dolphin/Source/Core/VideoBackends/D3D/Src/FramebufferManager.h
2013-11-24 11:33:43 +13:00

110 lines
3.3 KiB
C++

// Copyright 2013 Dolphin Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.
#ifndef _FBMANAGER_D3D_H_
#define _FBMANAGER_D3D_H_
#include "d3d11.h"
#include "FramebufferManagerBase.h"
#include "D3DTexture.h"
namespace DX11 {
// On the GameCube, the game sends a request for the graphics processor to
// transfer its internal EFB (Embedded Framebuffer) to an area in GameCube RAM
// called the XFB (External Framebuffer). The size and location of the XFB is
// decided at the time of the copy, and the format is always YUYV. The video
// interface is given a pointer to the XFB, which will be decoded and
// displayed on the TV.
//
// There are two ways for Dolphin to emulate this:
//
// Real XFB mode:
//
// Dolphin will behave like the GameCube and encode the EFB to
// a portion of GameCube RAM. The emulated video interface will decode the data
// for output to the screen.
//
// Advantages: Behaves exactly like the GameCube.
// Disadvantages: Resolution will be limited.
//
// Virtual XFB mode:
//
// When a request is made to copy the EFB to an XFB, Dolphin
// will remember the RAM location and size of the XFB in a Virtual XFB list.
// The video interface will look up the XFB in the list and use the enhanced
// data stored there, if available.
//
// Advantages: Enables high resolution graphics, better than real hardware.
// Disadvantages: If the GameCube CPU writes directly to the XFB (which is
// possible but uncommon), the Virtual XFB will not capture this information.
// There may be multiple XFBs in GameCube RAM. This is the maximum number to
// virtualize.
struct XFBSource : public XFBSourceBase
{
XFBSource(D3DTexture2D *_tex) : tex(_tex) {}
~XFBSource() { tex->Release(); }
void Draw(const MathUtil::Rectangle<float> &sourcerc,
const MathUtil::Rectangle<float> &drawrc) const;
void DecodeToTexture(u32 xfbAddr, u32 fbWidth, u32 fbHeight);
void CopyEFB(float Gamma);
D3DTexture2D* const tex;
};
class FramebufferManager : public FramebufferManagerBase
{
public:
FramebufferManager();
~FramebufferManager();
static D3DTexture2D* &GetEFBColorTexture();
static ID3D11Texture2D* &GetEFBColorStagingBuffer();
static D3DTexture2D* &GetEFBDepthTexture();
static D3DTexture2D* &GetEFBDepthReadTexture();
static ID3D11Texture2D* &GetEFBDepthStagingBuffer();
static D3DTexture2D* &GetResolvedEFBColorTexture();
static D3DTexture2D* &GetResolvedEFBDepthTexture();
static D3DTexture2D* &GetEFBColorTempTexture() { return m_efb.color_temp_tex; }
static void SwapReinterpretTexture()
{
D3DTexture2D* swaptex = GetEFBColorTempTexture();
m_efb.color_temp_tex = GetEFBColorTexture();
m_efb.color_tex = swaptex;
}
private:
XFBSourceBase* CreateXFBSource(unsigned int target_width, unsigned int target_height);
void GetTargetSize(unsigned int *width, unsigned int *height, const EFBRectangle& sourceRc);
void CopyToRealXFB(u32 xfbAddr, u32 fbWidth, u32 fbHeight, const EFBRectangle& sourceRc,float Gamma);
static struct Efb
{
D3DTexture2D* color_tex;
ID3D11Texture2D* color_staging_buf;
D3DTexture2D* depth_tex;
ID3D11Texture2D* depth_staging_buf;
D3DTexture2D* depth_read_texture;
D3DTexture2D* color_temp_tex;
D3DTexture2D* resolved_color_tex;
D3DTexture2D* resolved_depth_tex;
} m_efb;
};
} // namespace DX11
#endif