dolphin/Source/Core/DSPCore/Src/DspIntArithmetic.cpp
nakeee 13a901146f DSPLLE:
- Extension fixes (Joined work with LM)
- Shuffle fix for my off by one error



git-svn-id: https://dolphin-emu.googlecode.com/svn/trunk@3958 8ced0084-cf51-0410-be5f-012b33b47a6e
2009-08-10 09:20:12 +00:00

748 lines
17 KiB
C++

// Copyright (C) 2003 Dolphin Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official SVN repository and contact information can be found at
// http://code.google.com/p/dolphin-emu/
// Additional copyrights go to Duddie and Tratax (c) 2004
#include "DSPInterpreter.h"
#include "DSPIntCCUtil.h"
#include "DSPIntUtil.h"
// Arithmetic and accumulator control.
namespace DSPInterpreter {
// CLR $acR
// 1000 r001 xxxx xxxx
// Clears accumulator $acR
void clr(const UDSPInstruction& opc)
{
u8 reg = (opc.hex >> 11) & 0x1;
dsp_set_long_acc(reg, 0);
Update_SR_Register64((s64)0); // really?
}
// CLRL $acR.l
// 1111 110r xxxx xxxx
// Clears $acR.l - low 16 bits of accumulator $acR.
void clrl(const UDSPInstruction& opc)
{
u16 reg = DSP_REG_ACL0 + ((opc.hex >> 11) & 0x1);
g_dsp.r[reg] = 0;
// Should this be 64bit?
// nakee: it says the whole reg in duddie's doc sounds weird
Update_SR_Register64((s64)reg);
}
// ADDAXL $acD, $axS.l
// 0111 00sd xxxx xxxx
// Adds secondary accumulator $axS.l to accumulator register $acD.
void addaxl(const UDSPInstruction& opc)
{
u8 sreg = (opc.hex >> 9) & 0x1;
u8 dreg = (opc.hex >> 8) & 0x1;
s64 acc = dsp_get_long_acc(dreg);
s64 acx = dsp_get_ax_l(sreg);
acc += acx;
dsp_set_long_acc(dreg, acc);
Update_SR_Register64(acc);
}
// TSTAXH $axR.h
// 1000 011r xxxx xxxx
// Test high part of secondary accumulator $axR.h.
void tstaxh(const UDSPInstruction& opc)
{
u8 reg = (opc.hex >> 8) & 0x1;
s16 val = dsp_get_ax_h(reg);
Update_SR_Register16(val);
}
// SUB $acD, $ac(1-D)
// 0101 110d xxxx xxxx
// Subtracts accumulator $ac(1-D) from accumulator register $acD.
void sub(const UDSPInstruction& opc)
{
u8 D = (opc.hex >> 8) & 0x1;
s64 acc1 = dsp_get_long_acc(D);
s64 acc2 = dsp_get_long_acc(1 - D);
acc1 -= acc2;
dsp_set_long_acc(D, acc1);
Update_SR_Register64(acc1);
}
// MOVR $acD, $axS.R
// 0110 0srd xxxx xxxx
// Moves register $axS.R (sign extended) to middle accumulator $acD.hm.
// Sets $acD.l to 0.
// TODO: Check what happens to acD.h.
void movr(const UDSPInstruction& opc)
{
u8 areg = (opc.hex >> 8) & 0x1;
u8 sreg = ((opc.hex >> 9) & 0x3) + DSP_REG_AXL0;
s64 acc = (s16)g_dsp.r[sreg];
acc <<= 16;
acc &= ~0xffff;
dsp_set_long_acc(areg, acc);
Update_SR_Register64(acc);
}
// MOVAX $acD, $axS
// 0110 10sd xxxx xxxx
// Moves secondary accumulator $axS to accumulator $axD.
void movax(const UDSPInstruction& opc)
{
u8 dreg = (opc.hex >> 8) & 0x1;
u8 sreg = (opc.hex >> 9) & 0x1;
s64 acx = dsp_get_long_acx(sreg);
dsp_set_long_acc(dreg, acx);
Update_SR_Register64(acx);
}
// XORR $acD.m, $axS.h
// 0011 00sd xxxx xxxx
// Logic XOR (exclusive or) middle part of accumulator $acD.m with
// high part of secondary accumulator $axS.h.
void xorr(const UDSPInstruction& opc)
{
u8 sreg = (opc.hex >> 9) & 0x1;
u8 dreg = (opc.hex >> 8) & 0x1;
g_dsp.r[DSP_REG_ACM0 + dreg] ^= g_dsp.r[DSP_REG_AXH0 + sreg];
s64 acc = dsp_get_long_acc(dreg);
Update_SR_Register64(acc);
}
// ANDR $acD.m, $axS.h
// 0011 01sd xxxx xxxx
// Logic AND middle part of accumulator $acD.m with high part of
// secondary accumulator $axS.h.
void andr(const UDSPInstruction& opc)
{
u8 sreg = (opc.hex >> 9) & 0x1;
u8 dreg = (opc.hex >> 8) & 0x1;
g_dsp.r[DSP_REG_ACM0 + dreg] &= g_dsp.r[DSP_REG_AXH0 + sreg];
s64 acc = dsp_get_long_acc(dreg);
Update_SR_Register64(acc);
}
// ORR $acD.m, $axS.h
// 0011 10sd xxxx xxxx
// Logic OR middle part of accumulator $acD.m with high part of
// secondary accumulator $axS.h.
void orr(const UDSPInstruction& opc)
{
u8 sreg = (opc.hex >> 9) & 0x1;
u8 dreg = (opc.hex >> 8) & 0x1;
g_dsp.r[DSP_REG_ACM0 + dreg] |= g_dsp.r[DSP_REG_AXH0 + sreg];
s64 acc = dsp_get_long_acc(dreg);
Update_SR_Register64(acc);
}
// FIXME: How does it fit what we know about andc'ls
// ANDC $acD.m, $ac(1-D).m
// 0011 110d xxxx xxxx
// Logic AND middle part of accumulator $acD.m with middle part of
// accumulator $ac(1-D).m
void andc(const UDSPInstruction& opc)
{
u8 D = (opc.hex >> 8) & 0x1;
g_dsp.r[DSP_REG_ACM0+D] &= dsp_get_acc_m(1-D);
Update_SR_Register16(dsp_get_acc_m(D));
}
// FIXME: How does it fit what we know about orc'ls
// ORC $acD.m, $ac(1-D).m
// 0011 111d xxxx xxxx
// Logic OR middle part of accumulator $acD.m with middle part of
// accumulator $ac(1-D).m.
void orc(const UDSPInstruction& opc)
{
u8 D = (opc.hex >> 8) & 0x1;
g_dsp.r[DSP_REG_ACM0+D] |= dsp_get_acc_m(1-D);
Update_SR_Register16(dsp_get_acc_m(D));
}
void orf(const UDSPInstruction& opc)
{
ERROR_LOG(DSPLLE, "orf not implemented");
}
// Hermes switched andf and andcf, so check to make sure they are still correct
// ANDCF $acD.m, #I
// 0000 001r 1100 0000
// iiii iiii iiii iiii
// Set logic zero (LZ) flag in status register $sr if result of logic AND of
// accumulator mid part $acD.m with immediate value I is equal I.
void andcf(const UDSPInstruction& opc)
{
u8 reg = (opc.hex >> 8) & 0x1;
u16 imm = dsp_fetch_code();
u16 val = dsp_get_acc_m(reg);
Update_SR_LZ(((val & imm) == imm) ? 0 : 1);
}
// Hermes switched andf and andcf, so check to make sure they are still correct
// ANDF $acD.m, #I
// 0000 001r 1010 0000
// iiii iiii iiii iiii
// Set logic zero (LZ) flag in status register $sr if result of logical AND
// operation of accumulator mid part $acD.m with immediate value I is equal
// immediate value 0.
void andf(const UDSPInstruction& opc)
{
u8 reg = (opc.hex >> 8) & 0x1;
u16 imm = dsp_fetch_code();
u16 val = dsp_get_acc_m(reg);
Update_SR_LZ(((val & imm) == 0) ? 0 : 1);
}
// CMPI $amD, #I
// 0000 001r 1000 0000
// iiii iiii iiii iiii
// Compares mid accumulator $acD.hm ($amD) with sign extended immediate value I.
// Although flags are being set regarding whole accumulator register.
void cmpi(const UDSPInstruction& opc)
{
int reg = (opc.hex >> 8) & 0x1;
// Immediate is considered to be at M level in the 40-bit accumulator.
s64 imm = (s64)(s16)dsp_fetch_code() << 16;
s64 val = dsp_get_long_acc(reg);
Update_SR_Register64(val - imm);
}
// XORI $acD.m, #I
// 0000 001r 0010 0000
// iiii iiii iiii iiii
// Logic exclusive or (XOR) of accumulator mid part $acD.m with
// immediate value I.
void xori(const UDSPInstruction& opc)
{
u8 reg = DSP_REG_ACM0 + ((opc.hex >> 8) & 0x1);
u16 imm = dsp_fetch_code();
g_dsp.r[reg] ^= imm;
Update_SR_Register16((s16)g_dsp.r[reg]);
}
// ANDI $acD.m, #I
// 0000 001r 0100 0000
// iiii iiii iiii iiii
// Logic AND of accumulator mid part $acD.m with immediate value I.
void andi(const UDSPInstruction& opc)
{
u8 reg = DSP_REG_ACM0 + ((opc.hex >> 8) & 0x1);
u16 imm = dsp_fetch_code();
g_dsp.r[reg] &= imm;
Update_SR_Register16((s16)g_dsp.r[reg]);
}
// F|RES: i am not sure if this shouldnt be the whole ACC
// ORI $acD.m, #I
// 0000 001r 0110 0000
// iiii iiii iiii iiii
// Logic OR of accumulator mid part $acD.m with immediate value I.
void ori(const UDSPInstruction& opc)
{
u8 reg = DSP_REG_ACM0 + ((opc.hex >> 8) & 0x1);
u16 imm = dsp_fetch_code();
g_dsp.r[reg] |= imm;
Update_SR_Register16((s16)g_dsp.r[reg]);
}
//-------------------------------------------------------------
// ADD $acD, $ac(1-D)
// 0100 110d xxxx xxxx
// Adds accumulator $ac(1-D) to accumulator register $acD.
void add(const UDSPInstruction& opc)
{
u8 areg = (opc.hex >> 8) & 0x1;
s64 acc0 = dsp_get_long_acc(0);
s64 acc1 = dsp_get_long_acc(1);
s64 res = acc0 + acc1;
dsp_set_long_acc(areg, res);
Update_SR_Register64(res);
}
// ADDP $acD
// 0100 111d xxxx xxxx
// Adds product register to accumulator register.
void addp(const UDSPInstruction& opc)
{
u8 dreg = (opc.hex >> 8) & 0x1;
s64 acc = dsp_get_long_acc(dreg);
acc += dsp_get_long_prod();
dsp_set_long_acc(dreg, acc);
Update_SR_Register64(acc);
}
// SUBP $acD
// 0101 111d xxxx xxxx
// Subtracts product register from accumulator register.
void subp(const UDSPInstruction& opc)
{
u8 dreg = (opc.hex >> 8) & 0x1;
s64 acc = dsp_get_long_acc(dreg);
acc -= dsp_get_long_prod();
dsp_set_long_acc(dreg, acc);
Update_SR_Register64(acc);
}
// CMPIS $acD, #I
// 0000 011d iiii iiii
// Compares accumulator with short immediate. Comaprison is executed
// by subtracting short immediate (8bit sign extended) from mid accumulator
// $acD.hm and computing flags based on whole accumulator $acD.
void cmpis(const UDSPInstruction& opc)
{
u8 areg = (opc.hex >> 8) & 0x1;
s64 acc = dsp_get_long_acc(areg);
s64 val = (s8)opc.hex;
val <<= 16;
s64 res = acc - val;
Update_SR_Register64(res);
}
// DECM $acsD
// 0111 100d xxxx xxxx
// Decrement 24-bit mid-accumulator $acsD.
void decm(const UDSPInstruction& opc)
{
u8 dreg = (opc.hex >> 8) & 0x01;
s64 sub = 0x10000;
s64 acc = dsp_get_long_acc(dreg);
acc -= sub;
dsp_set_long_acc(dreg, acc);
Update_SR_Register64(acc);
}
// DEC $acD
// 0111 101d xxxx xxxx
// Decrement accumulator $acD.
void dec(const UDSPInstruction& opc)
{
u8 dreg = (opc.hex >> 8) & 0x01;
s64 acc = dsp_get_long_acc(dreg) - 1;
dsp_set_long_acc(dreg, acc);
Update_SR_Register64(acc);
}
// INCM $acsD
// 0111 010d xxxx xxxx
// Increment 24-bit mid-accumulator $acsD.
void incm(const UDSPInstruction& opc)
{
u8 dreg = (opc.hex >> 8) & 0x1;
s64 sub = 0x10000;
s64 acc = dsp_get_long_acc(dreg);
acc += sub;
dsp_set_long_acc(dreg, acc);
Update_SR_Register64(acc);
}
// INC $acD
// 0111 011d xxxx xxxx
// Increment accumulator $acD.
void inc(const UDSPInstruction& opc)
{
u8 dreg = (opc.hex >> 8) & 0x1;
s64 acc = dsp_get_long_acc(dreg) + 1;
dsp_set_long_acc(dreg, acc);
Update_SR_Register64(acc);
}
// NEG $acD
// 0111 110d xxxx xxxx
// Negate accumulator $acD.
void neg(const UDSPInstruction& opc)
{
u8 areg = (opc.hex >> 8) & 0x1;
s64 acc = dsp_get_long_acc(areg);
acc = 0 - acc;
dsp_set_long_acc(areg, acc);
Update_SR_Register64(acc);
}
// MOV $acD, $ac(1-D)
// 0110 110d xxxx xxxx
// Moves accumulator $ax(1-D) to accumulator $axD.
void mov(const UDSPInstruction& opc)
{
u8 D = (opc.hex >> 8) & 0x1;
u64 acc = dsp_get_long_acc(1 - D);
dsp_set_long_acc(D, acc);
Update_SR_Register64(acc);
}
// ADDAX $acD, $axS
// 0100 10sd xxxx xxxx
// Adds secondary accumulator $axS to accumulator register $acD.
void addax(const UDSPInstruction& opc)
{
u8 areg = (opc.hex >> 8) & 0x1;
u8 sreg = (opc.hex >> 9) & 0x1;
s64 ax = dsp_get_long_acx(sreg);
s64 acc = dsp_get_long_acc(areg);
acc += ax;
dsp_set_long_acc(areg, acc);
Update_SR_Register64(acc);
}
// ADDR $acD.M, $axS.L
// 0100 0ssd xxxx xxxx
// Adds register $axS.L to accumulator $acD register.
void addr(const UDSPInstruction& opc)
{
u8 areg = (opc.hex >> 8) & 0x1;
u8 sreg = ((opc.hex >> 9) & 0x3) + DSP_REG_AXL0;
s64 ax = (s16)g_dsp.r[sreg];
ax <<= 16;
s64 acc = dsp_get_long_acc(areg);
acc += ax;
dsp_set_long_acc(areg, acc);
Update_SR_Register64(acc);
}
// SUBR $acD.M, $axS.L
// 0101 0ssd xxxx xxxx
// Subtracts register $axS.L from accumulator $acD.M register.
void subr(const UDSPInstruction& opc)
{
u8 areg = (opc.hex >> 8) & 0x1;
u8 sreg = ((opc.hex >> 9) & 0x3) + DSP_REG_AXL0;
s64 ax = (s16)g_dsp.r[sreg];
ax <<= 16;
s64 acc = dsp_get_long_acc(areg);
acc -= ax;
dsp_set_long_acc(areg, acc);
Update_SR_Register64(acc);
}
// SUBAX $acD, $axS
// 0101 10sd xxxx xxxx
// Subtracts secondary accumulator $axS from accumulator register $acD.
void subax(const UDSPInstruction& opc)
{
int regD = (opc.hex >> 8) & 0x1;
int regS = (opc.hex >> 9) & 0x1;
s64 acc = dsp_get_long_acc(regD) - dsp_get_long_acx(regS);
dsp_set_long_acc(regD, acc);
Update_SR_Register64(acc);
}
// ADDIS $acD, #I
// 0000 010d iiii iiii
// Adds short immediate (8-bit sign extended) to mid accumulator $acD.hm.
void addis(const UDSPInstruction& opc)
{
u8 areg = (opc.hex >> 8) & 0x1;
s64 Imm = (s8)(u8)opc.hex;
Imm <<= 16;
s64 acc = dsp_get_long_acc(areg);
acc += Imm;
dsp_set_long_acc(areg, acc);
Update_SR_Register64(acc);
}
// ADDI $amR, #I
// 0000 001r 0000 0000
// iiii iiii iiii iiii
// Adds immediate (16-bit sign extended) to mid accumulator $acD.hm.
void addi(const UDSPInstruction& opc)
{
u8 areg = (opc.hex >> 8) & 0x1;
s64 sub = (s16)dsp_fetch_code();
sub <<= 16;
s64 acc = dsp_get_long_acc(areg);
acc += sub;
dsp_set_long_acc(areg, acc);
Update_SR_Register64(acc);
}
// LSL16 $acR
// 1111 000r xxxx xxxx
// Logically shifts left accumulator $acR by 16.
void lsl16(const UDSPInstruction& opc)
{
u8 areg = (opc.hex >> 8) & 0x1;
s64 acc = dsp_get_long_acc(areg);
acc <<= 16;
dsp_set_long_acc(areg, acc);
Update_SR_Register64(acc);
}
// LSR16 $acR
// 1111 010r xxxx xxxx
// Logically shifts right accumulator $acR by 16.
void lsr16(const UDSPInstruction& opc)
{
u8 areg = (opc.hex >> 8) & 0x1;
u64 acc = dsp_get_long_acc(areg);
acc >>= 16;
dsp_set_long_acc(areg, acc);
Update_SR_Register64(acc);
}
// ASR16 $acR
// 1001 r001 xxxx xxxx
// Arithmetically shifts right accumulator $acR by 16.
void asr16(const UDSPInstruction& opc)
{
u8 areg = (opc.hex >> 11) & 0x1;
s64 acc = dsp_get_long_acc(areg);
acc >>= 16;
dsp_set_long_acc(areg, acc);
Update_SR_Register64(acc);
}
// LSL $acR, #I
// 0001 010r 00ii iiii
// Logically shifts left accumulator $acR by number specified by value I.
void lsl(const UDSPInstruction& opc)
{
u16 shift = opc.ushift;
u64 acc = dsp_get_long_acc(opc.areg);
acc <<= shift;
dsp_set_long_acc(opc.areg, acc);
Update_SR_Register64(acc);
}
// LSR $acR, #I
// 0001 010r 01ii iiii
// Logically shifts left accumulator $acR by number specified by value
// calculated by negating sign extended bits 0-6.
void lsr(const UDSPInstruction& opc)
{
u16 shift = (u16) -(((s8)(opc.ushift << 2)) >> 2);
u64 acc = dsp_get_long_acc(opc.areg);
// Lop off the extraneous sign extension our 64-bit fake accum causes
acc &= 0x000000FFFFFFFFFFULL;
acc >>= shift;
dsp_set_long_acc(opc.areg, (s64)acc);
Update_SR_Register64(acc);
}
// ASL $acR, #I
// 0001 010r 10ii iiii
// Logically shifts left accumulator $acR by number specified by value I.
void asl(const UDSPInstruction& opc)
{
u16 shift = opc.ushift;
// arithmetic shift
u64 acc = dsp_get_long_acc(opc.areg);
acc <<= shift;
dsp_set_long_acc(opc.areg, acc);
Update_SR_Register64(acc);
}
// ASR $acR, #I
// 0001 010r 11ii iiii
// Arithmetically shifts right accumulator $acR by number specified by
// value calculated by negating sign extended bits 0-6.
void asr(const UDSPInstruction& opc)
{
u16 shift = (u16) -(((s8)(opc.ushift << 2)) >> 2);
// arithmetic shift
s64 acc = dsp_get_long_acc(opc.areg);
acc >>= shift;
dsp_set_long_acc(opc.areg, acc);
Update_SR_Register64(acc);
}
// (NEW)
// LSRN (fixed parameters)
// 0000 0010 1100 1010
// Logically shifts right accumulator $ACC0 by signed 16-bit value $AC1.M
// (if value negative, becomes left shift).
void lsrn(const UDSPInstruction& opc)
{
s16 shift = dsp_get_acc_m(1);
u64 acc = dsp_get_long_acc(0);
// Lop off the extraneous sign extension our 64-bit fake accum causes
acc &= 0x000000FFFFFFFFFFULL;
if (shift > 0) {
acc >>= shift;
} else if (shift < 0) {
acc <<= -shift;
}
dsp_set_long_acc(0, (s64)acc);
Update_SR_Register64(acc);
}
// (NEW)
// ASRN (fixed parameters)
// 0000 0010 1100 1011
// Arithmetically shifts right accumulator $ACC0 by signed 16-bit value $AC1.M
// (if value negative, becomes left shift).
void asrn(const UDSPInstruction& opc)
{
s16 shift = dsp_get_acc_m(1);
s64 acc = dsp_get_long_acc(0);
if (shift > 0) {
acc >>= shift;
} else if (shift < 0) {
acc <<= -shift;
}
dsp_set_long_acc(0, acc);
Update_SR_Register64(acc);
}
// LSRNR $acR
// 0011 110d 1100 0000
// Logically shifts right accumulator $ACC0 by signed 16-bit value $AC0.M
// Not described by Duddie's doc - at least not as a separate instruction.
void lsrnr(const UDSPInstruction& opc)
{
u8 sreg = 1;//Check if it should be (opc.hex >> 8) & 0x1;
s16 shift = dsp_get_acc_m(0);
u64 acc = dsp_get_long_acc(sreg);
acc &= 0x000000FFFFFFFFFFULL;
if (shift > 0) {
acc <<= shift;
} else if (shift < 0) {
acc >>= -shift;
}
dsp_set_long_acc(sreg, acc);
Update_SR_Register64(acc);
}
// CMPAR $acS axR.h
// 1100 0001 xxxx xxxx
// Compares accumulator $acS with accumulator axR.h.
// Not described by Duddie's doc - at least not as a separate instruction.
void cmpar(const UDSPInstruction& opc)
{
u8 rreg = ((opc.hex >> 12) & 0x1) + DSP_REG_AXH0;
u8 sreg = (opc.hex >> 11) & 0x1;
// we compare
s64 rr = (s16)g_dsp.r[rreg];
rr <<= 16;
s64 sr = dsp_get_long_acc(sreg);
Update_SR_Register64(sr - rr);
}
// CMP
// 1000 0010 xxxx xxxx
// Compares accumulator $ac0 with accumulator $ac1.
void cmp(const UDSPInstruction& opc)
{
s64 acc0 = dsp_get_long_acc(0);
s64 acc1 = dsp_get_long_acc(1);
Update_SR_Register64(acc0 - acc1);
}
// TST
// 1011 r001 xxxx xxxx
// Test accumulator %acR.
void tst(const UDSPInstruction& opc)
{
s8 reg = (opc.hex >> 11) & 0x1;
s64 acc = dsp_get_long_acc(reg);
Update_SR_Register64(acc);
}
} // namespace