Léo Lam 135641404a evdev: Add hotplugging support
This adds hotplugging support to the evdev input backend. We use
libudev to monitor changes to input devices in a separate thread.
Removed devices are removed from the devices list, and new devices
are added to the list.

The effect is that controllers are usable immediately after plugging
them without having to manually refresh devices (if they were
configured to be used, of course).
2016-07-29 17:18:40 +02:00

421 lines
12 KiB
C++

// Copyright 2015 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include <fcntl.h>
#include <libudev.h>
#include <map>
#include <memory>
#include <unistd.h>
#include <sys/eventfd.h>
#include "Common/Assert.h"
#include "Common/Flag.h"
#include "Common/Logging/Log.h"
#include "Common/MathUtil.h"
#include "Common/StringUtil.h"
#include "Common/Thread.h"
#include "InputCommon/ControllerInterface/ControllerInterface.h"
#include "InputCommon/ControllerInterface/evdev/evdev.h"
namespace ciface
{
namespace evdev
{
static std::thread s_hotplug_thread;
static Common::Flag s_hotplug_thread_running;
static int s_wakeup_eventfd;
// There is no easy way to get the device name from only a dev node
// during a device removed event, since libevdev can't work on removed devices;
// sysfs is not stable, so this is probably the easiest way to get a name for a node.
static std::map<std::string, std::string> s_devnode_name_map;
static std::string GetName(const std::string& devnode)
{
int fd = open(devnode.c_str(), O_RDWR | O_NONBLOCK);
libevdev* dev = nullptr;
int ret = libevdev_new_from_fd(fd, &dev);
if (ret != 0)
{
close(fd);
return std::string();
}
std::string res = StripSpaces(libevdev_get_name(dev));
libevdev_free(dev);
close(fd);
return res;
}
static void HotplugThreadFunc()
{
Common::SetCurrentThreadName("evdev Hotplug Thread");
NOTICE_LOG(SERIALINTERFACE, "evdev hotplug thread started");
udev* udev = udev_new();
_assert_msg_(PAD, udev != nullptr, "Couldn't initialize libudev.");
// Set up monitoring
udev_monitor* monitor = udev_monitor_new_from_netlink(udev, "udev");
udev_monitor_filter_add_match_subsystem_devtype(monitor, "input", nullptr);
udev_monitor_enable_receiving(monitor);
const int monitor_fd = udev_monitor_get_fd(monitor);
while (s_hotplug_thread_running.IsSet())
{
fd_set fds;
FD_ZERO(&fds);
FD_SET(monitor_fd, &fds);
FD_SET(s_wakeup_eventfd, &fds);
int ret = select(monitor_fd + 1, &fds, nullptr, nullptr, nullptr);
if (ret < 1 || !FD_ISSET(monitor_fd, &fds))
continue;
udev_device* dev = udev_monitor_receive_device(monitor);
const char* action = udev_device_get_action(dev);
const char* devnode = udev_device_get_devnode(dev);
if (!devnode)
continue;
if (strcmp(action, "remove") == 0)
{
const auto it = s_devnode_name_map.find(devnode);
if (it == s_devnode_name_map.end())
continue; // we don't know the name for this device, so it is probably not an evdev device
const std::string& name = it->second;
g_controller_interface.RemoveDevice([&name](const auto& device) {
return device->GetSource() == "evdev" && device->GetName() == name && !device->IsValid();
});
NOTICE_LOG(SERIALINTERFACE, "Removed device: %s", name.c_str());
s_devnode_name_map.erase(devnode);
g_controller_interface.InvokeHotplugCallbacks();
}
// Only react to "device added" events for evdev devices that we can access.
else if (strcmp(action, "add") == 0 && access(devnode, W_OK) == 0)
{
const std::string name = GetName(devnode);
if (name.empty())
continue; // probably not an evdev device
auto device = std::make_shared<evdevDevice>(devnode);
if (device->IsInteresting())
{
g_controller_interface.AddDevice(std::move(device));
s_devnode_name_map.insert(std::pair<std::string, std::string>(devnode, name));
NOTICE_LOG(SERIALINTERFACE, "Added new device: %s", name.c_str());
g_controller_interface.InvokeHotplugCallbacks();
}
}
udev_device_unref(dev);
}
NOTICE_LOG(SERIALINTERFACE, "evdev hotplug thread stopped");
}
static void StartHotplugThread()
{
if (s_hotplug_thread_running.IsSet())
return;
s_wakeup_eventfd = eventfd(0, 0);
_assert_msg_(PAD, s_wakeup_eventfd != -1, "Couldn't create eventfd.");
s_hotplug_thread_running.Set(true);
s_hotplug_thread = std::thread(HotplugThreadFunc);
}
static void StopHotplugThread()
{
if (s_hotplug_thread_running.TestAndClear())
{
// Write something to efd so that select() stops blocking.
uint64_t value = 1;
write(s_wakeup_eventfd, &value, sizeof(uint64_t));
s_hotplug_thread.join();
}
}
void Init()
{
s_devnode_name_map.clear();
// During initialization we use udev to iterate over all /dev/input/event* devices.
// Note: the Linux kernel is currently limited to just 32 event devices. If this ever
// changes, hopefully udev will take care of this.
udev* udev = udev_new();
_assert_msg_(PAD, udev != nullptr, "Couldn't initialize libudev.");
// List all input devices
udev_enumerate* enumerate = udev_enumerate_new(udev);
udev_enumerate_add_match_subsystem(enumerate, "input");
udev_enumerate_scan_devices(enumerate);
udev_list_entry* devices = udev_enumerate_get_list_entry(enumerate);
// Iterate over all input devices
udev_list_entry* dev_list_entry;
udev_list_entry_foreach(dev_list_entry, devices)
{
const char* path = udev_list_entry_get_name(dev_list_entry);
udev_device* dev = udev_device_new_from_syspath(udev, path);
const char* devnode = udev_device_get_devnode(dev);
// We only care about devices which we have read/write access to.
if (devnode && access(devnode, W_OK) == 0)
{
// Unfortunately udev gives us no way to filter out the non event device interfaces.
// So we open it and see if it works with evdev ioctls or not.
std::string name = GetName(devnode);
auto input = std::make_shared<evdevDevice>(devnode);
if (input->IsInteresting())
{
g_controller_interface.AddDevice(std::move(input));
s_devnode_name_map.insert(std::pair<std::string, std::string>(devnode, name));
}
}
udev_device_unref(dev);
}
udev_enumerate_unref(enumerate);
udev_unref(udev);
StartHotplugThread();
}
void Shutdown()
{
StopHotplugThread();
}
evdevDevice::evdevDevice(const std::string& devnode) : m_devfile(devnode)
{
// The device file will be read on one of the main threads, so we open in non-blocking mode.
m_fd = open(devnode.c_str(), O_RDWR | O_NONBLOCK);
int ret = libevdev_new_from_fd(m_fd, &m_dev);
if (ret != 0)
{
// This useally fails because the device node isn't an evdev device, such as /dev/input/js0
m_initialized = false;
close(m_fd);
return;
}
m_name = StripSpaces(libevdev_get_name(m_dev));
// Controller buttons (and keyboard keys)
int num_buttons = 0;
for (int key = 0; key < KEY_MAX; key++)
if (libevdev_has_event_code(m_dev, EV_KEY, key))
AddInput(new Button(num_buttons++, key, m_dev));
// Absolute axis (thumbsticks)
int num_axis = 0;
for (int axis = 0; axis < 0x100; axis++)
if (libevdev_has_event_code(m_dev, EV_ABS, axis))
{
AddAnalogInputs(new Axis(num_axis, axis, false, m_dev),
new Axis(num_axis, axis, true, m_dev));
num_axis++;
}
// Force feedback
if (libevdev_has_event_code(m_dev, EV_FF, FF_PERIODIC))
{
for (auto type : {FF_SINE, FF_SQUARE, FF_TRIANGLE, FF_SAW_UP, FF_SAW_DOWN})
if (libevdev_has_event_code(m_dev, EV_FF, type))
AddOutput(new ForceFeedback(type, m_dev));
}
if (libevdev_has_event_code(m_dev, EV_FF, FF_RUMBLE))
{
AddOutput(new ForceFeedback(FF_RUMBLE, m_dev));
}
// TODO: Add leds as output devices
m_initialized = true;
m_interesting = num_axis >= 2 || num_buttons >= 8;
}
evdevDevice::~evdevDevice()
{
if (m_initialized)
{
libevdev_free(m_dev);
close(m_fd);
}
}
void evdevDevice::UpdateInput()
{
// Run through all evdev events
// libevdev will keep track of the actual controller state internally which can be queried
// later with libevdev_fetch_event_value()
input_event ev;
int rc = LIBEVDEV_READ_STATUS_SUCCESS;
do
{
if (rc == LIBEVDEV_READ_STATUS_SYNC)
rc = libevdev_next_event(m_dev, LIBEVDEV_READ_FLAG_SYNC, &ev);
else
rc = libevdev_next_event(m_dev, LIBEVDEV_READ_FLAG_NORMAL, &ev);
} while (rc >= 0);
}
bool evdevDevice::IsValid() const
{
int current_fd = libevdev_get_fd(m_dev);
if (current_fd == -1)
return false;
libevdev* device;
if (libevdev_new_from_fd(current_fd, &device) != 0)
{
close(current_fd);
return false;
}
libevdev_free(device);
return true;
}
std::string evdevDevice::Button::GetName() const
{
// Buttons below 0x100 are mostly keyboard keys, and the names make sense
if (m_code < 0x100)
{
const char* name = libevdev_event_code_get_name(EV_KEY, m_code);
if (name)
return StripSpaces(name);
}
// But controllers use codes above 0x100, and the standard label often doesn't match.
// We are better off with Button 0 and so on.
return "Button " + std::to_string(m_index);
}
ControlState evdevDevice::Button::GetState() const
{
int value = 0;
libevdev_fetch_event_value(m_dev, EV_KEY, m_code, &value);
return value;
}
evdevDevice::Axis::Axis(u8 index, u16 code, bool upper, libevdev* dev)
: m_code(code), m_index(index), m_upper(upper), m_dev(dev)
{
m_min = libevdev_get_abs_minimum(m_dev, m_code);
m_range = libevdev_get_abs_maximum(m_dev, m_code) + abs(m_min);
}
std::string evdevDevice::Axis::GetName() const
{
return "Axis " + std::to_string(m_index) + (m_upper ? "+" : "-");
}
ControlState evdevDevice::Axis::GetState() const
{
int value = 0;
libevdev_fetch_event_value(m_dev, EV_ABS, m_code, &value);
// Value from 0.0 to 1.0
ControlState fvalue = MathUtil::Clamp(double(value - m_min) / double(m_range), 0.0, 1.0);
// Split into two axis, each covering half the range from 0.0 to 1.0
if (m_upper)
return std::max(0.0, fvalue - 0.5) * 2.0;
else
return (0.5 - std::min(0.5, fvalue)) * 2.0;
}
std::string evdevDevice::ForceFeedback::GetName() const
{
// We have some default names.
switch (m_type)
{
case FF_SINE:
return "Sine";
case FF_TRIANGLE:
return "Triangle";
case FF_SQUARE:
return "Square";
case FF_RUMBLE:
return "LeftRight";
default:
{
const char* name = libevdev_event_code_get_name(EV_FF, m_type);
if (name)
return StripSpaces(name);
return "Unknown";
}
}
}
void evdevDevice::ForceFeedback::SetState(ControlState state)
{
// libevdev doesn't have nice helpers for forcefeedback
// we will use the file descriptors directly.
if (m_id != -1) // delete the previous effect (which also stops it)
{
ioctl(m_fd, EVIOCRMFF, m_id);
m_id = -1;
}
if (state > 0) // Upload and start an effect.
{
ff_effect effect;
effect.id = -1;
effect.direction = 0; // down
effect.replay.length = 500; // 500ms
effect.replay.delay = 0;
effect.trigger.button = 0; // don't trigger on button press
effect.trigger.interval = 0;
// This is the the interface that XInput uses, with 2 motors of differing sizes/frequencies that
// are controlled seperatally
if (m_type == FF_RUMBLE)
{
effect.type = FF_RUMBLE;
// max ranges tuned to 'feel' similar in magnitude to triangle/sine on xbox360 controller
effect.u.rumble.strong_magnitude = u16(state * 0x4000);
effect.u.rumble.weak_magnitude = u16(state * 0xFFFF);
}
else // FF_PERIODIC, a more generic interface.
{
effect.type = FF_PERIODIC;
effect.u.periodic.waveform = m_type;
effect.u.periodic.phase = 0x7fff; // 180 degrees
effect.u.periodic.offset = 0;
effect.u.periodic.period = 10;
effect.u.periodic.magnitude = s16(state * 0x7FFF);
effect.u.periodic.envelope.attack_length = 0; // no attack
effect.u.periodic.envelope.attack_level = 0;
effect.u.periodic.envelope.fade_length = 0;
effect.u.periodic.envelope.fade_level = 0;
}
ioctl(m_fd, EVIOCSFF, &effect);
m_id = effect.id;
input_event play;
play.type = EV_FF;
play.code = m_id;
play.value = 1;
write(m_fd, (const void*)&play, sizeof(play));
}
}
evdevDevice::ForceFeedback::~ForceFeedback()
{
// delete the uploaded effect, so we don't leak it.
if (m_id != -1)
{
ioctl(m_fd, EVIOCRMFF, m_id);
}
}
}
}