dolphin/Source/Core/Core/FifoPlayer/FifoPlayer.cpp
Lioncash 4288bfe0f9 Common: Move host communication enum to Host.h
Given this is actually a part of the Host interface, this should be
placed with it.

While we're at it, turn it into an enum class so that we don't dump its
contained values into the surrounding scope. We can also make
Host_Message take the enum type itself directly instead of taking a
general int value.

After this, it'll be trivial to divide out the rest of Common.h and
remove the header from the repository entirely
2018-05-28 14:34:59 -04:00

575 lines
14 KiB
C++

// Copyright 2011 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include "Core/FifoPlayer/FifoPlayer.h"
#include <algorithm>
#include <mutex>
#include "Common/Assert.h"
#include "Common/CommonTypes.h"
#include "Common/MsgHandler.h"
#include "Core/ConfigManager.h"
#include "Core/Core.h"
#include "Core/CoreTiming.h"
#include "Core/FifoPlayer/FifoAnalyzer.h"
#include "Core/FifoPlayer/FifoDataFile.h"
#include "Core/HW/CPU.h"
#include "Core/HW/GPFifo.h"
#include "Core/HW/Memmap.h"
#include "Core/HW/ProcessorInterface.h"
#include "Core/HW/SystemTimers.h"
#include "Core/HW/VideoInterface.h"
#include "Core/Host.h"
#include "Core/PowerPC/MMU.h"
#include "Core/PowerPC/PowerPC.h"
#include "VideoCommon/BPMemory.h"
#include "VideoCommon/CommandProcessor.h"
// We need to include TextureDecoder.h for the texMem array.
// TODO: Move texMem somewhere else so this isn't an issue.
#include "VideoCommon/TextureDecoder.h"
bool IsPlayingBackFifologWithBrokenEFBCopies = false;
FifoPlayer::FifoPlayer() : m_Loop{SConfig::GetInstance().bLoopFifoReplay}
{
}
FifoPlayer::~FifoPlayer()
{
}
bool FifoPlayer::Open(const std::string& filename)
{
Close();
m_File = FifoDataFile::Load(filename, false);
if (m_File)
{
FifoAnalyzer::Init();
FifoPlaybackAnalyzer::AnalyzeFrames(m_File.get(), m_FrameInfo);
m_FrameRangeEnd = m_File->GetFrameCount();
}
if (m_FileLoadedCb)
m_FileLoadedCb();
return (m_File != nullptr);
}
void FifoPlayer::Close()
{
m_File.reset();
m_FrameRangeStart = 0;
m_FrameRangeEnd = 0;
}
bool FifoPlayer::IsPlaying() const
{
return GetFile() != nullptr && Core::IsRunning();
}
class FifoPlayer::CPUCore final : public CPUCoreBase
{
public:
explicit CPUCore(FifoPlayer* parent) : m_parent(parent) {}
CPUCore(const CPUCore&) = delete;
~CPUCore() {}
CPUCore& operator=(const CPUCore&) = delete;
void Init() override
{
IsPlayingBackFifologWithBrokenEFBCopies = m_parent->m_File->HasBrokenEFBCopies();
m_parent->m_CurrentFrame = m_parent->m_FrameRangeStart;
m_parent->LoadMemory();
}
void Shutdown() override { IsPlayingBackFifologWithBrokenEFBCopies = false; }
void ClearCache() override
{
// Nothing to clear.
}
void SingleStep() override
{
// NOTE: AdvanceFrame() will get stuck forever in Dual Core because the FIFO
// is disabled by CPU::EnableStepping(true) so the frame never gets displayed.
PanicAlertT("Cannot SingleStep the FIFO. Use Frame Advance instead.");
}
const char* GetName() const override { return "FifoPlayer"; }
void Run() override
{
while (CPU::GetState() == CPU::State::Running)
{
switch (m_parent->AdvanceFrame())
{
case CPU::State::PowerDown:
CPU::Break();
Host_Message(HostMessageID::WMUserStop);
break;
case CPU::State::Stepping:
CPU::Break();
Host_UpdateMainFrame();
break;
case CPU::State::Running:
break;
}
}
}
private:
FifoPlayer* m_parent;
};
CPU::State FifoPlayer::AdvanceFrame()
{
if (m_CurrentFrame >= m_FrameRangeEnd)
{
if (!m_Loop)
return CPU::State::PowerDown;
// If there are zero frames in the range then sleep instead of busy spinning
if (m_FrameRangeStart >= m_FrameRangeEnd)
return CPU::State::Stepping;
// When looping, reload the contents of all the BP/CP/CF registers.
// This ensures that each time the first frame is played back, the state of the
// GPU is the same for each playback loop.
m_CurrentFrame = m_FrameRangeStart;
LoadRegisters();
LoadTextureMemory();
FlushWGP();
}
if (m_FrameWrittenCb)
m_FrameWrittenCb();
if (m_EarlyMemoryUpdates && m_CurrentFrame == m_FrameRangeStart)
WriteAllMemoryUpdates();
WriteFrame(m_File->GetFrame(m_CurrentFrame), m_FrameInfo[m_CurrentFrame]);
++m_CurrentFrame;
return CPU::State::Running;
}
std::unique_ptr<CPUCoreBase> FifoPlayer::GetCPUCore()
{
if (!m_File || m_File->GetFrameCount() == 0)
return nullptr;
return std::make_unique<CPUCore>(this);
}
bool FifoPlayer::IsRunningWithFakeVideoInterfaceUpdates() const
{
if (!m_File || m_File->GetFrameCount() == 0)
{
return false;
}
return m_File->ShouldGenerateFakeVIUpdates();
}
u32 FifoPlayer::GetFrameObjectCount() const
{
if (m_CurrentFrame < m_FrameInfo.size())
{
return (u32)(m_FrameInfo[m_CurrentFrame].objectStarts.size());
}
return 0;
}
void FifoPlayer::SetFrameRangeStart(u32 start)
{
if (m_File)
{
u32 frameCount = m_File->GetFrameCount();
if (start > frameCount)
start = frameCount;
m_FrameRangeStart = start;
if (m_FrameRangeEnd < start)
m_FrameRangeEnd = start;
if (m_CurrentFrame < m_FrameRangeStart)
m_CurrentFrame = m_FrameRangeStart;
}
}
void FifoPlayer::SetFrameRangeEnd(u32 end)
{
if (m_File)
{
u32 frameCount = m_File->GetFrameCount();
if (end > frameCount)
end = frameCount;
m_FrameRangeEnd = end;
if (m_FrameRangeStart > end)
m_FrameRangeStart = end;
if (m_CurrentFrame >= m_FrameRangeEnd)
m_CurrentFrame = m_FrameRangeStart;
}
}
FifoPlayer& FifoPlayer::GetInstance()
{
static FifoPlayer instance;
return instance;
}
void FifoPlayer::WriteFrame(const FifoFrameInfo& frame, const AnalyzedFrameInfo& info)
{
// Core timing information
m_CyclesPerFrame = SystemTimers::GetTicksPerSecond() / VideoInterface::GetTargetRefreshRate();
m_ElapsedCycles = 0;
m_FrameFifoSize = static_cast<u32>(frame.fifoData.size());
// Determine start and end objects
u32 numObjects = (u32)(info.objectStarts.size());
u32 drawStart = std::min(numObjects, m_ObjectRangeStart);
u32 drawEnd = std::min(numObjects - 1, m_ObjectRangeEnd);
u32 position = 0;
u32 memoryUpdate = 0;
// Skip memory updates during frame if true
if (m_EarlyMemoryUpdates)
{
memoryUpdate = (u32)(frame.memoryUpdates.size());
}
if (numObjects > 0)
{
u32 objectNum = 0;
// Write fifo data skipping objects before the draw range
while (objectNum < drawStart)
{
WriteFramePart(position, info.objectStarts[objectNum], memoryUpdate, frame, info);
position = info.objectEnds[objectNum];
++objectNum;
}
// Write objects in draw range
if (objectNum < numObjects && drawStart <= drawEnd)
{
objectNum = drawEnd;
WriteFramePart(position, info.objectEnds[objectNum], memoryUpdate, frame, info);
position = info.objectEnds[objectNum];
++objectNum;
}
// Write fifo data skipping objects after the draw range
while (objectNum < numObjects)
{
WriteFramePart(position, info.objectStarts[objectNum], memoryUpdate, frame, info);
position = info.objectEnds[objectNum];
++objectNum;
}
}
// Write data after the last object
WriteFramePart(position, static_cast<u32>(frame.fifoData.size()), memoryUpdate, frame, info);
FlushWGP();
// Sleep while the GPU is active
while (!IsIdleSet())
{
CoreTiming::Idle();
CoreTiming::Advance();
}
}
void FifoPlayer::WriteFramePart(u32 dataStart, u32 dataEnd, u32& nextMemUpdate,
const FifoFrameInfo& frame, const AnalyzedFrameInfo& info)
{
const u8* const data = frame.fifoData.data();
while (nextMemUpdate < frame.memoryUpdates.size() && dataStart < dataEnd)
{
const MemoryUpdate& memUpdate = info.memoryUpdates[nextMemUpdate];
if (memUpdate.fifoPosition < dataEnd)
{
if (dataStart < memUpdate.fifoPosition)
{
WriteFifo(data, dataStart, memUpdate.fifoPosition);
dataStart = memUpdate.fifoPosition;
}
WriteMemory(memUpdate);
++nextMemUpdate;
}
else
{
WriteFifo(data, dataStart, dataEnd);
dataStart = dataEnd;
}
}
if (dataStart < dataEnd)
WriteFifo(data, dataStart, dataEnd);
}
void FifoPlayer::WriteAllMemoryUpdates()
{
ASSERT(m_File);
for (u32 frameNum = 0; frameNum < m_File->GetFrameCount(); ++frameNum)
{
const FifoFrameInfo& frame = m_File->GetFrame(frameNum);
for (auto& update : frame.memoryUpdates)
{
WriteMemory(update);
}
}
}
void FifoPlayer::WriteMemory(const MemoryUpdate& memUpdate)
{
u8* mem = nullptr;
if (memUpdate.address & 0x10000000)
mem = &Memory::m_pEXRAM[memUpdate.address & Memory::EXRAM_MASK];
else
mem = &Memory::m_pRAM[memUpdate.address & Memory::RAM_MASK];
std::copy(memUpdate.data.begin(), memUpdate.data.end(), mem);
}
void FifoPlayer::WriteFifo(const u8* data, u32 start, u32 end)
{
u32 written = start;
u32 lastBurstEnd = end - 1;
// Write up to 256 bytes at a time
while (written < end)
{
while (IsHighWatermarkSet())
{
CoreTiming::Idle();
CoreTiming::Advance();
}
u32 burstEnd = std::min(written + 255, lastBurstEnd);
while (written < burstEnd)
GPFifo::FastWrite8(data[written++]);
GPFifo::Write8(data[written++]);
// Advance core timing
u32 elapsedCycles = u32(((u64)written * m_CyclesPerFrame) / m_FrameFifoSize);
u32 cyclesUsed = elapsedCycles - m_ElapsedCycles;
m_ElapsedCycles = elapsedCycles;
PowerPC::ppcState.downcount -= cyclesUsed;
CoreTiming::Advance();
}
}
void FifoPlayer::SetupFifo()
{
WriteCP(CommandProcessor::CTRL_REGISTER, 0); // disable read, BP, interrupts
WriteCP(CommandProcessor::CLEAR_REGISTER, 7); // clear overflow, underflow, metrics
const FifoFrameInfo& frame = m_File->GetFrame(m_CurrentFrame);
// Set fifo bounds
WriteCP(CommandProcessor::FIFO_BASE_LO, frame.fifoStart);
WriteCP(CommandProcessor::FIFO_BASE_HI, frame.fifoStart >> 16);
WriteCP(CommandProcessor::FIFO_END_LO, frame.fifoEnd);
WriteCP(CommandProcessor::FIFO_END_HI, frame.fifoEnd >> 16);
// Set watermarks, high at 75%, low at 0%
u32 hi_watermark = (frame.fifoEnd - frame.fifoStart) * 3 / 4;
WriteCP(CommandProcessor::FIFO_HI_WATERMARK_LO, hi_watermark);
WriteCP(CommandProcessor::FIFO_HI_WATERMARK_HI, hi_watermark >> 16);
WriteCP(CommandProcessor::FIFO_LO_WATERMARK_LO, 0);
WriteCP(CommandProcessor::FIFO_LO_WATERMARK_HI, 0);
// Set R/W pointers to fifo start
WriteCP(CommandProcessor::FIFO_RW_DISTANCE_LO, 0);
WriteCP(CommandProcessor::FIFO_RW_DISTANCE_HI, 0);
WriteCP(CommandProcessor::FIFO_WRITE_POINTER_LO, frame.fifoStart);
WriteCP(CommandProcessor::FIFO_WRITE_POINTER_HI, frame.fifoStart >> 16);
WriteCP(CommandProcessor::FIFO_READ_POINTER_LO, frame.fifoStart);
WriteCP(CommandProcessor::FIFO_READ_POINTER_HI, frame.fifoStart >> 16);
// Set fifo bounds
WritePI(ProcessorInterface::PI_FIFO_BASE, frame.fifoStart);
WritePI(ProcessorInterface::PI_FIFO_END, frame.fifoEnd);
// Set write pointer
WritePI(ProcessorInterface::PI_FIFO_WPTR, frame.fifoStart);
FlushWGP();
WritePI(ProcessorInterface::PI_FIFO_WPTR, frame.fifoStart);
WriteCP(CommandProcessor::CTRL_REGISTER, 17); // enable read & GP link
}
void FifoPlayer::LoadMemory()
{
UReg_MSR newMSR;
newMSR.DR = 1;
newMSR.IR = 1;
MSR.Hex = newMSR.Hex;
PowerPC::ppcState.spr[SPR_IBAT0U] = 0x80001fff;
PowerPC::ppcState.spr[SPR_IBAT0L] = 0x00000002;
PowerPC::ppcState.spr[SPR_DBAT0U] = 0x80001fff;
PowerPC::ppcState.spr[SPR_DBAT0L] = 0x00000002;
PowerPC::ppcState.spr[SPR_DBAT1U] = 0xc0001fff;
PowerPC::ppcState.spr[SPR_DBAT1L] = 0x0000002a;
PowerPC::DBATUpdated();
PowerPC::IBATUpdated();
SetupFifo();
LoadRegisters();
LoadTextureMemory();
FlushWGP();
}
void FifoPlayer::LoadRegisters()
{
const u32* regs = m_File->GetBPMem();
for (int i = 0; i < FifoDataFile::BP_MEM_SIZE; ++i)
{
if (ShouldLoadBP(i))
LoadBPReg(i, regs[i]);
}
regs = m_File->GetCPMem();
LoadCPReg(0x30, regs[0x30]);
LoadCPReg(0x40, regs[0x40]);
LoadCPReg(0x50, regs[0x50]);
LoadCPReg(0x60, regs[0x60]);
for (int i = 0; i < 8; ++i)
{
LoadCPReg(0x70 + i, regs[0x70 + i]);
LoadCPReg(0x80 + i, regs[0x80 + i]);
LoadCPReg(0x90 + i, regs[0x90 + i]);
}
for (int i = 0; i < 16; ++i)
{
LoadCPReg(0xa0 + i, regs[0xa0 + i]);
LoadCPReg(0xb0 + i, regs[0xb0 + i]);
}
regs = m_File->GetXFMem();
for (int i = 0; i < FifoDataFile::XF_MEM_SIZE; i += 16)
LoadXFMem16(i, &regs[i]);
regs = m_File->GetXFRegs();
for (int i = 0; i < FifoDataFile::XF_REGS_SIZE; ++i)
LoadXFReg(i, regs[i]);
}
void FifoPlayer::LoadTextureMemory()
{
static_assert(static_cast<size_t>(TMEM_SIZE) == static_cast<size_t>(FifoDataFile::TEX_MEM_SIZE),
"TMEM_SIZE matches the size of texture memory in FifoDataFile");
std::memcpy(texMem, m_File->GetTexMem(), FifoDataFile::TEX_MEM_SIZE);
}
void FifoPlayer::WriteCP(u32 address, u16 value)
{
PowerPC::Write_U16(value, 0xCC000000 | address);
}
void FifoPlayer::WritePI(u32 address, u32 value)
{
PowerPC::Write_U32(value, 0xCC003000 | address);
}
void FifoPlayer::FlushWGP()
{
// Send 31 0s through the WGP
for (int i = 0; i < 7; ++i)
GPFifo::Write32(0);
GPFifo::Write16(0);
GPFifo::Write8(0);
GPFifo::ResetGatherPipe();
}
void FifoPlayer::LoadBPReg(u8 reg, u32 value)
{
GPFifo::Write8(0x61); // load BP reg
u32 cmd = (reg << 24) & 0xff000000;
cmd |= (value & 0x00ffffff);
GPFifo::Write32(cmd);
}
void FifoPlayer::LoadCPReg(u8 reg, u32 value)
{
GPFifo::Write8(0x08); // load CP reg
GPFifo::Write8(reg);
GPFifo::Write32(value);
}
void FifoPlayer::LoadXFReg(u16 reg, u32 value)
{
GPFifo::Write8(0x10); // load XF reg
GPFifo::Write32((reg & 0x0fff) | 0x1000); // load 4 bytes into reg
GPFifo::Write32(value);
}
void FifoPlayer::LoadXFMem16(u16 address, const u32* data)
{
// Loads 16 * 4 bytes in xf memory starting at address
GPFifo::Write8(0x10); // load XF reg
GPFifo::Write32(0x000f0000 | (address & 0xffff)); // load 16 * 4 bytes into address
for (int i = 0; i < 16; ++i)
GPFifo::Write32(data[i]);
}
bool FifoPlayer::ShouldLoadBP(u8 address)
{
switch (address)
{
case BPMEM_SETDRAWDONE:
case BPMEM_PE_TOKEN_ID:
case BPMEM_PE_TOKEN_INT_ID:
case BPMEM_TRIGGER_EFB_COPY:
case BPMEM_LOADTLUT1:
case BPMEM_PRELOAD_MODE:
case BPMEM_PERF1:
return false;
default:
return true;
}
}
bool FifoPlayer::IsIdleSet()
{
CommandProcessor::UCPStatusReg status =
PowerPC::Read_U16(0xCC000000 | CommandProcessor::STATUS_REGISTER);
return status.CommandIdle;
}
bool FifoPlayer::IsHighWatermarkSet()
{
CommandProcessor::UCPStatusReg status =
PowerPC::Read_U16(0xCC000000 | CommandProcessor::STATUS_REGISTER);
return status.OverflowHiWatermark;
}