dolphin/Source/Core/VideoCommon/GeometryShaderGen.cpp
Dolphin Bot a560d8f150 Merge pull request #1716 from Armada651/geom-wireframe
VideoCommon: Handle wireframe mode in the geometry shader.
2014-12-20 12:22:40 +01:00

322 lines
10 KiB
C++

// Copyright 2013 Dolphin Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.
#include <cmath>
#include "VideoCommon/BPMemory.h"
#include "VideoCommon/GeometryShaderGen.h"
#include "VideoCommon/LightingShaderGen.h"
#include "VideoCommon/VertexShaderGen.h"
#include "VideoCommon/VideoConfig.h"
static char text[16384];
static const char* primitives_ogl[] =
{
"points",
"lines",
"triangles"
};
static const char* primitives_d3d[] =
{
"point",
"line",
"triangle"
};
template<class T> static inline void EmitVertex(T& out, const char* vertex, API_TYPE ApiType, bool first_vertex = false);
template<class T> static inline void EndPrimitive(T& out, API_TYPE ApiType);
template<class T>
static inline void GenerateGeometryShader(T& out, u32 primitive_type, API_TYPE ApiType)
{
// Non-uid template parameters will write to the dummy data (=> gets optimized out)
geometry_shader_uid_data dummy_data;
geometry_shader_uid_data* uid_data = out.template GetUidData<geometry_shader_uid_data>();
if (uid_data == nullptr)
uid_data = &dummy_data;
out.SetBuffer(text);
const bool is_writing_shadercode = (out.GetBuffer() != nullptr);
if (is_writing_shadercode)
text[sizeof(text) - 1] = 0x7C; // canary
uid_data->primitive_type = primitive_type;
const unsigned int vertex_in = primitive_type + 1;
unsigned int vertex_out = primitive_type == PRIMITIVE_TRIANGLES ? 3 : 4;
uid_data->wireframe = g_ActiveConfig.bWireFrame;
if (g_ActiveConfig.bWireFrame)
vertex_out++;
uid_data->stereo = g_ActiveConfig.iStereoMode > 0;
if (ApiType == API_OPENGL)
{
// Insert layout parameters
if (g_ActiveConfig.backend_info.bSupportsGSInstancing)
{
out.Write("layout(%s, invocations = %d) in;\n", primitives_ogl[primitive_type], g_ActiveConfig.iStereoMode > 0 ? 2 : 1);
out.Write("layout(%s_strip, max_vertices = %d) out;\n", g_ActiveConfig.bWireFrame ? "line" : "triangle", vertex_out);
}
else
{
out.Write("layout(%s) in;\n", primitives_ogl[primitive_type]);
out.Write("layout(%s_strip, max_vertices = %d) out;\n", g_ActiveConfig.bWireFrame ? "line" : "triangle", g_ActiveConfig.iStereoMode > 0 ? vertex_out * 2 : vertex_out);
}
}
out.Write("%s", s_lighting_struct);
// uniforms
if (ApiType == API_OPENGL)
out.Write("layout(std140%s) uniform GSBlock {\n", g_ActiveConfig.backend_info.bSupportsBindingLayout ? ", binding = 3" : "");
else
out.Write("cbuffer GSBlock {\n");
out.Write(
"\tfloat4 " I_STEREOPARAMS";\n"
"\tfloat4 " I_LINEPTPARAMS";\n"
"\tint4 " I_TEXOFFSET";\n"
"};\n");
uid_data->numTexGens = bpmem.genMode.numtexgens;
uid_data->pixel_lighting = g_ActiveConfig.bEnablePixelLighting;
GenerateVSOutputStruct<T>(out, ApiType);
if (ApiType == API_OPENGL)
{
if (g_ActiveConfig.backend_info.bSupportsGSInstancing)
out.Write("#define InstanceID gl_InvocationID\n");
out.Write("in VertexData {\n");
out.Write("\tcentroid %s VS_OUTPUT o;\n", g_ActiveConfig.backend_info.bSupportsBindingLayout ? "" : "in");
out.Write("} vs[%d];\n", vertex_in);
out.Write("out VertexData {\n");
out.Write("\tcentroid %s VS_OUTPUT o;\n", g_ActiveConfig.backend_info.bSupportsBindingLayout ? "" : "out");
if (g_ActiveConfig.iStereoMode > 0)
out.Write("\tflat int layer;\n");
out.Write("} ps;\n");
out.Write("void main()\n{\n");
}
else // D3D
{
out.Write("struct VertexData {\n");
out.Write("\tVS_OUTPUT o;\n");
if (g_ActiveConfig.iStereoMode > 0)
out.Write("\tuint layer : SV_RenderTargetArrayIndex;\n");
out.Write("};\n");
if (g_ActiveConfig.backend_info.bSupportsGSInstancing)
{
out.Write("[maxvertexcount(%d)]\n[instance(%d)]\n", vertex_out, g_ActiveConfig.iStereoMode > 0 ? 2 : 1);
out.Write("void main(%s VS_OUTPUT o[%d], inout %sStream<VertexData> output, in uint InstanceID : SV_GSInstanceID)\n{\n", primitives_d3d[primitive_type], vertex_in, g_ActiveConfig.bWireFrame ? "Line" : "Triangle");
}
else
{
out.Write("[maxvertexcount(%d)]\n", g_ActiveConfig.iStereoMode > 0 ? vertex_out * 2 : vertex_out);
out.Write("void main(%s VS_OUTPUT o[%d], inout %sStream<VertexData> output)\n{\n", primitives_d3d[primitive_type], vertex_in, g_ActiveConfig.bWireFrame ? "Line" : "Triangle");
}
out.Write("\tVertexData ps;\n");
}
if (primitive_type == PRIMITIVE_LINES)
{
if (ApiType == API_OPENGL)
{
out.Write("\tVS_OUTPUT start = vs[0].o;\n");
out.Write("\tVS_OUTPUT end = vs[1].o;\n");
}
else
{
out.Write("\tVS_OUTPUT start = o[0];\n");
out.Write("\tVS_OUTPUT end = o[1];\n");
}
// GameCube/Wii's line drawing algorithm is a little quirky. It does not
// use the correct line caps. Instead, the line caps are vertical or
// horizontal depending the slope of the line.
out.Write(
"\tfloat2 offset;\n"
"\tfloat2 to = abs(end.pos.xy - start.pos.xy);\n"
// FIXME: What does real hardware do when line is at a 45-degree angle?
// FIXME: Lines aren't drawn at the correct width. See Twilight Princess map.
"\tif (" I_LINEPTPARAMS".y * to.y > " I_LINEPTPARAMS".x * to.x) {\n"
// Line is more tall. Extend geometry left and right.
// Lerp LineWidth/2 from [0..VpWidth] to [-1..1]
"\t\toffset = float2(" I_LINEPTPARAMS".z / " I_LINEPTPARAMS".x, 0);\n"
"\t} else {\n"
// Line is more wide. Extend geometry up and down.
// Lerp LineWidth/2 from [0..VpHeight] to [1..-1]
"\t\toffset = float2(0, -" I_LINEPTPARAMS".z / " I_LINEPTPARAMS".y);\n"
"\t}\n");
}
else if (primitive_type == PRIMITIVE_POINTS)
{
if (ApiType == API_OPENGL)
out.Write("\tVS_OUTPUT center = vs[0].o;\n");
else
out.Write("\tVS_OUTPUT center = o[0];\n");
// Offset from center to upper right vertex
// Lerp PointSize/2 from [0,0..VpWidth,VpHeight] to [-1,1..1,-1]
out.Write("\tfloat2 offset = float2(" I_LINEPTPARAMS".w / " I_LINEPTPARAMS".x, -" I_LINEPTPARAMS".w / " I_LINEPTPARAMS".y) * center.pos.w;\n");
}
if (g_ActiveConfig.iStereoMode > 0)
{
// If the GPU supports invocation we don't need a for loop and can simply use the
// invocation identifier to determine which layer we're rendering.
if (g_ActiveConfig.backend_info.bSupportsGSInstancing)
out.Write("\tint eye = InstanceID;\n");
else
out.Write("\tfor (int eye = 0; eye < 2; ++eye) {\n");
}
if (g_ActiveConfig.bWireFrame)
out.Write("\tVS_OUTPUT first;\n");
out.Write("\tfor (int i = 0; i < %d; ++i) {\n", vertex_in);
if (ApiType == API_OPENGL)
out.Write("\tVS_OUTPUT f = vs[i].o;\n");
else
out.Write("\tVS_OUTPUT f = o[i];\n");
if (g_ActiveConfig.iStereoMode > 0)
{
// Select the output layer
out.Write("\tps.layer = eye;\n");
if (ApiType == API_OPENGL)
out.Write("\tgl_Layer = eye;\n");
// For stereoscopy add a small horizontal offset in Normalized Device Coordinates proportional
// to the depth of the vertex. We retrieve the depth value from the w-component of the projected
// vertex which contains the negated z-component of the original vertex.
// For negative parallax (out-of-screen effects) we subtract a convergence value from
// the depth value. This results in objects at a distance smaller than the convergence
// distance to seemingly appear in front of the screen.
// This formula is based on page 13 of the "Nvidia 3D Vision Automatic, Best Practices Guide"
out.Write("\tf.clipPos.x += " I_STEREOPARAMS"[eye] * (f.clipPos.w - " I_STEREOPARAMS"[2]);\n");
out.Write("\tf.pos.x += " I_STEREOPARAMS"[eye] * (f.pos.w - " I_STEREOPARAMS"[2]);\n");
}
if (primitive_type == PRIMITIVE_LINES)
{
out.Write("\tVS_OUTPUT l = f;\n"
"\tVS_OUTPUT r = f;\n");
out.Write("\tl.pos.xy -= offset * l.pos.w;\n"
"\tr.pos.xy += offset * r.pos.w;\n");
out.Write("\tif (" I_TEXOFFSET"[2] != 0) {\n");
out.Write("\tfloat texOffset = 1.0 / float(" I_TEXOFFSET"[2]);\n");
for (unsigned int i = 0; i < bpmem.genMode.numtexgens; ++i)
{
out.Write("\tif (((" I_TEXOFFSET"[0] >> %d) & 0x1) != 0)\n", i);
out.Write("\t\tr.tex%d.x += texOffset;\n", i);
}
out.Write("\t}\n");
EmitVertex<T>(out, "l", ApiType, true);
EmitVertex<T>(out, "r", ApiType);
}
else if (primitive_type == PRIMITIVE_POINTS)
{
out.Write("\tVS_OUTPUT ll = f;\n"
"\tVS_OUTPUT lr = f;\n"
"\tVS_OUTPUT ul = f;\n"
"\tVS_OUTPUT ur = f;\n");
out.Write("\tll.pos.xy += float2(-1,-1) * offset;\n"
"\tlr.pos.xy += float2(1,-1) * offset;\n"
"\tul.pos.xy += float2(-1,1) * offset;\n"
"\tur.pos.xy += offset;\n");
out.Write("\tif (" I_TEXOFFSET"[3] != 0) {\n");
out.Write("\tfloat2 texOffset = float2(1.0 / float(" I_TEXOFFSET"[3]), 1.0 / float(" I_TEXOFFSET"[3]));\n");
for (unsigned int i = 0; i < bpmem.genMode.numtexgens; ++i)
{
out.Write("\tif (((" I_TEXOFFSET"[1] >> %d) & 0x1) != 0) {\n", i);
out.Write("\t\tll.tex%d.xy += float2(0,1) * texOffset;\n", i);
out.Write("\t\tlr.tex%d.xy += texOffset;\n", i);
out.Write("\t\tur.tex%d.xy += float2(1,0) * texOffset;\n", i);
out.Write("\t}\n");
}
out.Write("\t}\n");
EmitVertex<T>(out, "ll", ApiType, true);
EmitVertex<T>(out, "lr", ApiType);
EmitVertex<T>(out, "ul", ApiType);
EmitVertex<T>(out, "ur", ApiType);
}
else
{
EmitVertex<T>(out, "f", ApiType, true);
}
out.Write("\t}\n");
EndPrimitive<T>(out, ApiType);
if (g_ActiveConfig.iStereoMode > 0 && !g_ActiveConfig.backend_info.bSupportsGSInstancing)
out.Write("\t}\n");
out.Write("}\n");
if (is_writing_shadercode)
{
if (text[sizeof(text) - 1] != 0x7C)
PanicAlert("GeometryShader generator - buffer too small, canary has been eaten!");
}
}
template<class T>
static inline void EmitVertex(T& out, const char* vertex, API_TYPE ApiType, bool first_vertex)
{
if (g_ActiveConfig.bWireFrame && first_vertex)
out.Write("\tif (i == 0) first = %s;\n", vertex);
if (ApiType == API_OPENGL)
out.Write("\tgl_Position = %s.pos;\n", vertex);
out.Write("\tps.o = %s;\n", vertex);
if (ApiType == API_OPENGL)
out.Write("\tEmitVertex();\n");
else
out.Write("\toutput.Append(ps);\n");
}
template<class T>
static inline void EndPrimitive(T& out, API_TYPE ApiType)
{
if (g_ActiveConfig.bWireFrame)
EmitVertex<T>(out, "first", ApiType);
if (ApiType == API_OPENGL)
out.Write("\tEndPrimitive();\n");
else
out.Write("\toutput.RestartStrip();\n");
}
void GetGeometryShaderUid(GeometryShaderUid& object, u32 primitive_type, API_TYPE ApiType)
{
GenerateGeometryShader<GeometryShaderUid>(object, primitive_type, ApiType);
}
void GenerateGeometryShaderCode(ShaderCode& object, u32 primitive_type, API_TYPE ApiType)
{
GenerateGeometryShader<ShaderCode>(object, primitive_type, ApiType);
}