dolphin/Source/Core/VideoCommon/LightingShaderGen.h

262 lines
9.6 KiB
C++

// Copyright 2013 Dolphin Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.
#pragma once
#include "VideoCommon/NativeVertexFormat.h"
#include "VideoCommon/ShaderGenCommon.h"
#include "VideoCommon/XFMemory.h"
#define LIGHT_COL "%s[%d].%s"
#define LIGHT_COL_PARAMS(lightsColName, index, swizzle) (lightsColName), (index), (swizzle)
#define LIGHT_COSATT "%s[4*%d]"
#define LIGHT_COSATT_PARAMS(lightsName, index) (lightsName), (index)
#define LIGHT_DISTATT "%s[4*%d+1]"
#define LIGHT_DISTATT_PARAMS(lightsName, index) (lightsName), (index)
#define LIGHT_POS "%s[4*%d+2]"
#define LIGHT_POS_PARAMS(lightsName, index) (lightsName), (index)
#define LIGHT_DIR "%s[4*%d+3]"
#define LIGHT_DIR_PARAMS(lightsName, index) (lightsName), (index)
/**
* Common uid data used for shader generators that use lighting calculations.
*/
struct LightingUidData
{
u32 matsource : 4; // 4x1 bit
u32 enablelighting : 4; // 4x1 bit
u32 ambsource : 4; // 4x1 bit
u32 diffusefunc : 8; // 4x2 bits
u32 attnfunc : 8; // 4x2 bits
u32 light_mask : 32; // 4x8 bits
};
template<class T>
static void GenerateLightShader(T& object, LightingUidData& uid_data, int index, int litchan_index, const char* lightsColName, const char* lightsName, int coloralpha)
{
const LitChannel& chan = (litchan_index > 1) ? xfmem.alpha[litchan_index-2] : xfmem.color[litchan_index];
const char* swizzle = (coloralpha == 1) ? "xyz" : (coloralpha == 2) ? "w" : "xyzw";
const char* swizzle_components = (coloralpha == 1) ? "3" : (coloralpha == 2) ? "" : "4";
uid_data.attnfunc |= chan.attnfunc << (2*litchan_index);
uid_data.diffusefunc |= chan.diffusefunc << (2*litchan_index);
if (!(chan.attnfunc & 1))
{
// atten disabled
switch (chan.diffusefunc)
{
case LIGHTDIF_NONE:
object.Write("lacc.%s += " LIGHT_COL";\n", swizzle, LIGHT_COL_PARAMS(lightsColName, index, swizzle));
break;
case LIGHTDIF_SIGN:
case LIGHTDIF_CLAMP:
object.Write("ldir = normalize(" LIGHT_POS".xyz - pos.xyz);\n", LIGHT_POS_PARAMS(lightsName, index));
object.Write("lacc.%s += int%s(round(%sdot(ldir, _norm0)) * float%s(" LIGHT_COL")));\n",
swizzle, swizzle_components, chan.diffusefunc != LIGHTDIF_SIGN ? "max(0.0," :"(",
swizzle_components, LIGHT_COL_PARAMS(lightsColName, index, swizzle));
break;
default: _assert_(0);
}
}
else // spec and spot
{
if (chan.attnfunc == 3)
{ // spot
object.Write("ldir = " LIGHT_POS".xyz - pos.xyz;\n", LIGHT_POS_PARAMS(lightsName, index));
object.Write("dist2 = dot(ldir, ldir);\n"
"dist = sqrt(dist2);\n"
"ldir = ldir / dist;\n"
"attn = max(0.0, dot(ldir, " LIGHT_DIR".xyz));\n",
LIGHT_DIR_PARAMS(lightsName, index));
// attn*attn may overflow
object.Write("attn = max(0.0, " LIGHT_COSATT".x + " LIGHT_COSATT".y*attn + " LIGHT_COSATT".z*attn*attn) / dot(" LIGHT_DISTATT".xyz, float3(1.0,dist,dist2));\n",
LIGHT_COSATT_PARAMS(lightsName, index), LIGHT_COSATT_PARAMS(lightsName, index), LIGHT_COSATT_PARAMS(lightsName, index), LIGHT_DISTATT_PARAMS(lightsName, index));
}
else if (chan.attnfunc == 1)
{ // specular
object.Write("ldir = normalize(" LIGHT_POS".xyz);\n", LIGHT_POS_PARAMS(lightsName, index));
object.Write("attn = (dot(_norm0,ldir) >= 0.0) ? max(0.0, dot(_norm0, " LIGHT_DIR".xyz)) : 0.0;\n", LIGHT_DIR_PARAMS(lightsName, index));
// attn*attn may overflow
object.Write("attn = max(0.0, " LIGHT_COSATT".x + " LIGHT_COSATT".y*attn + " LIGHT_COSATT".z*attn*attn) / (" LIGHT_DISTATT".x + " LIGHT_DISTATT".y*attn + " LIGHT_DISTATT".z*attn*attn);\n",
LIGHT_COSATT_PARAMS(lightsName, index), LIGHT_COSATT_PARAMS(lightsName, index), LIGHT_COSATT_PARAMS(lightsName, index),
LIGHT_DISTATT_PARAMS(lightsName, index), LIGHT_DISTATT_PARAMS(lightsName, index), LIGHT_DISTATT_PARAMS(lightsName, index));
}
switch (chan.diffusefunc)
{
case LIGHTDIF_NONE:
object.Write("lacc.%s += int%s(round(attn * float%s(" LIGHT_COL")));\n",
swizzle, swizzle_components,
swizzle_components, LIGHT_COL_PARAMS(lightsColName, index, swizzle));
break;
case LIGHTDIF_SIGN:
case LIGHTDIF_CLAMP:
object.Write("lacc.%s += int%s(round(attn * %sdot(ldir, _norm0)) * float%s(" LIGHT_COL")));\n",
swizzle, swizzle_components,
chan.diffusefunc != LIGHTDIF_SIGN ? "max(0.0," :"(",
swizzle_components, LIGHT_COL_PARAMS(lightsColName, index, swizzle));
break;
default: _assert_(0);
}
}
object.Write("\n");
}
// vertex shader
// lights/colors
// materials name is I_MATERIALS in vs and I_PMATERIALS in ps
// inColorName is color in vs and colors_ in ps
// dest is o.colors_ in vs and colors_ in ps
template<class T>
static void GenerateLightingShader(T& object, LightingUidData& uid_data, int components, const char* materialsName, const char* lightsColName, const char* lightsName, const char* inColorName, const char* dest)
{
for (unsigned int j = 0; j < xfmem.numChan.numColorChans; j++)
{
const LitChannel& color = xfmem.color[j];
const LitChannel& alpha = xfmem.alpha[j];
object.Write("{\n");
uid_data.matsource |= xfmem.color[j].matsource << j;
if (color.matsource) // from vertex
{
if (components & (VB_HAS_COL0 << j))
object.Write("int4 mat = int4(round(%s%d * 255.0));\n", inColorName, j);
else if (components & VB_HAS_COL0)
object.Write("int4 mat = int4(round(%s0 * 255.0));\n", inColorName);
else
object.Write("int4 mat = int4(255, 255, 255, 255);\n");
}
else // from color
{
object.Write("int4 mat = %s[%d];\n", materialsName, j+2);
}
uid_data.enablelighting |= xfmem.color[j].enablelighting << j;
if (color.enablelighting)
{
uid_data.ambsource |= xfmem.color[j].ambsource << j;
if (color.ambsource) // from vertex
{
if (components & (VB_HAS_COL0<<j) )
object.Write("lacc = int4(round(%s%d * 255.0));\n", inColorName, j);
else if (components & VB_HAS_COL0 )
object.Write("lacc = int4(round(%s0 * 255.0));\n", inColorName);
else
// TODO: this isn't verified. Here we want to read the ambient from the vertex,
// but the vertex itself has no color. So we don't know which value to read.
// Returing 1.0 is the same as disabled lightning, so this could be fine
object.Write("lacc = int4(255, 255, 255, 255);\n");
}
else // from color
{
object.Write("lacc = %s[%d];\n", materialsName, j);
}
}
else
{
object.Write("lacc = int4(255, 255, 255, 255);\n");
}
// check if alpha is different
uid_data.matsource |= xfmem.alpha[j].matsource << (j+2);
if (alpha.matsource != color.matsource)
{
if (alpha.matsource) // from vertex
{
if (components & (VB_HAS_COL0<<j))
object.Write("mat.w = int(round(%s%d.w * 255.0));\n", inColorName, j);
else if (components & VB_HAS_COL0)
object.Write("mat.w = int(round(%s0.w * 255.0));\n", inColorName);
else object.Write("mat.w = 255;\n");
}
else // from color
{
object.Write("mat.w = %s[%d].w;\n", materialsName, j+2);
}
}
uid_data.enablelighting |= xfmem.alpha[j].enablelighting << (j+2);
if (alpha.enablelighting)
{
uid_data.ambsource |= xfmem.alpha[j].ambsource << (j+2);
if (alpha.ambsource) // from vertex
{
if (components & (VB_HAS_COL0<<j) )
object.Write("lacc.w = int(round(%s%d.w * 255.0));\n", inColorName, j);
else if (components & VB_HAS_COL0 )
object.Write("lacc.w = int(round(%s0.w * 255.0));\n", inColorName);
else
// TODO: The same for alpha: We want to read from vertex, but the vertex has no color
object.Write("lacc.w = 255;\n");
}
else // from color
{
object.Write("lacc.w = %s[%d].w;\n", materialsName, j);
}
}
else
{
object.Write("lacc.w = 255;\n");
}
if (color.enablelighting && alpha.enablelighting)
{
// both have lighting, test if they use the same lights
int mask = 0;
uid_data.attnfunc |= color.attnfunc << (2*j);
uid_data.attnfunc |= alpha.attnfunc << (2*(j+2));
uid_data.diffusefunc |= color.diffusefunc << (2*j);
uid_data.diffusefunc |= alpha.diffusefunc << (2*(j+2));
uid_data.light_mask |= color.GetFullLightMask() << (8*j);
uid_data.light_mask |= alpha.GetFullLightMask() << (8*(j+2));
if (color.lightparams == alpha.lightparams)
{
mask = color.GetFullLightMask() & alpha.GetFullLightMask();
if (mask)
{
for (int i = 0; i < 8; ++i)
{
if (mask & (1<<i))
{
GenerateLightShader<T>(object, uid_data, i, j, lightsColName, lightsName, 3);
}
}
}
}
// no shared lights
for (int i = 0; i < 8; ++i)
{
if (!(mask&(1<<i)) && (color.GetFullLightMask() & (1<<i)))
GenerateLightShader<T>(object, uid_data, i, j, lightsColName, lightsName, 1);
if (!(mask&(1<<i)) && (alpha.GetFullLightMask() & (1<<i)))
GenerateLightShader<T>(object, uid_data, i, j+2, lightsColName, lightsName, 2);
}
}
else if (color.enablelighting || alpha.enablelighting)
{
// lights are disabled on one channel so process only the active ones
const LitChannel& workingchannel = color.enablelighting ? color : alpha;
const int lit_index = color.enablelighting ? j : (j+2);
int coloralpha = color.enablelighting ? 1 : 2;
uid_data.light_mask |= workingchannel.GetFullLightMask() << (8*lit_index);
for (int i = 0; i < 8; ++i)
{
if (workingchannel.GetFullLightMask() & (1<<i))
GenerateLightShader<T>(object, uid_data, i, lit_index, lightsColName, lightsName, coloralpha);
}
}
object.Write("%s%d = float4(mat * clamp(lacc, 0, 255) / 255) / 255.0;\n", dest, j);
object.Write("}\n");
}
}