dolphin/Source/Core/VideoBackends/Vulkan/PostProcessing.cpp

324 lines
10 KiB
C++

// Copyright 2017 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include "VideoBackends/Vulkan/PostProcessing.h"
#include <sstream>
#include "Common/Assert.h"
#include "Common/StringUtil.h"
#include "VideoBackends/Vulkan/CommandBufferManager.h"
#include "VideoBackends/Vulkan/ObjectCache.h"
#include "VideoBackends/Vulkan/ShaderCache.h"
#include "VideoBackends/Vulkan/Texture2D.h"
#include "VideoBackends/Vulkan/Util.h"
#include "VideoBackends/Vulkan/VulkanContext.h"
#include "VideoCommon/VideoCommon.h"
#include "VideoCommon/VideoConfig.h"
namespace Vulkan
{
VulkanPostProcessing::~VulkanPostProcessing()
{
if (m_default_fragment_shader != VK_NULL_HANDLE)
vkDestroyShaderModule(g_vulkan_context->GetDevice(), m_default_fragment_shader, nullptr);
if (m_fragment_shader != VK_NULL_HANDLE)
vkDestroyShaderModule(g_vulkan_context->GetDevice(), m_fragment_shader, nullptr);
}
bool VulkanPostProcessing::Initialize(const Texture2D* font_texture)
{
m_font_texture = font_texture;
if (!CompileDefaultShader())
return false;
RecompileShader();
return true;
}
void VulkanPostProcessing::BlitFromTexture(const TargetRectangle& dst, const TargetRectangle& src,
const Texture2D* src_tex, int src_layer,
VkRenderPass render_pass)
{
// If the source layer is negative we simply copy all available layers.
VkShaderModule geometry_shader =
src_layer < 0 ? g_shader_cache->GetPassthroughGeometryShader() : VK_NULL_HANDLE;
VkShaderModule fragment_shader =
m_fragment_shader != VK_NULL_HANDLE ? m_fragment_shader : m_default_fragment_shader;
UtilityShaderDraw draw(g_command_buffer_mgr->GetCurrentCommandBuffer(),
g_object_cache->GetPipelineLayout(PIPELINE_LAYOUT_STANDARD), render_pass,
g_shader_cache->GetPassthroughVertexShader(), geometry_shader,
fragment_shader);
// Source is always bound.
draw.SetPSSampler(0, src_tex->GetView(), g_object_cache->GetLinearSampler());
// No need to allocate uniforms for the default shader.
// The config will also still contain the invalid shader at this point.
if (fragment_shader != m_default_fragment_shader)
{
size_t uniforms_size = CalculateUniformsSize();
u8* uniforms = draw.AllocatePSUniforms(uniforms_size);
FillUniformBuffer(uniforms, src, src_tex, src_layer);
draw.CommitPSUniforms(uniforms_size);
draw.SetPSSampler(1, m_font_texture->GetView(), g_object_cache->GetLinearSampler());
}
draw.DrawQuad(dst.left, dst.top, dst.GetWidth(), dst.GetHeight(), src.left, src.top, src_layer,
src.GetWidth(), src.GetHeight(), static_cast<int>(src_tex->GetWidth()),
static_cast<int>(src_tex->GetHeight()));
}
struct BuiltinUniforms
{
float resolution[4];
float src_rect[4];
u32 time;
u32 unused[3];
};
size_t VulkanPostProcessing::CalculateUniformsSize() const
{
// Allocate a vec4 for each uniform to simplify allocation.
return sizeof(BuiltinUniforms) + m_config.GetOptions().size() * sizeof(float) * 4;
}
void VulkanPostProcessing::FillUniformBuffer(u8* buf, const TargetRectangle& src,
const Texture2D* src_tex, int src_layer)
{
float src_width_float = static_cast<float>(src_tex->GetWidth());
float src_height_float = static_cast<float>(src_tex->GetHeight());
BuiltinUniforms builtin_uniforms = {
{src_width_float, src_height_float, 1.0f / src_width_float, 1.0f / src_height_float},
{static_cast<float>(src.left) / src_width_float,
static_cast<float>(src.top) / src_height_float,
static_cast<float>(src.GetWidth()) / src_width_float,
static_cast<float>(src.GetHeight()) / src_height_float},
static_cast<u32>(m_timer.GetTimeElapsed())};
std::memcpy(buf, &builtin_uniforms, sizeof(builtin_uniforms));
buf += sizeof(builtin_uniforms);
for (const auto& it : m_config.GetOptions())
{
union
{
u32 as_bool[4];
s32 as_int[4];
float as_float[4];
} value = {};
switch (it.second.m_type)
{
case PostProcessingShaderConfiguration::ConfigurationOption::OptionType::OPTION_BOOL:
value.as_bool[0] = it.second.m_bool_value ? 1 : 0;
break;
case PostProcessingShaderConfiguration::ConfigurationOption::OptionType::OPTION_INTEGER:
_assert_(it.second.m_integer_values.size() < 4);
std::copy_n(it.second.m_integer_values.begin(), it.second.m_integer_values.size(),
value.as_int);
break;
case PostProcessingShaderConfiguration::ConfigurationOption::OptionType::OPTION_FLOAT:
_assert_(it.second.m_float_values.size() < 4);
std::copy_n(it.second.m_float_values.begin(), it.second.m_float_values.size(),
value.as_float);
break;
}
std::memcpy(buf, &value, sizeof(value));
buf += sizeof(value);
}
}
static const std::string DEFAULT_FRAGMENT_SHADER_SOURCE = R"(
layout(set = 1, binding = 0) uniform sampler2DArray samp0;
layout(location = 0) in float3 uv0;
layout(location = 1) in float4 col0;
layout(location = 0) out float4 ocol0;
void main()
{
ocol0 = float4(texture(samp0, uv0).xyz, 1.0);
}
)";
static const std::string POSTPROCESSING_SHADER_HEADER = R"(
SAMPLER_BINDING(0) uniform sampler2DArray samp0;
SAMPLER_BINDING(1) uniform sampler2D samp1;
layout(location = 0) in float3 uv0;
layout(location = 1) in float4 col0;
layout(location = 0) out float4 ocol0;
// Interfacing functions
// The EFB may have a zero alpha value, which we don't want to write to the frame dump, so set it to one here.
float4 Sample()
{
return float4(texture(samp0, uv0).xyz, 1.0);
}
float4 SampleLocation(float2 location)
{
return float4(texture(samp0, float3(location, uv0.z)).xyz, 1.0);
}
float4 SampleLayer(int layer)
{
return float4(texture(samp0, float3(uv0.xy, float(layer))).xyz, 1.0);
}
#define SampleOffset(offset) float4(textureOffset(samp0, uv0, offset).xyz, 1.0)
float4 SampleFontLocation(float2 location)
{
return texture(samp1, location);
}
float2 GetResolution()
{
return options.resolution.xy;
}
float2 GetInvResolution()
{
return options.resolution.zw;
}
float2 GetCoordinates()
{
return uv0.xy;
}
uint GetTime()
{
return options.time;
}
void SetOutput(float4 color)
{
ocol0 = color;
}
#define GetOption(x) (options.x)
#define OptionEnabled(x) (options.x != 0)
// Workaround because there is no getter function for src rect/layer.
float4 src_rect = options.src_rect;
int layer = int(uv0.z);
)";
void VulkanPostProcessing::UpdateConfig()
{
if (m_config.GetShader() == g_ActiveConfig.sPostProcessingShader)
return;
RecompileShader();
}
bool VulkanPostProcessing::CompileDefaultShader()
{
m_default_fragment_shader = Util::CompileAndCreateFragmentShader(DEFAULT_FRAGMENT_SHADER_SOURCE);
if (m_default_fragment_shader == VK_NULL_HANDLE)
{
PanicAlert("Failed to compile default post-processing shader.");
return false;
}
return true;
}
bool VulkanPostProcessing::RecompileShader()
{
// As a driver can return the same new module pointer when destroying a shader and re-compiling,
// we need to wipe out the pipeline cache, otherwise we risk using old pipelines with old shaders.
// We can't just clear a single pipeline, because we don't know which render pass is going to be
// used here either.
if (m_fragment_shader != VK_NULL_HANDLE)
{
g_command_buffer_mgr->WaitForGPUIdle();
g_shader_cache->ClearPipelineCache();
vkDestroyShaderModule(g_vulkan_context->GetDevice(), m_fragment_shader, nullptr);
m_fragment_shader = VK_NULL_HANDLE;
}
// If post-processing is disabled, just use the default shader.
// This way we don't need to allocate uniforms.
if (g_ActiveConfig.sPostProcessingShader.empty())
return true;
// Generate GLSL and compile the new shader.
std::string main_code = m_config.LoadShader();
std::string options_code = GetGLSLUniformBlock();
std::string code = options_code + POSTPROCESSING_SHADER_HEADER + main_code;
m_fragment_shader = Util::CompileAndCreateFragmentShader(code);
if (m_fragment_shader == VK_NULL_HANDLE)
{
// BlitFromTexture will use the default shader as a fallback.
PanicAlert("Failed to compile post-processing shader %s", m_config.GetShader().c_str());
return false;
}
return true;
}
std::string VulkanPostProcessing::GetGLSLUniformBlock() const
{
std::stringstream ss;
u32 unused_counter = 1;
ss << "UBO_BINDING(std140, 1) uniform PSBlock {\n";
// Builtin uniforms
ss << " float4 resolution;\n";
ss << " float4 src_rect;\n";
ss << " uint time;\n";
for (u32 i = 0; i < 3; i++)
ss << " uint unused" << unused_counter++ << ";\n\n";
// Custom options/uniforms
for (const auto& it : m_config.GetOptions())
{
if (it.second.m_type ==
PostProcessingShaderConfiguration::ConfigurationOption::OptionType::OPTION_BOOL)
{
ss << StringFromFormat(" int %s;\n", it.first.c_str());
for (u32 i = 0; i < 3; i++)
ss << " int unused" << unused_counter++ << ";\n";
}
else if (it.second.m_type ==
PostProcessingShaderConfiguration::ConfigurationOption::OptionType::OPTION_INTEGER)
{
u32 count = static_cast<u32>(it.second.m_integer_values.size());
if (count == 1)
ss << StringFromFormat(" int %s;\n", it.first.c_str());
else
ss << StringFromFormat(" int%u %s;\n", count, it.first.c_str());
for (u32 i = count; i < 4; i++)
ss << " int unused" << unused_counter++ << ";\n";
}
else if (it.second.m_type ==
PostProcessingShaderConfiguration::ConfigurationOption::OptionType::OPTION_FLOAT)
{
u32 count = static_cast<u32>(it.second.m_float_values.size());
if (count == 1)
ss << StringFromFormat(" float %s;\n", it.first.c_str());
else
ss << StringFromFormat(" float%u %s;\n", count, it.first.c_str());
for (u32 i = count; i < 4; i++)
ss << " float unused" << unused_counter++ << ";\n";
}
}
ss << "} options;\n\n";
return ss.str();
}
} // namespace Vulkan