_C8,
|
|
{BUFFER_FORMAT_R8_UINT, static_cast<u32>(TexDecoder_GetPaletteSize(GX_TF_C8)), 8, 8, false,
|
|
R"(
|
|
layout(local_size_x = 8, local_size_y = 8) in;
|
|
|
|
void main()
|
|
{
|
|
uvec2 coords = gl_GlobalInvocationID.xy;
|
|
|
|
// Tiled in 8x4 blocks, 8 bits per pixel
|
|
uint buffer_pos = GetTiledTexelOffset(uvec2(8u, 4u), coords);
|
|
uint index = texelFetch(s_input_buffer, int(buffer_pos)).x;
|
|
vec4 norm_color = GetPaletteColorNormalized(index);
|
|
imageStore(output_image, ivec3(ivec2(coords), 0), norm_color);
|
|
}
|
|
)"}},
|
|
{GX_TF_C14X2,
|
|
{BUFFER_FORMAT_R16_UINT, static_cast<u32>(TexDecoder_GetPaletteSize(GX_TF_C14X2)), 8, 8, false,
|
|
R"(
|
|
layout(local_size_x = 8, local_size_y = 8) in;
|
|
|
|
void main()
|
|
{
|
|
uvec2 coords = gl_GlobalInvocationID.xy;
|
|
|
|
// Tiled in 4x4 blocks, 16 bits per pixel
|
|
uint buffer_pos = GetTiledTexelOffset(uvec2(4u, 4u), coords);
|
|
uint index = Swap16(texelFetch(s_input_buffer, int(buffer_pos)).x) & 0x3FFFu;
|
|
vec4 norm_color = GetPaletteColorNormalized(index);
|
|
imageStore(output_image, ivec3(ivec2(coords), 0), norm_color);
|
|
}
|
|
)"}}};
|
|
|
|
static const std::array<u32, BUFFER_FORMAT_COUNT> s_buffer_bytes_per_texel = {{
|
|
1, // BUFFER_FORMAT_R8_UINT
|
|
2, // BUFFER_FORMAT_R16_UINT
|
|
8, // BUFFER_FORMAT_R32G32_UINT
|
|
}};
|
|
|
|
const DecodingShaderInfo* GetDecodingShaderInfo(TextureFormat format)
|
|
{
|
|
auto iter = s_decoding_shader_info.find(format);
|
|
return iter != s_decoding_shader_info.end() ? &iter->second : nullptr;
|
|
}
|
|
|
|
u32 GetBytesPerBufferElement(BufferFormat buffer_format)
|
|
{
|
|
return s_buffer_bytes_per_texel[buffer_format];
|
|
}
|
|
|
|
std::pair<u32, u32> GetDispatchCount(const DecodingShaderInfo* info, u32 width, u32 height)
|
|
{
|
|
// Flatten to a single dimension?
|
|
if (info->group_flatten)
|
|
return {(width * height + (info->group_size_x - 1)) / info->group_size_x, 1};
|
|
|
|
return {(width + (info->group_size_x - 1)) / info->group_size_x,
|
|
(height + (info->group_size_y - 1)) / info->group_size_y};
|
|
}
|
|
|
|
std::string GenerateDecodingShader(TextureFormat format, TlutFormat palette_format,
|
|
APIType api_type)
|
|
{
|
|
const DecodingShaderInfo* info = GetDecodingShaderInfo(format);
|
|
if (!info)
|
|
return "";
|
|
|
|
std::stringstream ss;
|
|
switch (palette_format)
|
|
{
|
|
case GX_TL_IA8:
|
|
ss << "#define PALETTE_FORMAT_IA8 1\n";
|
|
break;
|
|
case GX_TL_RGB565:
|
|
ss << "#define PALETTE_FORMAT_RGB565 1\n";
|
|
break;
|
|
case GX_TL_RGB5A3:
|
|
ss << "#define PALETTE_FORMAT_RGB5A3 1\n";
|
|
break;
|
|
}
|
|
|
|
ss << decoding_shader_header;
|
|
ss << info->shader_body;
|
|
|
|
return ss.str();
|
|
}
|
|
|
|
} // namespace
|