Pokechu22 f749fcfa9f Convert CPMemory to BitField and enum class
Additionally, VCacheEnhance has been added to UVAT_group1.  According to YAGCD, this field is always 1.

TVtxDesc also now has separate low and high fields whose hex values correspond with the proper registers, instead of having one 33-bit value.  This change was made in a way that should be backwards-compatible.
2021-03-06 19:27:08 -08:00

559 lines
18 KiB
C++

// Copyright 2015 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include "VideoCommon/VertexLoaderX64.h"
#include <array>
#include <cstring>
#include <string>
#include "Common/BitSet.h"
#include "Common/CPUDetect.h"
#include "Common/Common.h"
#include "Common/CommonTypes.h"
#include "Common/Intrinsics.h"
#include "Common/JitRegister.h"
#include "Common/x64ABI.h"
#include "Common/x64Emitter.h"
#include "VideoCommon/DataReader.h"
#include "VideoCommon/VertexLoaderManager.h"
using namespace Gen;
static const X64Reg src_reg = ABI_PARAM1;
static const X64Reg dst_reg = ABI_PARAM2;
static const X64Reg scratch1 = RAX;
static const X64Reg scratch2 = ABI_PARAM3;
static const X64Reg scratch3 = ABI_PARAM4;
static const X64Reg count_reg = R10;
static const X64Reg skipped_reg = R11;
static const X64Reg base_reg = RBX;
static const u8* memory_base_ptr = (u8*)&g_main_cp_state.array_strides;
static OpArg MPIC(const void* ptr, X64Reg scale_reg, int scale = SCALE_1)
{
return MComplex(base_reg, scale_reg, scale, PtrOffset(ptr, memory_base_ptr));
}
static OpArg MPIC(const void* ptr)
{
return MDisp(base_reg, PtrOffset(ptr, memory_base_ptr));
}
VertexLoaderX64::VertexLoaderX64(const TVtxDesc& vtx_desc, const VAT& vtx_att)
: VertexLoaderBase(vtx_desc, vtx_att)
{
if (!IsInitialized())
return;
AllocCodeSpace(4096);
ClearCodeSpace();
GenerateVertexLoader();
WriteProtect();
const std::string name = ToString();
JitRegister::Register(region, GetCodePtr(), name.c_str());
}
OpArg VertexLoaderX64::GetVertexAddr(int array, VertexComponentFormat attribute)
{
OpArg data = MDisp(src_reg, m_src_ofs);
if (IsIndexed(attribute))
{
int bits = attribute == VertexComponentFormat::Index8 ? 8 : 16;
LoadAndSwap(bits, scratch1, data);
m_src_ofs += bits / 8;
if (array == ARRAY_POSITION)
{
CMP(bits, R(scratch1), Imm8(-1));
m_skip_vertex = J_CC(CC_E, true);
}
IMUL(32, scratch1, MPIC(&g_main_cp_state.array_strides[array]));
MOV(64, R(scratch2), MPIC(&VertexLoaderManager::cached_arraybases[array]));
return MRegSum(scratch1, scratch2);
}
else
{
return data;
}
}
int VertexLoaderX64::ReadVertex(OpArg data, VertexComponentFormat attribute, ComponentFormat format,
int count_in, int count_out, bool dequantize, u8 scaling_exponent,
AttributeFormat* native_format)
{
static const __m128i shuffle_lut[5][3] = {
{_mm_set_epi32(0xFFFFFFFFL, 0xFFFFFFFFL, 0xFFFFFFFFL, 0xFFFFFF00L), // 1x u8
_mm_set_epi32(0xFFFFFFFFL, 0xFFFFFFFFL, 0xFFFFFF01L, 0xFFFFFF00L), // 2x u8
_mm_set_epi32(0xFFFFFFFFL, 0xFFFFFF02L, 0xFFFFFF01L, 0xFFFFFF00L)}, // 3x u8
{_mm_set_epi32(0xFFFFFFFFL, 0xFFFFFFFFL, 0xFFFFFFFFL, 0x00FFFFFFL), // 1x s8
_mm_set_epi32(0xFFFFFFFFL, 0xFFFFFFFFL, 0x01FFFFFFL, 0x00FFFFFFL), // 2x s8
_mm_set_epi32(0xFFFFFFFFL, 0x02FFFFFFL, 0x01FFFFFFL, 0x00FFFFFFL)}, // 3x s8
{_mm_set_epi32(0xFFFFFFFFL, 0xFFFFFFFFL, 0xFFFFFFFFL, 0xFFFF0001L), // 1x u16
_mm_set_epi32(0xFFFFFFFFL, 0xFFFFFFFFL, 0xFFFF0203L, 0xFFFF0001L), // 2x u16
_mm_set_epi32(0xFFFFFFFFL, 0xFFFF0405L, 0xFFFF0203L, 0xFFFF0001L)}, // 3x u16
{_mm_set_epi32(0xFFFFFFFFL, 0xFFFFFFFFL, 0xFFFFFFFFL, 0x0001FFFFL), // 1x s16
_mm_set_epi32(0xFFFFFFFFL, 0xFFFFFFFFL, 0x0203FFFFL, 0x0001FFFFL), // 2x s16
_mm_set_epi32(0xFFFFFFFFL, 0x0405FFFFL, 0x0203FFFFL, 0x0001FFFFL)}, // 3x s16
{_mm_set_epi32(0xFFFFFFFFL, 0xFFFFFFFFL, 0xFFFFFFFFL, 0x00010203L), // 1x float
_mm_set_epi32(0xFFFFFFFFL, 0xFFFFFFFFL, 0x04050607L, 0x00010203L), // 2x float
_mm_set_epi32(0xFFFFFFFFL, 0x08090A0BL, 0x04050607L, 0x00010203L)}, // 3x float
};
static const __m128 scale_factors[32] = {
_mm_set_ps1(1. / (1u << 0)), _mm_set_ps1(1. / (1u << 1)), _mm_set_ps1(1. / (1u << 2)),
_mm_set_ps1(1. / (1u << 3)), _mm_set_ps1(1. / (1u << 4)), _mm_set_ps1(1. / (1u << 5)),
_mm_set_ps1(1. / (1u << 6)), _mm_set_ps1(1. / (1u << 7)), _mm_set_ps1(1. / (1u << 8)),
_mm_set_ps1(1. / (1u << 9)), _mm_set_ps1(1. / (1u << 10)), _mm_set_ps1(1. / (1u << 11)),
_mm_set_ps1(1. / (1u << 12)), _mm_set_ps1(1. / (1u << 13)), _mm_set_ps1(1. / (1u << 14)),
_mm_set_ps1(1. / (1u << 15)), _mm_set_ps1(1. / (1u << 16)), _mm_set_ps1(1. / (1u << 17)),
_mm_set_ps1(1. / (1u << 18)), _mm_set_ps1(1. / (1u << 19)), _mm_set_ps1(1. / (1u << 20)),
_mm_set_ps1(1. / (1u << 21)), _mm_set_ps1(1. / (1u << 22)), _mm_set_ps1(1. / (1u << 23)),
_mm_set_ps1(1. / (1u << 24)), _mm_set_ps1(1. / (1u << 25)), _mm_set_ps1(1. / (1u << 26)),
_mm_set_ps1(1. / (1u << 27)), _mm_set_ps1(1. / (1u << 28)), _mm_set_ps1(1. / (1u << 29)),
_mm_set_ps1(1. / (1u << 30)), _mm_set_ps1(1. / (1u << 31)),
};
X64Reg coords = XMM0;
int elem_size = GetElementSize(format);
int load_bytes = elem_size * count_in;
OpArg dest = MDisp(dst_reg, m_dst_ofs);
native_format->components = count_out;
native_format->enable = true;
native_format->offset = m_dst_ofs;
native_format->type = VAR_FLOAT;
native_format->integer = false;
m_dst_ofs += sizeof(float) * count_out;
if (attribute == VertexComponentFormat::Direct)
m_src_ofs += load_bytes;
if (cpu_info.bSSSE3)
{
if (load_bytes > 8)
MOVDQU(coords, data);
else if (load_bytes > 4)
MOVQ_xmm(coords, data);
else
MOVD_xmm(coords, data);
PSHUFB(coords, MPIC(&shuffle_lut[u32(format)][count_in - 1]));
// Sign-extend.
if (format == ComponentFormat::Byte)
PSRAD(coords, 24);
if (format == ComponentFormat::Short)
PSRAD(coords, 16);
}
else
{
// SSE2
X64Reg temp = XMM1;
switch (format)
{
case ComponentFormat::UByte:
MOVD_xmm(coords, data);
PXOR(temp, R(temp));
PUNPCKLBW(coords, R(temp));
PUNPCKLWD(coords, R(temp));
break;
case ComponentFormat::Byte:
MOVD_xmm(coords, data);
PUNPCKLBW(coords, R(coords));
PUNPCKLWD(coords, R(coords));
PSRAD(coords, 24);
break;
case ComponentFormat::UShort:
case ComponentFormat::Short:
switch (count_in)
{
case 1:
LoadAndSwap(32, scratch3, data);
MOVD_xmm(coords, R(scratch3)); // ......X.
break;
case 2:
LoadAndSwap(32, scratch3, data);
MOVD_xmm(coords, R(scratch3)); // ......XY
PSHUFLW(coords, R(coords), 0x24); // ....Y.X.
break;
case 3:
LoadAndSwap(64, scratch3, data);
MOVQ_xmm(coords, R(scratch3)); // ....XYZ.
PUNPCKLQDQ(coords, R(coords)); // ..Z.XYZ.
PSHUFLW(coords, R(coords), 0xAC); // ..Z.Y.X.
break;
}
if (format == ComponentFormat::Short)
PSRAD(coords, 16);
else
PSRLD(coords, 16);
break;
case ComponentFormat::Float:
// Floats don't need to be scaled or converted,
// so we can just load/swap/store them directly
// and return early.
// (In SSSE3 we still need to store them.)
for (int i = 0; i < count_in; i++)
{
LoadAndSwap(32, scratch3, data);
MOV(32, dest, R(scratch3));
data.AddMemOffset(sizeof(float));
dest.AddMemOffset(sizeof(float));
// zfreeze
if (native_format == &m_native_vtx_decl.position)
{
if (cpu_info.bSSE4_1)
{
PINSRD(coords, R(scratch3), i);
}
else
{
PINSRW(coords, R(scratch3), 2 * i + 0);
SHR(32, R(scratch3), Imm8(16));
PINSRW(coords, R(scratch3), 2 * i + 1);
}
}
}
// zfreeze
if (native_format == &m_native_vtx_decl.position)
{
CMP(32, R(count_reg), Imm8(3));
FixupBranch dont_store = J_CC(CC_A);
LEA(32, scratch3, MScaled(count_reg, SCALE_4, -4));
MOVUPS(MPIC(VertexLoaderManager::position_cache, scratch3, SCALE_4), coords);
SetJumpTarget(dont_store);
}
return load_bytes;
}
}
if (format != ComponentFormat::Float)
{
CVTDQ2PS(coords, R(coords));
if (dequantize && scaling_exponent)
MULPS(coords, MPIC(&scale_factors[scaling_exponent]));
}
switch (count_out)
{
case 1:
MOVSS(dest, coords);
break;
case 2:
MOVLPS(dest, coords);
break;
case 3:
MOVUPS(dest, coords);
break;
}
// zfreeze
if (native_format == &m_native_vtx_decl.position)
{
CMP(32, R(count_reg), Imm8(3));
FixupBranch dont_store = J_CC(CC_A);
LEA(32, scratch3, MScaled(count_reg, SCALE_4, -4));
MOVUPS(MPIC(VertexLoaderManager::position_cache, scratch3, SCALE_4), coords);
SetJumpTarget(dont_store);
}
return load_bytes;
}
void VertexLoaderX64::ReadColor(OpArg data, VertexComponentFormat attribute, ColorFormat format)
{
int load_bytes = 0;
switch (format)
{
case ColorFormat::RGB888:
case ColorFormat::RGB888x:
case ColorFormat::RGBA8888:
MOV(32, R(scratch1), data);
if (format != ColorFormat::RGBA8888)
OR(32, R(scratch1), Imm32(0xFF000000));
MOV(32, MDisp(dst_reg, m_dst_ofs), R(scratch1));
load_bytes = format == ColorFormat::RGB888 ? 3 : 4;
break;
case ColorFormat::RGB565:
// RRRRRGGG GGGBBBBB
// AAAAAAAA BBBBBBBB GGGGGGGG RRRRRRRR
LoadAndSwap(16, scratch1, data);
if (cpu_info.bBMI1 && cpu_info.bFastBMI2)
{
MOV(32, R(scratch2), Imm32(0x07C3F7C0));
PDEP(32, scratch3, scratch1, R(scratch2));
MOV(32, R(scratch2), Imm32(0xF8FCF800));
PDEP(32, scratch1, scratch1, R(scratch2));
ANDN(32, scratch2, scratch2, R(scratch3));
OR(32, R(scratch1), R(scratch2));
}
else
{
SHL(32, R(scratch1), Imm8(11));
LEA(32, scratch2, MScaled(scratch1, SCALE_4, 0));
LEA(32, scratch3, MScaled(scratch2, SCALE_8, 0));
AND(32, R(scratch1), Imm32(0x0000F800));
AND(32, R(scratch2), Imm32(0x00FC0000));
AND(32, R(scratch3), Imm32(0xF8000000));
OR(32, R(scratch1), R(scratch2));
OR(32, R(scratch1), R(scratch3));
MOV(32, R(scratch2), R(scratch1));
SHR(32, R(scratch1), Imm8(5));
AND(32, R(scratch1), Imm32(0x07000700));
OR(32, R(scratch1), R(scratch2));
SHR(32, R(scratch2), Imm8(6));
AND(32, R(scratch2), Imm32(0x00030000));
OR(32, R(scratch1), R(scratch2));
}
OR(32, R(scratch1), Imm32(0x000000FF));
SwapAndStore(32, MDisp(dst_reg, m_dst_ofs), scratch1);
load_bytes = 2;
break;
case ColorFormat::RGBA4444:
// RRRRGGGG BBBBAAAA
// AAAAAAAA BBBBBBBB GGGGGGGG RRRRRRRR
LoadAndSwap(16, scratch1, data);
if (cpu_info.bFastBMI2)
{
MOV(32, R(scratch2), Imm32(0x0F0F0F0F));
PDEP(32, scratch1, scratch1, R(scratch2));
}
else
{
MOV(32, R(scratch2), R(scratch1));
SHL(32, R(scratch1), Imm8(8));
OR(32, R(scratch1), R(scratch2));
AND(32, R(scratch1), Imm32(0x00FF00FF));
MOV(32, R(scratch2), R(scratch1));
SHL(32, R(scratch1), Imm8(4));
OR(32, R(scratch1), R(scratch2));
AND(32, R(scratch1), Imm32(0x0F0F0F0F));
}
MOV(32, R(scratch2), R(scratch1));
SHL(32, R(scratch1), Imm8(4));
OR(32, R(scratch1), R(scratch2));
SwapAndStore(32, MDisp(dst_reg, m_dst_ofs), scratch1);
load_bytes = 2;
break;
case ColorFormat::RGBA6666:
// RRRRRRGG GGGGBBBB BBAAAAAA
// AAAAAAAA BBBBBBBB GGGGGGGG RRRRRRRR
data.AddMemOffset(-1); // subtract one from address so we can use a 32bit load and bswap
LoadAndSwap(32, scratch1, data);
if (cpu_info.bFastBMI2)
{
MOV(32, R(scratch2), Imm32(0xFCFCFCFC));
PDEP(32, scratch1, scratch1, R(scratch2));
MOV(32, R(scratch2), R(scratch1));
}
else
{
LEA(32, scratch2, MScaled(scratch1, SCALE_4, 0)); // ______RR RRRRGGGG GGBBBBBB AAAAAA__
AND(32, R(scratch2), Imm32(0x00003FFC)); // ________ ________ __BBBBBB AAAAAA__
SHL(32, R(scratch1), Imm8(6)); // __RRRRRR GGGGGGBB BBBBAAAA AA______
AND(32, R(scratch1), Imm32(0x3FFC0000)); // __RRRRRR GGGGGG__ ________ ________
OR(32, R(scratch1), R(scratch2)); // __RRRRRR GGGGGG__ __BBBBBB AAAAAA__
LEA(32, scratch2, MScaled(scratch1, SCALE_4, 0)); // RRRRRRGG GGGG____ BBBBBBAA AAAA____
AND(32, R(scratch2), Imm32(0xFC00FC00)); // RRRRRR__ ________ BBBBBB__ ________
AND(32, R(scratch1), Imm32(0x00FC00FC)); // ________ GGGGGG__ ________ AAAAAA__
OR(32, R(scratch1), R(scratch2)); // RRRRRR__ GGGGGG__ BBBBBB__ AAAAAA__
MOV(32, R(scratch2), R(scratch1));
}
SHR(32, R(scratch1), Imm8(6));
AND(32, R(scratch1), Imm32(0x03030303));
OR(32, R(scratch1), R(scratch2));
SwapAndStore(32, MDisp(dst_reg, m_dst_ofs), scratch1);
load_bytes = 3;
break;
}
if (attribute == VertexComponentFormat::Direct)
m_src_ofs += load_bytes;
}
void VertexLoaderX64::GenerateVertexLoader()
{
BitSet32 regs = {src_reg, dst_reg, scratch1, scratch2,
scratch3, count_reg, skipped_reg, base_reg};
regs &= ABI_ALL_CALLEE_SAVED;
ABI_PushRegistersAndAdjustStack(regs, 0);
// Backup count since we're going to count it down.
PUSH(32, R(ABI_PARAM3));
// ABI_PARAM3 is one of the lower registers, so free it for scratch2.
MOV(32, R(count_reg), R(ABI_PARAM3));
MOV(64, R(base_reg), R(ABI_PARAM4));
if (IsIndexed(m_VtxDesc.low.Position))
XOR(32, R(skipped_reg), R(skipped_reg));
// TODO: load constants into registers outside the main loop
const u8* loop_start = GetCodePtr();
if (m_VtxDesc.low.PosMatIdx)
{
MOVZX(32, 8, scratch1, MDisp(src_reg, m_src_ofs));
AND(32, R(scratch1), Imm8(0x3F));
MOV(32, MDisp(dst_reg, m_dst_ofs), R(scratch1));
// zfreeze
CMP(32, R(count_reg), Imm8(3));
FixupBranch dont_store = J_CC(CC_A);
MOV(32, MPIC(VertexLoaderManager::position_matrix_index, count_reg, SCALE_4), R(scratch1));
SetJumpTarget(dont_store);
m_native_components |= VB_HAS_POSMTXIDX;
m_native_vtx_decl.posmtx.components = 4;
m_native_vtx_decl.posmtx.enable = true;
m_native_vtx_decl.posmtx.offset = m_dst_ofs;
m_native_vtx_decl.posmtx.type = VAR_UNSIGNED_BYTE;
m_native_vtx_decl.posmtx.integer = true;
m_src_ofs += sizeof(u8);
m_dst_ofs += sizeof(u32);
}
std::array<u32, 8> texmatidx_ofs;
for (size_t i = 0; i < m_VtxDesc.low.TexMatIdx.Size(); i++)
{
if (m_VtxDesc.low.TexMatIdx[i])
texmatidx_ofs[i] = m_src_ofs++;
}
OpArg data = GetVertexAddr(ARRAY_POSITION, m_VtxDesc.low.Position);
int pos_elements = m_VtxAttr.PosElements == CoordComponentCount::XY ? 2 : 3;
ReadVertex(data, m_VtxDesc.low.Position, m_VtxAttr.PosFormat, pos_elements, pos_elements,
m_VtxAttr.ByteDequant, m_VtxAttr.PosFrac, &m_native_vtx_decl.position);
if (m_VtxDesc.low.Normal != VertexComponentFormat::NotPresent)
{
static const u8 map[8] = {7, 6, 15, 14};
const u8 scaling_exponent = map[u32(m_VtxAttr.NormalFormat)];
const int limit = m_VtxAttr.NormalElements == NormalComponentCount::NBT ? 3 : 1;
for (int i = 0; i < limit; i++)
{
if (!i || m_VtxAttr.NormalIndex3)
{
data = GetVertexAddr(ARRAY_NORMAL, m_VtxDesc.low.Normal);
int elem_size = GetElementSize(m_VtxAttr.NormalFormat);
data.AddMemOffset(i * elem_size * 3);
}
data.AddMemOffset(ReadVertex(data, m_VtxDesc.low.Normal, m_VtxAttr.NormalFormat, 3, 3, true,
scaling_exponent, &m_native_vtx_decl.normals[i]));
}
m_native_components |= VB_HAS_NRM0;
if (m_VtxAttr.NormalElements == NormalComponentCount::NBT)
m_native_components |= VB_HAS_NRM1 | VB_HAS_NRM2;
}
for (size_t i = 0; i < m_VtxDesc.low.Color.Size(); i++)
{
if (m_VtxDesc.low.Color[i] != VertexComponentFormat::NotPresent)
{
data = GetVertexAddr(ARRAY_COLOR + int(i), m_VtxDesc.low.Color[i]);
ReadColor(data, m_VtxDesc.low.Color[i], m_VtxAttr.color[i].Comp);
m_native_components |= VB_HAS_COL0 << i;
m_native_vtx_decl.colors[i].components = 4;
m_native_vtx_decl.colors[i].enable = true;
m_native_vtx_decl.colors[i].offset = m_dst_ofs;
m_native_vtx_decl.colors[i].type = VAR_UNSIGNED_BYTE;
m_native_vtx_decl.colors[i].integer = false;
m_dst_ofs += 4;
}
}
for (size_t i = 0; i < m_VtxDesc.high.TexCoord.Size(); i++)
{
int elements = m_VtxAttr.texCoord[i].Elements == TexComponentCount::ST ? 2 : 1;
if (m_VtxDesc.high.TexCoord[i] != VertexComponentFormat::NotPresent)
{
data = GetVertexAddr(ARRAY_TEXCOORD0 + int(i), m_VtxDesc.high.TexCoord[i]);
u8 scaling_exponent = m_VtxAttr.texCoord[i].Frac;
ReadVertex(data, m_VtxDesc.high.TexCoord[i], m_VtxAttr.texCoord[i].Format, elements,
m_VtxDesc.low.TexMatIdx[i] ? 2 : elements, m_VtxAttr.ByteDequant, scaling_exponent,
&m_native_vtx_decl.texcoords[i]);
m_native_components |= VB_HAS_UV0 << i;
}
if (m_VtxDesc.low.TexMatIdx[i])
{
m_native_components |= VB_HAS_TEXMTXIDX0 << i;
m_native_vtx_decl.texcoords[i].components = 3;
m_native_vtx_decl.texcoords[i].enable = true;
m_native_vtx_decl.texcoords[i].type = VAR_FLOAT;
m_native_vtx_decl.texcoords[i].integer = false;
MOVZX(64, 8, scratch1, MDisp(src_reg, texmatidx_ofs[i]));
if (m_VtxDesc.high.TexCoord[i] != VertexComponentFormat::NotPresent)
{
CVTSI2SS(XMM0, R(scratch1));
MOVSS(MDisp(dst_reg, m_dst_ofs), XMM0);
m_dst_ofs += sizeof(float);
}
else
{
m_native_vtx_decl.texcoords[i].offset = m_dst_ofs;
PXOR(XMM0, R(XMM0));
CVTSI2SS(XMM0, R(scratch1));
SHUFPS(XMM0, R(XMM0), 0x45); // 000X -> 0X00
MOVUPS(MDisp(dst_reg, m_dst_ofs), XMM0);
m_dst_ofs += sizeof(float) * 3;
}
}
}
// Prepare for the next vertex.
ADD(64, R(dst_reg), Imm32(m_dst_ofs));
const u8* cont = GetCodePtr();
ADD(64, R(src_reg), Imm32(m_src_ofs));
SUB(32, R(count_reg), Imm8(1));
J_CC(CC_NZ, loop_start);
// Get the original count.
POP(32, R(ABI_RETURN));
ABI_PopRegistersAndAdjustStack(regs, 0);
if (IsIndexed(m_VtxDesc.low.Position))
{
SUB(32, R(ABI_RETURN), R(skipped_reg));
RET();
SetJumpTarget(m_skip_vertex);
ADD(32, R(skipped_reg), Imm8(1));
JMP(cont);
}
else
{
RET();
}
m_VertexSize = m_src_ofs;
m_native_vtx_decl.stride = m_dst_ofs;
}
int VertexLoaderX64::RunVertices(DataReader src, DataReader dst, int count)
{
m_numLoadedVertices += count;
return ((int (*)(u8*, u8*, int, const void*))region)(src.GetPointer(), dst.GetPointer(), count,
memory_base_ptr);
}