mirror of
https://github.com/dolphin-emu/dolphin.git
synced 2025-01-12 17:19:10 +01:00
125 lines
5.4 KiB
C++
125 lines
5.4 KiB
C++
// Copyright 2013 Dolphin Emulator Project
|
|
// Licensed under GPLv2
|
|
// Refer to the license.txt file included.
|
|
|
|
#pragma once
|
|
|
|
#include "D3DBase.h"
|
|
#include "FramebufferManagerBase.h"
|
|
|
|
// On the GameCube, the game sends a request for the graphics processor to
|
|
// transfer its internal EFB (Embedded Framebuffer) to an area in GameCube RAM
|
|
// called the XFB (External Framebuffer). The size and location of the XFB is
|
|
// decided at the time of the copy, and the format is always YUYV. The video
|
|
// interface is given a pointer to the XFB, which will be decoded and
|
|
// displayed on the TV.
|
|
//
|
|
// There are two ways for Dolphin to emulate this:
|
|
//
|
|
// Real XFB mode:
|
|
//
|
|
// Dolphin will behave like the GameCube and encode the EFB to
|
|
// a portion of GameCube RAM. The emulated video interface will decode the data
|
|
// for output to the screen.
|
|
//
|
|
// Advantages: Behaves exactly like the GameCube.
|
|
// Disadvantages: Resolution will be limited.
|
|
//
|
|
// Virtual XFB mode:
|
|
//
|
|
// When a request is made to copy the EFB to an XFB, Dolphin
|
|
// will remember the RAM location and size of the XFB in a Virtual XFB list.
|
|
// The video interface will look up the XFB in the list and use the enhanced
|
|
// data stored there, if available.
|
|
//
|
|
// Advantages: Enables high resolution graphics, better than real hardware.
|
|
// Disadvantages: If the GameCube CPU writes directly to the XFB (which is
|
|
// possible but uncommon), the Virtual XFB will not capture this information.
|
|
|
|
namespace DX9
|
|
{
|
|
|
|
struct XFBSource : public XFBSourceBase
|
|
{
|
|
XFBSource(LPDIRECT3DTEXTURE9 tex) : texture(tex) {}
|
|
~XFBSource() { texture->Release(); }
|
|
|
|
void Draw(const MathUtil::Rectangle<float> &sourcerc,
|
|
const MathUtil::Rectangle<float> &drawrc, int width, int height) const;
|
|
void DecodeToTexture(u32 xfbAddr, u32 fbWidth, u32 fbHeight);
|
|
void CopyEFB(float Gamma);
|
|
|
|
LPDIRECT3DTEXTURE9 const texture;
|
|
};
|
|
|
|
class FramebufferManager : public FramebufferManagerBase
|
|
{
|
|
public:
|
|
FramebufferManager();
|
|
~FramebufferManager();
|
|
|
|
static LPDIRECT3DTEXTURE9 GetEFBColorTexture() { return s_efb.color_texture; }
|
|
static LPDIRECT3DTEXTURE9 GetEFBDepthTexture() { return s_efb.depth_texture; }
|
|
|
|
static LPDIRECT3DSURFACE9 GetEFBColorRTSurface() { return s_efb.color_surface; }
|
|
static LPDIRECT3DSURFACE9 GetEFBDepthRTSurface() { return s_efb.depth_surface; }
|
|
|
|
static LPDIRECT3DSURFACE9 GetEFBColorOffScreenRTSurface() { return s_efb.color_OffScreenReadBuffer; }
|
|
static LPDIRECT3DSURFACE9 GetEFBDepthOffScreenRTSurface() { return s_efb.depth_OffScreenReadBuffer; }
|
|
|
|
static D3DFORMAT GetEFBDepthRTSurfaceFormat() { return s_efb.depth_surface_Format; }
|
|
static D3DFORMAT GetEFBColorRTSurfaceFormat() { return s_efb.color_surface_Format; }
|
|
static D3DFORMAT GetEFBDepthReadSurfaceFormat() { return s_efb.depth_ReadBuffer_Format; }
|
|
|
|
static LPDIRECT3DSURFACE9 GetEFBColorReadSurface() { return s_efb.color_ReadBuffer; }
|
|
static LPDIRECT3DSURFACE9 GetEFBDepthReadSurface() { return s_efb.depth_ReadBuffer; }
|
|
|
|
static LPDIRECT3DTEXTURE9 GetEFBColorReinterpretTexture() { return s_efb.color_reinterpret_texture; }
|
|
static LPDIRECT3DSURFACE9 GetEFBColorReinterpretSurface() { return s_efb.color_reinterpret_surface; }
|
|
static void SwapReinterpretTexture()
|
|
{
|
|
LPDIRECT3DSURFACE9 swapsurf = GetEFBColorReinterpretSurface();
|
|
LPDIRECT3DTEXTURE9 swaptex = GetEFBColorReinterpretTexture();
|
|
s_efb.color_reinterpret_surface = GetEFBColorRTSurface();
|
|
s_efb.color_reinterpret_texture = GetEFBColorTexture();
|
|
s_efb.color_surface = swapsurf;
|
|
s_efb.color_texture = swaptex;
|
|
}
|
|
|
|
private:
|
|
XFBSourceBase* CreateXFBSource(unsigned int target_width, unsigned int target_height);
|
|
void GetTargetSize(unsigned int *width, unsigned int *height, const EFBRectangle& sourceRc);
|
|
|
|
void CopyToRealXFB(u32 xfbAddr, u32 fbWidth, u32 fbHeight, const EFBRectangle& sourceRc,float Gamma);
|
|
|
|
static struct Efb
|
|
{
|
|
Efb() : color_texture(NULL), colorRead_texture(NULL), depth_texture(NULL), depthRead_texture(NULL),
|
|
color_reinterpret_texture(NULL), color_reinterpret_surface(NULL),
|
|
depth_surface(NULL), color_surface(NULL), color_ReadBuffer(NULL), depth_ReadBuffer(NULL),
|
|
color_OffScreenReadBuffer(NULL), depth_OffScreenReadBuffer(NULL),
|
|
color_surface_Format(D3DFMT_UNKNOWN), depth_surface_Format(D3DFMT_UNKNOWN),
|
|
depth_ReadBuffer_Format(D3DFMT_UNKNOWN) {}
|
|
|
|
LPDIRECT3DTEXTURE9 color_texture;//Texture that contains the color data of the render target
|
|
LPDIRECT3DTEXTURE9 colorRead_texture;//1 pixel texture for temporal data store
|
|
LPDIRECT3DTEXTURE9 depth_texture;//Texture that contains the depth data of the render target
|
|
LPDIRECT3DTEXTURE9 depthRead_texture;//4 pixel texture for temporal data store
|
|
|
|
LPDIRECT3DTEXTURE9 color_reinterpret_texture;//buffer used for ReinterpretPixelData
|
|
LPDIRECT3DSURFACE9 color_reinterpret_surface;//corresponding surface
|
|
|
|
LPDIRECT3DSURFACE9 depth_surface;//Depth Surface
|
|
LPDIRECT3DSURFACE9 color_surface;//Color Surface
|
|
LPDIRECT3DSURFACE9 color_ReadBuffer;//Surface 0 of colorRead_texture
|
|
LPDIRECT3DSURFACE9 depth_ReadBuffer;//Surface 0 of depthRead_texture
|
|
LPDIRECT3DSURFACE9 color_OffScreenReadBuffer;//System memory Surface that can be locked to retrieve the data
|
|
LPDIRECT3DSURFACE9 depth_OffScreenReadBuffer;//System memory Surface that can be locked to retrieve the data
|
|
|
|
D3DFORMAT color_surface_Format;//Format of the color Surface
|
|
D3DFORMAT depth_surface_Format;//Format of the Depth Surface
|
|
D3DFORMAT depth_ReadBuffer_Format;//Format of the Depth color Read Surface
|
|
} s_efb;
|
|
};
|
|
|
|
} // namespace DX9
|