mirror of
https://github.com/dolphin-emu/dolphin.git
synced 2025-01-24 15:01:16 +01:00
357c55442f
Fixes a validation layer warning.
862 lines
34 KiB
C++
862 lines
34 KiB
C++
// Copyright 2016 Dolphin Emulator Project
|
|
// Licensed under GPLv2+
|
|
// Refer to the license.txt file included.
|
|
|
|
#include "VideoBackends/Vulkan/TextureConverter.h"
|
|
|
|
#include <algorithm>
|
|
#include <cstddef>
|
|
#include <cstring>
|
|
#include <string>
|
|
|
|
#include "Common/Assert.h"
|
|
#include "Common/CommonFuncs.h"
|
|
#include "Common/CommonTypes.h"
|
|
#include "Common/Logging/Log.h"
|
|
#include "Common/MsgHandler.h"
|
|
|
|
#include "VideoBackends/Vulkan/CommandBufferManager.h"
|
|
#include "VideoBackends/Vulkan/FramebufferManager.h"
|
|
#include "VideoBackends/Vulkan/ObjectCache.h"
|
|
#include "VideoBackends/Vulkan/StagingTexture2D.h"
|
|
#include "VideoBackends/Vulkan/StateTracker.h"
|
|
#include "VideoBackends/Vulkan/StreamBuffer.h"
|
|
#include "VideoBackends/Vulkan/Texture2D.h"
|
|
#include "VideoBackends/Vulkan/Util.h"
|
|
#include "VideoBackends/Vulkan/VKTexture.h"
|
|
#include "VideoBackends/Vulkan/VulkanContext.h"
|
|
|
|
#include "VideoCommon/TextureConversionShader.h"
|
|
#include "VideoCommon/TextureDecoder.h"
|
|
#include "VideoCommon/VideoConfig.h"
|
|
|
|
namespace Vulkan
|
|
{
|
|
TextureConverter::TextureConverter()
|
|
{
|
|
}
|
|
|
|
TextureConverter::~TextureConverter()
|
|
{
|
|
for (const auto& it : m_palette_conversion_shaders)
|
|
{
|
|
if (it != VK_NULL_HANDLE)
|
|
vkDestroyShaderModule(g_vulkan_context->GetDevice(), it, nullptr);
|
|
}
|
|
|
|
if (m_texel_buffer_view_r8_uint != VK_NULL_HANDLE)
|
|
vkDestroyBufferView(g_vulkan_context->GetDevice(), m_texel_buffer_view_r8_uint, nullptr);
|
|
if (m_texel_buffer_view_r16_uint != VK_NULL_HANDLE)
|
|
vkDestroyBufferView(g_vulkan_context->GetDevice(), m_texel_buffer_view_r16_uint, nullptr);
|
|
if (m_texel_buffer_view_r32g32_uint != VK_NULL_HANDLE)
|
|
vkDestroyBufferView(g_vulkan_context->GetDevice(), m_texel_buffer_view_r32g32_uint, nullptr);
|
|
if (m_texel_buffer_view_rgba8_unorm != VK_NULL_HANDLE)
|
|
vkDestroyBufferView(g_vulkan_context->GetDevice(), m_texel_buffer_view_rgba8_unorm, nullptr);
|
|
|
|
if (m_encoding_render_pass != VK_NULL_HANDLE)
|
|
vkDestroyRenderPass(g_vulkan_context->GetDevice(), m_encoding_render_pass, nullptr);
|
|
|
|
if (m_encoding_render_framebuffer != VK_NULL_HANDLE)
|
|
vkDestroyFramebuffer(g_vulkan_context->GetDevice(), m_encoding_render_framebuffer, nullptr);
|
|
|
|
for (auto& it : m_encoding_shaders)
|
|
vkDestroyShaderModule(g_vulkan_context->GetDevice(), it.second, nullptr);
|
|
|
|
for (const auto& it : m_decoding_pipelines)
|
|
{
|
|
if (it.second.compute_shader != VK_NULL_HANDLE)
|
|
vkDestroyShaderModule(g_vulkan_context->GetDevice(), it.second.compute_shader, nullptr);
|
|
}
|
|
|
|
if (m_rgb_to_yuyv_shader != VK_NULL_HANDLE)
|
|
vkDestroyShaderModule(g_vulkan_context->GetDevice(), m_rgb_to_yuyv_shader, nullptr);
|
|
if (m_yuyv_to_rgb_shader != VK_NULL_HANDLE)
|
|
vkDestroyShaderModule(g_vulkan_context->GetDevice(), m_yuyv_to_rgb_shader, nullptr);
|
|
}
|
|
|
|
bool TextureConverter::Initialize()
|
|
{
|
|
if (!CreateTexelBuffer())
|
|
{
|
|
PanicAlert("Failed to create uniform buffer");
|
|
return false;
|
|
}
|
|
|
|
if (!CompilePaletteConversionShaders())
|
|
{
|
|
PanicAlert("Failed to compile palette conversion shaders");
|
|
return false;
|
|
}
|
|
|
|
if (!CreateEncodingRenderPass())
|
|
{
|
|
PanicAlert("Failed to create encode render pass");
|
|
return false;
|
|
}
|
|
|
|
if (!CreateEncodingTexture())
|
|
{
|
|
PanicAlert("Failed to create encoding texture");
|
|
return false;
|
|
}
|
|
|
|
if (!CreateEncodingDownloadTexture())
|
|
{
|
|
PanicAlert("Failed to create download texture");
|
|
return false;
|
|
}
|
|
|
|
if (!CreateDecodingTexture())
|
|
{
|
|
PanicAlert("Failed to create decoding texture");
|
|
return false;
|
|
}
|
|
|
|
if (!CompileYUYVConversionShaders())
|
|
{
|
|
PanicAlert("Failed to compile YUYV conversion shaders");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool TextureConverter::ReserveTexelBufferStorage(size_t size, size_t alignment)
|
|
{
|
|
// Enforce the minimum alignment for texture buffers on the device.
|
|
size_t actual_alignment =
|
|
std::max(static_cast<size_t>(g_vulkan_context->GetTexelBufferAlignment()), alignment);
|
|
if (m_texel_buffer->ReserveMemory(size, actual_alignment))
|
|
return true;
|
|
|
|
WARN_LOG(VIDEO, "Executing command list while waiting for space in palette buffer");
|
|
Util::ExecuteCurrentCommandsAndRestoreState(false);
|
|
|
|
// This next call should never fail, since a command buffer is now in-flight and we can
|
|
// wait on the fence for the GPU to finish. If this returns false, it's probably because
|
|
// the device has been lost, which is fatal anyway.
|
|
if (!m_texel_buffer->ReserveMemory(size, actual_alignment))
|
|
{
|
|
PanicAlert("Failed to allocate space for texture conversion");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
VkCommandBuffer
|
|
TextureConverter::GetCommandBufferForTextureConversion(const TextureCache::TCacheEntry* src_entry)
|
|
{
|
|
// EFB copies can be used as paletted textures as well. For these, we can't assume them to be
|
|
// contain the correct data before the frame begins (when the init command buffer is executed),
|
|
// so we must convert them at the appropriate time, during the drawing command buffer.
|
|
if (src_entry->IsEfbCopy())
|
|
{
|
|
StateTracker::GetInstance()->EndRenderPass();
|
|
StateTracker::GetInstance()->SetPendingRebind();
|
|
return g_command_buffer_mgr->GetCurrentCommandBuffer();
|
|
}
|
|
else
|
|
{
|
|
// Use initialization command buffer and perform conversion before the drawing commands.
|
|
return g_command_buffer_mgr->GetCurrentInitCommandBuffer();
|
|
}
|
|
}
|
|
|
|
void TextureConverter::ConvertTexture(TextureCacheBase::TCacheEntry* dst_entry,
|
|
TextureCacheBase::TCacheEntry* src_entry,
|
|
VkRenderPass render_pass, const void* palette,
|
|
TlutFormat palette_format)
|
|
{
|
|
struct PSUniformBlock
|
|
{
|
|
float multiplier;
|
|
int texel_buffer_offset;
|
|
int pad[2];
|
|
};
|
|
|
|
VKTexture* source_texture = static_cast<VKTexture*>(src_entry->texture.get());
|
|
VKTexture* destination_texture = static_cast<VKTexture*>(dst_entry->texture.get());
|
|
|
|
_assert_(static_cast<size_t>(palette_format) < NUM_PALETTE_CONVERSION_SHADERS);
|
|
_assert_(destination_texture->GetConfig().rendertarget);
|
|
|
|
// We want to align to 2 bytes (R16) or the device's texel buffer alignment, whichever is greater.
|
|
size_t palette_size = (src_entry->format & 0xF) == GX_TF_I4 ? 32 : 512;
|
|
if (!ReserveTexelBufferStorage(palette_size, sizeof(u16)))
|
|
return;
|
|
|
|
// Copy in palette to texel buffer.
|
|
u32 palette_offset = static_cast<u32>(m_texel_buffer->GetCurrentOffset());
|
|
memcpy(m_texel_buffer->GetCurrentHostPointer(), palette, palette_size);
|
|
m_texel_buffer->CommitMemory(palette_size);
|
|
|
|
VkCommandBuffer command_buffer = GetCommandBufferForTextureConversion(src_entry);
|
|
source_texture->GetRawTexIdentifier()->TransitionToLayout(
|
|
command_buffer, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
|
|
destination_texture->GetRawTexIdentifier()->TransitionToLayout(
|
|
command_buffer, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
|
|
|
|
// Bind and draw to the destination.
|
|
UtilityShaderDraw draw(command_buffer,
|
|
g_object_cache->GetPipelineLayout(PIPELINE_LAYOUT_TEXTURE_CONVERSION),
|
|
render_pass, g_shader_cache->GetScreenQuadVertexShader(), VK_NULL_HANDLE,
|
|
m_palette_conversion_shaders[palette_format]);
|
|
|
|
VkRect2D region = {{0, 0}, {dst_entry->GetWidth(), dst_entry->GetHeight()}};
|
|
draw.BeginRenderPass(destination_texture->GetFramebuffer(), region);
|
|
|
|
PSUniformBlock uniforms = {};
|
|
uniforms.multiplier = (src_entry->format & 0xF) == GX_TF_I4 ? 15.0f : 255.0f;
|
|
uniforms.texel_buffer_offset = static_cast<int>(palette_offset / sizeof(u16));
|
|
draw.SetPushConstants(&uniforms, sizeof(uniforms));
|
|
draw.SetPSSampler(0, source_texture->GetRawTexIdentifier()->GetView(),
|
|
g_object_cache->GetPointSampler());
|
|
draw.SetPSTexelBuffer(m_texel_buffer_view_r16_uint);
|
|
draw.SetViewportAndScissor(0, 0, dst_entry->GetWidth(), dst_entry->GetHeight());
|
|
draw.DrawWithoutVertexBuffer(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP, 4);
|
|
draw.EndRenderPass();
|
|
}
|
|
|
|
void TextureConverter::EncodeTextureToMemory(VkImageView src_texture, u8* dest_ptr,
|
|
const EFBCopyFormat& format, u32 native_width,
|
|
u32 bytes_per_row, u32 num_blocks_y, u32 memory_stride,
|
|
bool is_depth_copy, const EFBRectangle& src_rect,
|
|
bool scale_by_half)
|
|
{
|
|
VkShaderModule shader = GetEncodingShader(format);
|
|
if (shader == VK_NULL_HANDLE)
|
|
{
|
|
ERROR_LOG(VIDEO, "Missing encoding fragment shader for format %u->%u", format.efb_format,
|
|
static_cast<u32>(format.copy_format));
|
|
return;
|
|
}
|
|
|
|
// Can't do our own draw within a render pass.
|
|
StateTracker::GetInstance()->EndRenderPass();
|
|
|
|
m_encoding_render_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
|
|
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
|
|
|
|
UtilityShaderDraw draw(g_command_buffer_mgr->GetCurrentCommandBuffer(),
|
|
g_object_cache->GetPipelineLayout(PIPELINE_LAYOUT_PUSH_CONSTANT),
|
|
m_encoding_render_pass, g_shader_cache->GetScreenQuadVertexShader(),
|
|
VK_NULL_HANDLE, shader);
|
|
|
|
// Uniform - int4 of left,top,native_width,scale
|
|
s32 position_uniform[4] = {src_rect.left, src_rect.top, static_cast<s32>(native_width),
|
|
scale_by_half ? 2 : 1};
|
|
draw.SetPushConstants(position_uniform, sizeof(position_uniform));
|
|
|
|
// We also linear filtering for both box filtering and downsampling higher resolutions to 1x
|
|
// TODO: This only produces perfect downsampling for 1.5x and 2x IR, other resolution will
|
|
// need more complex down filtering to average all pixels and produce the correct result.
|
|
bool linear_filter = (scale_by_half && !is_depth_copy) || g_ActiveConfig.iEFBScale != SCALE_1X;
|
|
draw.SetPSSampler(0, src_texture, linear_filter ? g_object_cache->GetLinearSampler() :
|
|
g_object_cache->GetPointSampler());
|
|
|
|
u32 render_width = bytes_per_row / sizeof(u32);
|
|
u32 render_height = num_blocks_y;
|
|
Util::SetViewportAndScissor(g_command_buffer_mgr->GetCurrentCommandBuffer(), 0, 0, render_width,
|
|
render_height);
|
|
|
|
VkRect2D render_region = {{0, 0}, {render_width, render_height}};
|
|
draw.BeginRenderPass(m_encoding_render_framebuffer, render_region);
|
|
draw.DrawWithoutVertexBuffer(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP, 4);
|
|
draw.EndRenderPass();
|
|
|
|
// Transition the image before copying
|
|
m_encoding_render_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
|
|
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
|
|
m_encoding_download_texture->CopyFromImage(
|
|
g_command_buffer_mgr->GetCurrentCommandBuffer(), m_encoding_render_texture->GetImage(),
|
|
VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, render_width, render_height, 0, 0);
|
|
|
|
// Block until the GPU has finished copying to the staging texture.
|
|
Util::ExecuteCurrentCommandsAndRestoreState(false, true);
|
|
|
|
// Copy from staging texture to the final destination, adjusting pitch if necessary.
|
|
m_encoding_download_texture->ReadTexels(0, 0, render_width, render_height, dest_ptr,
|
|
memory_stride);
|
|
}
|
|
|
|
void TextureConverter::EncodeTextureToMemoryYUYV(void* dst_ptr, u32 dst_width, u32 dst_stride,
|
|
u32 dst_height, Texture2D* src_texture,
|
|
const MathUtil::Rectangle<int>& src_rect)
|
|
{
|
|
StateTracker::GetInstance()->EndRenderPass();
|
|
|
|
// Borrow framebuffer from EFB2RAM encoder.
|
|
VkCommandBuffer command_buffer = g_command_buffer_mgr->GetCurrentCommandBuffer();
|
|
src_texture->TransitionToLayout(command_buffer, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
|
|
m_encoding_render_texture->TransitionToLayout(command_buffer,
|
|
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
|
|
|
|
// Use fragment shader to convert RGBA to YUYV.
|
|
// Use linear sampler for downscaling. This texture is in BGRA order, so the data is already in
|
|
// the order the guest is expecting and we don't have to swap it at readback time. The width
|
|
// is halved because we're using an RGBA8 texture, but the YUYV data is two bytes per pixel.
|
|
u32 output_width = dst_width / 2;
|
|
UtilityShaderDraw draw(command_buffer,
|
|
g_object_cache->GetPipelineLayout(PIPELINE_LAYOUT_STANDARD),
|
|
m_encoding_render_pass, g_shader_cache->GetPassthroughVertexShader(),
|
|
VK_NULL_HANDLE, m_rgb_to_yuyv_shader);
|
|
VkRect2D region = {{0, 0}, {output_width, dst_height}};
|
|
draw.BeginRenderPass(m_encoding_render_framebuffer, region);
|
|
draw.SetPSSampler(0, src_texture->GetView(), g_object_cache->GetLinearSampler());
|
|
draw.DrawQuad(0, 0, static_cast<int>(output_width), static_cast<int>(dst_height), src_rect.left,
|
|
src_rect.top, 0, src_rect.GetWidth(), src_rect.GetHeight(),
|
|
static_cast<int>(src_texture->GetWidth()),
|
|
static_cast<int>(src_texture->GetHeight()));
|
|
draw.EndRenderPass();
|
|
|
|
// Render pass transitions to TRANSFER_SRC.
|
|
m_encoding_render_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
|
|
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
|
|
|
|
// Copy from encoding texture to download buffer.
|
|
m_encoding_download_texture->CopyFromImage(command_buffer, m_encoding_render_texture->GetImage(),
|
|
VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, output_width,
|
|
dst_height, 0, 0);
|
|
Util::ExecuteCurrentCommandsAndRestoreState(false, true);
|
|
|
|
// Finally, copy to guest memory. This may have a different stride.
|
|
m_encoding_download_texture->ReadTexels(0, 0, output_width, dst_height, dst_ptr, dst_stride);
|
|
}
|
|
|
|
void TextureConverter::DecodeYUYVTextureFromMemory(VKTexture* dst_texture, const void* src_ptr,
|
|
u32 src_width, u32 src_stride, u32 src_height)
|
|
{
|
|
// Copies (and our decoding step) cannot be done inside a render pass.
|
|
StateTracker::GetInstance()->EndRenderPass();
|
|
StateTracker::GetInstance()->SetPendingRebind();
|
|
|
|
// Pack each row without any padding in the texel buffer.
|
|
size_t upload_stride = src_width * sizeof(u16);
|
|
size_t upload_size = upload_stride * src_height;
|
|
|
|
// Reserve space in the texel buffer for storing the raw image.
|
|
if (!ReserveTexelBufferStorage(upload_size, sizeof(u16)))
|
|
return;
|
|
|
|
// Handle pitch differences here.
|
|
if (src_stride != upload_stride)
|
|
{
|
|
const u8* src_row_ptr = reinterpret_cast<const u8*>(src_ptr);
|
|
u8* dst_row_ptr = m_texel_buffer->GetCurrentHostPointer();
|
|
size_t copy_size = std::min(upload_stride, static_cast<size_t>(src_stride));
|
|
for (u32 row = 0; row < src_height; row++)
|
|
{
|
|
std::memcpy(dst_row_ptr, src_row_ptr, copy_size);
|
|
src_row_ptr += src_stride;
|
|
dst_row_ptr += upload_stride;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
std::memcpy(m_texel_buffer->GetCurrentHostPointer(), src_ptr, upload_size);
|
|
}
|
|
|
|
VkDeviceSize texel_buffer_offset = m_texel_buffer->GetCurrentOffset();
|
|
m_texel_buffer->CommitMemory(upload_size);
|
|
|
|
dst_texture->GetRawTexIdentifier()->TransitionToLayout(
|
|
g_command_buffer_mgr->GetCurrentCommandBuffer(), VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
|
|
|
|
// We divide the offset by 4 here because we're fetching RGBA8 elements.
|
|
// The stride is in RGBA8 elements, so we divide by two because our data is two bytes per pixel.
|
|
struct PSUniformBlock
|
|
{
|
|
int buffer_offset;
|
|
int src_stride;
|
|
};
|
|
PSUniformBlock push_constants = {static_cast<int>(texel_buffer_offset / sizeof(u32)),
|
|
static_cast<int>(src_width / 2)};
|
|
|
|
// Convert from the YUYV data now in the intermediate texture to RGBA in the destination.
|
|
UtilityShaderDraw draw(g_command_buffer_mgr->GetCurrentCommandBuffer(),
|
|
g_object_cache->GetPipelineLayout(PIPELINE_LAYOUT_TEXTURE_CONVERSION),
|
|
m_encoding_render_pass, g_shader_cache->GetScreenQuadVertexShader(),
|
|
VK_NULL_HANDLE, m_yuyv_to_rgb_shader);
|
|
VkRect2D region = {{0, 0}, {src_width, src_height}};
|
|
draw.BeginRenderPass(dst_texture->GetFramebuffer(), region);
|
|
draw.SetViewportAndScissor(0, 0, static_cast<int>(src_width), static_cast<int>(src_height));
|
|
draw.SetPSTexelBuffer(m_texel_buffer_view_rgba8_unorm);
|
|
draw.SetPushConstants(&push_constants, sizeof(push_constants));
|
|
draw.DrawWithoutVertexBuffer(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP, 4);
|
|
draw.EndRenderPass();
|
|
}
|
|
|
|
bool TextureConverter::SupportsTextureDecoding(TextureFormat format, TlutFormat palette_format)
|
|
{
|
|
auto key = std::make_pair(format, palette_format);
|
|
auto iter = m_decoding_pipelines.find(key);
|
|
if (iter != m_decoding_pipelines.end())
|
|
return iter->second.valid;
|
|
|
|
TextureDecodingPipeline pipeline;
|
|
pipeline.base_info = TextureConversionShader::GetDecodingShaderInfo(format);
|
|
pipeline.compute_shader = VK_NULL_HANDLE;
|
|
pipeline.valid = false;
|
|
|
|
if (!pipeline.base_info)
|
|
{
|
|
m_decoding_pipelines.emplace(key, pipeline);
|
|
return false;
|
|
}
|
|
|
|
std::string shader_source =
|
|
TextureConversionShader::GenerateDecodingShader(format, palette_format, APIType::Vulkan);
|
|
|
|
pipeline.compute_shader = Util::CompileAndCreateComputeShader(shader_source);
|
|
if (pipeline.compute_shader == VK_NULL_HANDLE)
|
|
{
|
|
m_decoding_pipelines.emplace(key, pipeline);
|
|
return false;
|
|
}
|
|
|
|
pipeline.valid = true;
|
|
m_decoding_pipelines.emplace(key, pipeline);
|
|
return true;
|
|
}
|
|
|
|
void TextureConverter::DecodeTexture(VkCommandBuffer command_buffer,
|
|
TextureCache::TCacheEntry* entry, u32 dst_level,
|
|
const u8* data, size_t data_size, TextureFormat format,
|
|
u32 width, u32 height, u32 aligned_width, u32 aligned_height,
|
|
u32 row_stride, const u8* palette, TlutFormat palette_format)
|
|
{
|
|
VKTexture* destination_texture = static_cast<VKTexture*>(entry->texture.get());
|
|
auto key = std::make_pair(format, palette_format);
|
|
auto iter = m_decoding_pipelines.find(key);
|
|
if (iter == m_decoding_pipelines.end())
|
|
return;
|
|
|
|
struct PushConstants
|
|
{
|
|
u32 dst_size[2];
|
|
u32 src_size[2];
|
|
u32 src_offset;
|
|
u32 src_row_stride;
|
|
u32 palette_offset;
|
|
};
|
|
|
|
// Copy to GPU-visible buffer, aligned to the data type
|
|
auto info = iter->second;
|
|
u32 bytes_per_buffer_elem =
|
|
TextureConversionShader::GetBytesPerBufferElement(info.base_info->buffer_format);
|
|
|
|
// Calculate total data size, including palette.
|
|
// Only copy palette if it is required.
|
|
u32 total_upload_size = static_cast<u32>(data_size);
|
|
u32 palette_size = iter->second.base_info->palette_size;
|
|
u32 palette_offset = total_upload_size;
|
|
bool has_palette = palette_size > 0;
|
|
if (has_palette)
|
|
{
|
|
// Align to u16.
|
|
if ((total_upload_size % sizeof(u16)) != 0)
|
|
{
|
|
total_upload_size++;
|
|
palette_offset++;
|
|
}
|
|
|
|
total_upload_size += palette_size;
|
|
}
|
|
|
|
// Allocate space for upload, if it fails, execute the buffer.
|
|
if (!m_texel_buffer->ReserveMemory(total_upload_size, bytes_per_buffer_elem))
|
|
{
|
|
Util::ExecuteCurrentCommandsAndRestoreState(true, false);
|
|
if (!m_texel_buffer->ReserveMemory(total_upload_size, bytes_per_buffer_elem))
|
|
PanicAlert("Failed to reserve memory for encoded texture upload");
|
|
}
|
|
|
|
// Copy/commit upload buffer.
|
|
u32 texel_buffer_offset = static_cast<u32>(m_texel_buffer->GetCurrentOffset());
|
|
std::memcpy(m_texel_buffer->GetCurrentHostPointer(), data, data_size);
|
|
if (has_palette)
|
|
std::memcpy(m_texel_buffer->GetCurrentHostPointer() + palette_offset, palette, palette_size);
|
|
m_texel_buffer->CommitMemory(total_upload_size);
|
|
|
|
// Determine uniforms.
|
|
PushConstants constants = {
|
|
{width, height},
|
|
{aligned_width, aligned_height},
|
|
texel_buffer_offset / bytes_per_buffer_elem,
|
|
row_stride / bytes_per_buffer_elem,
|
|
static_cast<u32>((texel_buffer_offset + palette_offset) / sizeof(u16))};
|
|
|
|
// Determine view to use for texel buffers.
|
|
VkBufferView data_view = VK_NULL_HANDLE;
|
|
switch (iter->second.base_info->buffer_format)
|
|
{
|
|
case TextureConversionShader::BUFFER_FORMAT_R8_UINT:
|
|
data_view = m_texel_buffer_view_r8_uint;
|
|
break;
|
|
case TextureConversionShader::BUFFER_FORMAT_R16_UINT:
|
|
data_view = m_texel_buffer_view_r16_uint;
|
|
break;
|
|
case TextureConversionShader::BUFFER_FORMAT_R32G32_UINT:
|
|
data_view = m_texel_buffer_view_r32g32_uint;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
// Dispatch compute to temporary texture.
|
|
ComputeShaderDispatcher dispatcher(command_buffer,
|
|
g_object_cache->GetPipelineLayout(PIPELINE_LAYOUT_COMPUTE),
|
|
iter->second.compute_shader);
|
|
m_decoding_texture->TransitionToLayout(command_buffer, Texture2D::ComputeImageLayout::WriteOnly);
|
|
dispatcher.SetPushConstants(&constants, sizeof(constants));
|
|
dispatcher.SetStorageImage(m_decoding_texture->GetView(), m_decoding_texture->GetLayout());
|
|
dispatcher.SetTexelBuffer(0, data_view);
|
|
if (has_palette)
|
|
dispatcher.SetTexelBuffer(1, m_texel_buffer_view_r16_uint);
|
|
auto groups = TextureConversionShader::GetDispatchCount(iter->second.base_info, aligned_width,
|
|
aligned_height);
|
|
dispatcher.Dispatch(groups.first, groups.second, 1);
|
|
|
|
// Copy from temporary texture to final destination.
|
|
Texture2D* vulkan_tex_identifier = destination_texture->GetRawTexIdentifier();
|
|
m_decoding_texture->TransitionToLayout(command_buffer, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
|
|
vulkan_tex_identifier->TransitionToLayout(command_buffer, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
|
|
VkImageCopy image_copy = {{VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1},
|
|
{0, 0, 0},
|
|
{VK_IMAGE_ASPECT_COLOR_BIT, dst_level, 0, 1},
|
|
{0, 0, 0},
|
|
{width, height, 1}};
|
|
vkCmdCopyImage(command_buffer, m_decoding_texture->GetImage(),
|
|
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, vulkan_tex_identifier->GetImage(),
|
|
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &image_copy);
|
|
}
|
|
|
|
bool TextureConverter::CreateTexelBuffer()
|
|
{
|
|
// Prefer an 8MB buffer if possible, but use less if the device doesn't support this.
|
|
// This buffer is potentially going to be addressed as R8s in the future, so we assume
|
|
// that one element is one byte.
|
|
m_texel_buffer_size =
|
|
std::min(TEXTURE_CONVERSION_TEXEL_BUFFER_SIZE,
|
|
static_cast<size_t>(g_vulkan_context->GetDeviceLimits().maxTexelBufferElements));
|
|
|
|
m_texel_buffer = StreamBuffer::Create(VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT,
|
|
m_texel_buffer_size, m_texel_buffer_size);
|
|
if (!m_texel_buffer)
|
|
return false;
|
|
|
|
// Create views of the formats that we will be using.
|
|
m_texel_buffer_view_r8_uint = CreateTexelBufferView(VK_FORMAT_R8_UINT);
|
|
m_texel_buffer_view_r16_uint = CreateTexelBufferView(VK_FORMAT_R16_UINT);
|
|
m_texel_buffer_view_r32g32_uint = CreateTexelBufferView(VK_FORMAT_R32G32_UINT);
|
|
m_texel_buffer_view_rgba8_unorm = CreateTexelBufferView(VK_FORMAT_R8G8B8A8_UNORM);
|
|
return m_texel_buffer_view_r8_uint != VK_NULL_HANDLE &&
|
|
m_texel_buffer_view_r16_uint != VK_NULL_HANDLE &&
|
|
m_texel_buffer_view_r32g32_uint != VK_NULL_HANDLE &&
|
|
m_texel_buffer_view_rgba8_unorm != VK_NULL_HANDLE;
|
|
}
|
|
|
|
VkBufferView TextureConverter::CreateTexelBufferView(VkFormat format) const
|
|
{
|
|
// Create a view of the whole buffer, we'll offset our texel load into it
|
|
VkBufferViewCreateInfo view_info = {
|
|
VK_STRUCTURE_TYPE_BUFFER_VIEW_CREATE_INFO, // VkStructureType sType
|
|
nullptr, // const void* pNext
|
|
0, // VkBufferViewCreateFlags flags
|
|
m_texel_buffer->GetBuffer(), // VkBuffer buffer
|
|
format, // VkFormat format
|
|
0, // VkDeviceSize offset
|
|
m_texel_buffer_size // VkDeviceSize range
|
|
};
|
|
|
|
VkBufferView view;
|
|
VkResult res = vkCreateBufferView(g_vulkan_context->GetDevice(), &view_info, nullptr, &view);
|
|
if (res != VK_SUCCESS)
|
|
{
|
|
LOG_VULKAN_ERROR(res, "vkCreateBufferView failed: ");
|
|
return VK_NULL_HANDLE;
|
|
}
|
|
|
|
return view;
|
|
}
|
|
|
|
bool TextureConverter::CompilePaletteConversionShaders()
|
|
{
|
|
static const char PALETTE_CONVERSION_FRAGMENT_SHADER_SOURCE[] = R"(
|
|
layout(std140, push_constant) uniform PCBlock
|
|
{
|
|
float multiplier;
|
|
int texture_buffer_offset;
|
|
} PC;
|
|
|
|
SAMPLER_BINDING(0) uniform sampler2DArray samp0;
|
|
TEXEL_BUFFER_BINDING(0) uniform usamplerBuffer samp1;
|
|
|
|
layout(location = 0) in vec3 f_uv0;
|
|
layout(location = 0) out vec4 ocol0;
|
|
|
|
int Convert3To8(int v)
|
|
{
|
|
// Swizzle bits: 00000123 -> 12312312
|
|
return (v << 5) | (v << 2) | (v >> 1);
|
|
}
|
|
int Convert4To8(int v)
|
|
{
|
|
// Swizzle bits: 00001234 -> 12341234
|
|
return (v << 4) | v;
|
|
}
|
|
int Convert5To8(int v)
|
|
{
|
|
// Swizzle bits: 00012345 -> 12345123
|
|
return (v << 3) | (v >> 2);
|
|
}
|
|
int Convert6To8(int v)
|
|
{
|
|
// Swizzle bits: 00123456 -> 12345612
|
|
return (v << 2) | (v >> 4);
|
|
}
|
|
float4 DecodePixel_RGB5A3(int val)
|
|
{
|
|
int r,g,b,a;
|
|
if ((val&0x8000) > 0)
|
|
{
|
|
r=Convert5To8((val>>10) & 0x1f);
|
|
g=Convert5To8((val>>5 ) & 0x1f);
|
|
b=Convert5To8((val ) & 0x1f);
|
|
a=0xFF;
|
|
}
|
|
else
|
|
{
|
|
a=Convert3To8((val>>12) & 0x7);
|
|
r=Convert4To8((val>>8 ) & 0xf);
|
|
g=Convert4To8((val>>4 ) & 0xf);
|
|
b=Convert4To8((val ) & 0xf);
|
|
}
|
|
return float4(r, g, b, a) / 255.0;
|
|
}
|
|
float4 DecodePixel_RGB565(int val)
|
|
{
|
|
int r, g, b, a;
|
|
r = Convert5To8((val >> 11) & 0x1f);
|
|
g = Convert6To8((val >> 5) & 0x3f);
|
|
b = Convert5To8((val) & 0x1f);
|
|
a = 0xFF;
|
|
return float4(r, g, b, a) / 255.0;
|
|
}
|
|
float4 DecodePixel_IA8(int val)
|
|
{
|
|
int i = val & 0xFF;
|
|
int a = val >> 8;
|
|
return float4(i, i, i, a) / 255.0;
|
|
}
|
|
void main()
|
|
{
|
|
int src = int(round(texture(samp0, f_uv0).r * PC.multiplier));
|
|
src = int(texelFetch(samp1, src + PC.texture_buffer_offset).r);
|
|
src = ((src << 8) & 0xFF00) | (src >> 8);
|
|
ocol0 = DECODE(src);
|
|
}
|
|
|
|
)";
|
|
|
|
std::string palette_ia8_program = StringFromFormat("%s\n%s", "#define DECODE DecodePixel_IA8",
|
|
PALETTE_CONVERSION_FRAGMENT_SHADER_SOURCE);
|
|
std::string palette_rgb565_program = StringFromFormat(
|
|
"%s\n%s", "#define DECODE DecodePixel_RGB565", PALETTE_CONVERSION_FRAGMENT_SHADER_SOURCE);
|
|
std::string palette_rgb5a3_program = StringFromFormat(
|
|
"%s\n%s", "#define DECODE DecodePixel_RGB5A3", PALETTE_CONVERSION_FRAGMENT_SHADER_SOURCE);
|
|
|
|
m_palette_conversion_shaders[GX_TL_IA8] =
|
|
Util::CompileAndCreateFragmentShader(palette_ia8_program);
|
|
m_palette_conversion_shaders[GX_TL_RGB565] =
|
|
Util::CompileAndCreateFragmentShader(palette_rgb565_program);
|
|
m_palette_conversion_shaders[GX_TL_RGB5A3] =
|
|
Util::CompileAndCreateFragmentShader(palette_rgb5a3_program);
|
|
|
|
return m_palette_conversion_shaders[GX_TL_IA8] != VK_NULL_HANDLE &&
|
|
m_palette_conversion_shaders[GX_TL_RGB565] != VK_NULL_HANDLE &&
|
|
m_palette_conversion_shaders[GX_TL_RGB5A3] != VK_NULL_HANDLE;
|
|
}
|
|
|
|
VkShaderModule TextureConverter::CompileEncodingShader(const EFBCopyFormat& format)
|
|
{
|
|
const char* shader = TextureConversionShader::GenerateEncodingShader(format, APIType::Vulkan);
|
|
VkShaderModule module = Util::CompileAndCreateFragmentShader(shader);
|
|
if (module == VK_NULL_HANDLE)
|
|
PanicAlert("Failed to compile texture encoding shader.");
|
|
|
|
return module;
|
|
}
|
|
|
|
VkShaderModule TextureConverter::GetEncodingShader(const EFBCopyFormat& format)
|
|
{
|
|
auto iter = m_encoding_shaders.find(format);
|
|
if (iter != m_encoding_shaders.end())
|
|
return iter->second;
|
|
|
|
VkShaderModule shader = CompileEncodingShader(format);
|
|
m_encoding_shaders.emplace(format, shader);
|
|
return shader;
|
|
}
|
|
|
|
bool TextureConverter::CreateEncodingRenderPass()
|
|
{
|
|
VkAttachmentDescription attachments[] = {
|
|
{0, ENCODING_TEXTURE_FORMAT, VK_SAMPLE_COUNT_1_BIT, VK_ATTACHMENT_LOAD_OP_DONT_CARE,
|
|
VK_ATTACHMENT_STORE_OP_STORE, VK_ATTACHMENT_LOAD_OP_DONT_CARE,
|
|
VK_ATTACHMENT_STORE_OP_DONT_CARE, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
|
|
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL}};
|
|
|
|
VkAttachmentReference color_attachment_references[] = {
|
|
{0, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL}};
|
|
|
|
VkSubpassDescription subpass_descriptions[] = {{0, VK_PIPELINE_BIND_POINT_GRAPHICS, 0, nullptr, 1,
|
|
color_attachment_references, nullptr, nullptr, 0,
|
|
nullptr}};
|
|
|
|
VkRenderPassCreateInfo pass_info = {VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,
|
|
nullptr,
|
|
0,
|
|
static_cast<u32>(ArraySize(attachments)),
|
|
attachments,
|
|
static_cast<u32>(ArraySize(subpass_descriptions)),
|
|
subpass_descriptions,
|
|
0,
|
|
nullptr};
|
|
|
|
VkResult res = vkCreateRenderPass(g_vulkan_context->GetDevice(), &pass_info, nullptr,
|
|
&m_encoding_render_pass);
|
|
if (res != VK_SUCCESS)
|
|
{
|
|
LOG_VULKAN_ERROR(res, "vkCreateRenderPass (Encode) failed: ");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool TextureConverter::CreateEncodingTexture()
|
|
{
|
|
m_encoding_render_texture = Texture2D::Create(
|
|
ENCODING_TEXTURE_WIDTH, ENCODING_TEXTURE_HEIGHT, 1, 1, ENCODING_TEXTURE_FORMAT,
|
|
VK_SAMPLE_COUNT_1_BIT, VK_IMAGE_VIEW_TYPE_2D, VK_IMAGE_TILING_OPTIMAL,
|
|
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_SAMPLED_BIT |
|
|
VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT);
|
|
if (!m_encoding_render_texture)
|
|
return false;
|
|
|
|
VkImageView framebuffer_attachments[] = {m_encoding_render_texture->GetView()};
|
|
VkFramebufferCreateInfo framebuffer_info = {VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,
|
|
nullptr,
|
|
0,
|
|
m_encoding_render_pass,
|
|
static_cast<u32>(ArraySize(framebuffer_attachments)),
|
|
framebuffer_attachments,
|
|
m_encoding_render_texture->GetWidth(),
|
|
m_encoding_render_texture->GetHeight(),
|
|
m_encoding_render_texture->GetLayers()};
|
|
|
|
VkResult res = vkCreateFramebuffer(g_vulkan_context->GetDevice(), &framebuffer_info, nullptr,
|
|
&m_encoding_render_framebuffer);
|
|
if (res != VK_SUCCESS)
|
|
{
|
|
LOG_VULKAN_ERROR(res, "vkCreateFramebuffer failed: ");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool TextureConverter::CreateEncodingDownloadTexture()
|
|
{
|
|
m_encoding_download_texture =
|
|
StagingTexture2D::Create(STAGING_BUFFER_TYPE_READBACK, ENCODING_TEXTURE_WIDTH,
|
|
ENCODING_TEXTURE_HEIGHT, ENCODING_TEXTURE_FORMAT);
|
|
|
|
return m_encoding_download_texture && m_encoding_download_texture->Map();
|
|
}
|
|
|
|
bool TextureConverter::CreateDecodingTexture()
|
|
{
|
|
m_decoding_texture = Texture2D::Create(
|
|
DECODING_TEXTURE_WIDTH, DECODING_TEXTURE_HEIGHT, 1, 1, VK_FORMAT_R8G8B8A8_UNORM,
|
|
VK_SAMPLE_COUNT_1_BIT, VK_IMAGE_VIEW_TYPE_2D_ARRAY, VK_IMAGE_TILING_OPTIMAL,
|
|
VK_IMAGE_USAGE_STORAGE_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT |
|
|
VK_IMAGE_USAGE_TRANSFER_SRC_BIT);
|
|
if (!m_decoding_texture)
|
|
return false;
|
|
|
|
VkClearColorValue clear_value = {{0.0f, 0.0f, 0.0f, 1.0f}};
|
|
VkImageSubresourceRange clear_range = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1};
|
|
m_decoding_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentInitCommandBuffer(),
|
|
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
|
|
vkCmdClearColorImage(g_command_buffer_mgr->GetCurrentInitCommandBuffer(),
|
|
m_decoding_texture->GetImage(), VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
|
|
&clear_value, 1, &clear_range);
|
|
return true;
|
|
}
|
|
|
|
bool TextureConverter::CompileYUYVConversionShaders()
|
|
{
|
|
static const char RGB_TO_YUYV_SHADER_SOURCE[] = R"(
|
|
SAMPLER_BINDING(0) uniform sampler2DArray source;
|
|
layout(location = 0) in vec3 uv0;
|
|
layout(location = 0) out vec4 ocol0;
|
|
|
|
const vec3 y_const = vec3(0.257,0.504,0.098);
|
|
const vec3 u_const = vec3(-0.148,-0.291,0.439);
|
|
const vec3 v_const = vec3(0.439,-0.368,-0.071);
|
|
const vec4 const3 = vec4(0.0625,0.5,0.0625,0.5);
|
|
|
|
void main()
|
|
{
|
|
vec3 c0 = texture(source, vec3(uv0.xy - dFdx(uv0.xy) * 0.25, 0.0)).rgb;
|
|
vec3 c1 = texture(source, vec3(uv0.xy + dFdx(uv0.xy) * 0.25, 0.0)).rgb;
|
|
vec3 c01 = (c0 + c1) * 0.5;
|
|
ocol0 = vec4(dot(c1, y_const),
|
|
dot(c01,u_const),
|
|
dot(c0,y_const),
|
|
dot(c01, v_const)) + const3;
|
|
}
|
|
)";
|
|
|
|
static const char YUYV_TO_RGB_SHADER_SOURCE[] = R"(
|
|
layout(std140, push_constant) uniform PCBlock
|
|
{
|
|
int buffer_offset;
|
|
int src_stride;
|
|
} PC;
|
|
|
|
TEXEL_BUFFER_BINDING(0) uniform samplerBuffer source;
|
|
layout(location = 0) in vec3 uv0;
|
|
layout(location = 0) out vec4 ocol0;
|
|
|
|
void main()
|
|
{
|
|
ivec2 uv = ivec2(gl_FragCoord.xy);
|
|
int buffer_pos = PC.buffer_offset + uv.y * PC.src_stride + (uv.x / 2);
|
|
vec4 c0 = texelFetch(source, buffer_pos);
|
|
|
|
float y = mix(c0.r, c0.b, (uv.x & 1) == 1);
|
|
float yComp = 1.164 * (y - 0.0625);
|
|
float uComp = c0.g - 0.5;
|
|
float vComp = c0.a - 0.5;
|
|
ocol0 = vec4(yComp + (1.596 * vComp),
|
|
yComp - (0.813 * vComp) - (0.391 * uComp),
|
|
yComp + (2.018 * uComp),
|
|
1.0);
|
|
}
|
|
)";
|
|
|
|
std::string header = g_shader_cache->GetUtilityShaderHeader();
|
|
std::string source = header + RGB_TO_YUYV_SHADER_SOURCE;
|
|
m_rgb_to_yuyv_shader = Util::CompileAndCreateFragmentShader(source);
|
|
source = header + YUYV_TO_RGB_SHADER_SOURCE;
|
|
m_yuyv_to_rgb_shader = Util::CompileAndCreateFragmentShader(source);
|
|
|
|
return m_rgb_to_yuyv_shader != VK_NULL_HANDLE && m_yuyv_to_rgb_shader != VK_NULL_HANDLE;
|
|
}
|
|
|
|
} // namespace Vulkan
|