423 lines
14 KiB
C++

// Copyright 2008 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "Common/MemArena.h"
#include <algorithm>
#include <cstddef>
#include <cstdlib>
#include <string>
#include <windows.h>
#include "Common/Assert.h"
#include "Common/CommonFuncs.h"
#include "Common/CommonTypes.h"
#include "Common/DynamicLibrary.h"
#include "Common/Logging/Log.h"
#include "Common/MsgHandler.h"
#include "Common/StringUtil.h"
using PVirtualAlloc2 = PVOID(WINAPI*)(HANDLE Process, PVOID BaseAddress, SIZE_T Size,
ULONG AllocationType, ULONG PageProtection,
MEM_EXTENDED_PARAMETER* ExtendedParameters,
ULONG ParameterCount);
using PMapViewOfFile3 = PVOID(WINAPI*)(HANDLE FileMapping, HANDLE Process, PVOID BaseAddress,
ULONG64 Offset, SIZE_T ViewSize, ULONG AllocationType,
ULONG PageProtection,
MEM_EXTENDED_PARAMETER* ExtendedParameters,
ULONG ParameterCount);
using PUnmapViewOfFileEx = BOOL(WINAPI*)(PVOID BaseAddress, ULONG UnmapFlags);
using PIsApiSetImplemented = BOOL(APIENTRY*)(PCSTR Contract);
namespace Common
{
struct WindowsMemoryRegion
{
u8* m_start;
size_t m_size;
bool m_is_mapped;
WindowsMemoryRegion(u8* start, size_t size, bool is_mapped)
: m_start(start), m_size(size), m_is_mapped(is_mapped)
{
}
};
MemArena::MemArena()
{
// Check if VirtualAlloc2 and MapViewOfFile3 are available, which provide functionality to reserve
// a memory region no other allocation may occupy while still allowing us to allocate and map
// stuff within it. If they're not available we'll instead fall back to the 'legacy' logic and
// just hope that nothing allocates in our address range.
DynamicLibrary kernelBase{"KernelBase.dll"};
if (!kernelBase.IsOpen())
return;
void* const ptr_IsApiSetImplemented = kernelBase.GetSymbolAddress("IsApiSetImplemented");
if (!ptr_IsApiSetImplemented)
return;
if (!static_cast<PIsApiSetImplemented>(ptr_IsApiSetImplemented)("api-ms-win-core-memory-l1-1-6"))
return;
m_api_ms_win_core_memory_l1_1_6_handle.Open("api-ms-win-core-memory-l1-1-6.dll");
m_kernel32_handle.Open("Kernel32.dll");
if (!m_api_ms_win_core_memory_l1_1_6_handle.IsOpen() || !m_kernel32_handle.IsOpen())
{
m_api_ms_win_core_memory_l1_1_6_handle.Close();
m_kernel32_handle.Close();
return;
}
void* const address_VirtualAlloc2 =
m_api_ms_win_core_memory_l1_1_6_handle.GetSymbolAddress("VirtualAlloc2FromApp");
void* const address_MapViewOfFile3 =
m_api_ms_win_core_memory_l1_1_6_handle.GetSymbolAddress("MapViewOfFile3FromApp");
void* const address_UnmapViewOfFileEx = m_kernel32_handle.GetSymbolAddress("UnmapViewOfFileEx");
if (address_VirtualAlloc2 && address_MapViewOfFile3 && address_UnmapViewOfFileEx)
{
m_address_VirtualAlloc2 = address_VirtualAlloc2;
m_address_MapViewOfFile3 = address_MapViewOfFile3;
m_address_UnmapViewOfFileEx = address_UnmapViewOfFileEx;
}
else
{
// at least one function is not available, use legacy logic
m_api_ms_win_core_memory_l1_1_6_handle.Close();
m_kernel32_handle.Close();
}
}
MemArena::~MemArena()
{
ReleaseMemoryRegion();
ReleaseSHMSegment();
}
void MemArena::GrabSHMSegment(size_t size)
{
const std::string name = "dolphin-emu." + std::to_string(GetCurrentProcessId());
m_memory_handle = CreateFileMapping(INVALID_HANDLE_VALUE, nullptr, PAGE_READWRITE, 0,
static_cast<DWORD>(size), UTF8ToTStr(name).c_str());
}
void MemArena::ReleaseSHMSegment()
{
if (!m_memory_handle)
return;
CloseHandle(m_memory_handle);
m_memory_handle = nullptr;
}
void* MemArena::CreateView(s64 offset, size_t size)
{
return MapViewOfFileEx(m_memory_handle, FILE_MAP_ALL_ACCESS, 0, (DWORD)((u64)offset), size,
nullptr);
}
void MemArena::ReleaseView(void* view, size_t size)
{
UnmapViewOfFile(view);
}
u8* MemArena::ReserveMemoryRegion(size_t memory_size)
{
if (m_reserved_region)
{
PanicAlertFmt("Tried to reserve a second memory region from the same MemArena.");
return nullptr;
}
u8* base;
if (m_api_ms_win_core_memory_l1_1_6_handle.IsOpen())
{
base = static_cast<u8*>(static_cast<PVirtualAlloc2>(m_address_VirtualAlloc2)(
nullptr, nullptr, memory_size, MEM_RESERVE | MEM_RESERVE_PLACEHOLDER, PAGE_NOACCESS,
nullptr, 0));
if (base)
{
m_reserved_region = base;
m_regions.emplace_back(base, memory_size, false);
}
else
{
PanicAlertFmt("Failed to map enough memory space: {}", GetLastErrorString());
}
}
else
{
NOTICE_LOG_FMT(MEMMAP, "VirtualAlloc2 and/or MapViewFromFile3 unavailable. "
"Falling back to legacy memory mapping.");
base = static_cast<u8*>(VirtualAlloc(nullptr, memory_size, MEM_RESERVE, PAGE_READWRITE));
if (base)
VirtualFree(base, 0, MEM_RELEASE);
else
PanicAlertFmt("Failed to find enough memory space: {}", GetLastErrorString());
}
return base;
}
void MemArena::ReleaseMemoryRegion()
{
if (m_api_ms_win_core_memory_l1_1_6_handle.IsOpen() && m_reserved_region)
{
// user should have unmapped everything by this point, check if that's true and yell if not
// (it indicates a bug in the emulated memory mapping logic)
size_t mapped_region_count = 0;
for (const auto& r : m_regions)
{
if (r.m_is_mapped)
++mapped_region_count;
}
if (mapped_region_count > 0)
{
PanicAlertFmt("Error while releasing fastmem region: {} regions are still mapped!",
mapped_region_count);
}
// then free memory
VirtualFree(m_reserved_region, 0, MEM_RELEASE);
m_reserved_region = nullptr;
m_regions.clear();
}
}
WindowsMemoryRegion* MemArena::EnsureSplitRegionForMapping(void* start_address, size_t size)
{
u8* const address = static_cast<u8*>(start_address);
auto& regions = m_regions;
if (regions.empty())
{
NOTICE_LOG_FMT(MEMMAP, "Tried to map a memory region without reserving a memory block first.");
return nullptr;
}
// find closest region that is <= the given address by using upper bound and decrementing
auto it = std::upper_bound(
regions.begin(), regions.end(), address,
[](u8* addr, const WindowsMemoryRegion& region) { return addr < region.m_start; });
if (it == regions.begin())
{
// this should never happen, implies that the given address is before the start of the
// reserved memory block
NOTICE_LOG_FMT(MEMMAP, "Invalid address {} given to map.", fmt::ptr(address));
return nullptr;
}
--it;
if (it->m_is_mapped)
{
NOTICE_LOG_FMT(MEMMAP,
"Address to map {} with a size of 0x{:x} overlaps with existing mapping "
"at {}.",
fmt::ptr(address), size, fmt::ptr(it->m_start));
return nullptr;
}
const size_t mapping_index = it - regions.begin();
u8* const mapping_address = it->m_start;
const size_t mapping_size = it->m_size;
if (mapping_address == address)
{
// if this region is already split up correctly we don't have to do anything
if (mapping_size == size)
return &*it;
// if this region is smaller than the requested size we can't map
if (mapping_size < size)
{
NOTICE_LOG_FMT(MEMMAP,
"Not enough free space at address {} to map 0x{:x} bytes (0x{:x} available).",
fmt::ptr(mapping_address), size, mapping_size);
return nullptr;
}
// split region
if (!VirtualFree(address, size, MEM_RELEASE | MEM_PRESERVE_PLACEHOLDER))
{
NOTICE_LOG_FMT(MEMMAP, "Region splitting failed: {}", GetLastErrorString());
return nullptr;
}
// update tracked mappings and return the first of the two
it->m_size = size;
u8* const new_mapping_start = address + size;
const size_t new_mapping_size = mapping_size - size;
regions.insert(it + 1, WindowsMemoryRegion(new_mapping_start, new_mapping_size, false));
return &regions[mapping_index];
}
ASSERT(mapping_address < address);
// is there enough space to map this?
const size_t size_before = static_cast<size_t>(address - mapping_address);
const size_t minimum_size = size + size_before;
if (mapping_size < minimum_size)
{
NOTICE_LOG_FMT(MEMMAP,
"Not enough free space at address {} to map memory region (need 0x{:x} "
"bytes, but only 0x{:x} available).",
fmt::ptr(address), minimum_size, mapping_size);
return nullptr;
}
// split region
if (!VirtualFree(address, size, MEM_RELEASE | MEM_PRESERVE_PLACEHOLDER))
{
NOTICE_LOG_FMT(MEMMAP, "Region splitting failed: {}", GetLastErrorString());
return nullptr;
}
// do we now have two regions or three regions?
if (mapping_size == minimum_size)
{
// split into two; update tracked mappings and return the second one
it->m_size = size_before;
u8* const new_mapping_start = address;
const size_t new_mapping_size = size;
regions.insert(it + 1, WindowsMemoryRegion(new_mapping_start, new_mapping_size, false));
return &regions[mapping_index + 1];
}
else
{
// split into three; update tracked mappings and return the middle one
it->m_size = size_before;
u8* const middle_mapping_start = address;
const size_t middle_mapping_size = size;
u8* const after_mapping_start = address + size;
const size_t after_mapping_size = mapping_size - minimum_size;
regions.insert(it + 1, WindowsMemoryRegion(after_mapping_start, after_mapping_size, false));
regions.insert(regions.begin() + mapping_index + 1,
WindowsMemoryRegion(middle_mapping_start, middle_mapping_size, false));
return &regions[mapping_index + 1];
}
}
void* MemArena::MapInMemoryRegion(s64 offset, size_t size, void* base)
{
if (m_api_ms_win_core_memory_l1_1_6_handle.IsOpen())
{
WindowsMemoryRegion* const region = EnsureSplitRegionForMapping(base, size);
if (!region)
{
PanicAlertFmt("Splitting memory region failed.");
return nullptr;
}
void* rv = static_cast<PMapViewOfFile3>(m_address_MapViewOfFile3)(
m_memory_handle, nullptr, base, offset, size, MEM_REPLACE_PLACEHOLDER, PAGE_READWRITE,
nullptr, 0);
if (rv)
{
region->m_is_mapped = true;
}
else
{
PanicAlertFmt("Mapping memory region failed: {}", GetLastErrorString());
// revert the split, if any
JoinRegionsAfterUnmap(base, size);
}
return rv;
}
return MapViewOfFileEx(m_memory_handle, FILE_MAP_ALL_ACCESS, 0, (DWORD)((u64)offset), size, base);
}
bool MemArena::JoinRegionsAfterUnmap(void* start_address, size_t size)
{
u8* const address = static_cast<u8*>(start_address);
auto& regions = m_regions;
if (regions.empty())
{
NOTICE_LOG_FMT(MEMMAP,
"Tried to unmap a memory region without reserving a memory block first.");
return false;
}
// there should be a mapping that matches the request exactly, find it
auto it = std::lower_bound(
regions.begin(), regions.end(), address,
[](const WindowsMemoryRegion& region, u8* addr) { return region.m_start < addr; });
if (it == regions.end() || it->m_start != address || it->m_size != size)
{
// didn't find it, we were given bogus input
NOTICE_LOG_FMT(MEMMAP, "Invalid address/size given to unmap.");
return false;
}
it->m_is_mapped = false;
const bool can_join_with_preceding = it != regions.begin() && !(it - 1)->m_is_mapped;
const bool can_join_with_succeeding = (it + 1) != regions.end() && !(it + 1)->m_is_mapped;
if (can_join_with_preceding && can_join_with_succeeding)
{
// join three mappings to one
auto it_preceding = it - 1;
auto it_succeeding = it + 1;
const size_t total_size = it_preceding->m_size + size + it_succeeding->m_size;
if (!VirtualFree(it_preceding->m_start, total_size, MEM_RELEASE | MEM_COALESCE_PLACEHOLDERS))
{
NOTICE_LOG_FMT(MEMMAP, "Region coalescing failed: {}", GetLastErrorString());
return false;
}
it_preceding->m_size = total_size;
regions.erase(it, it + 2);
}
else if (can_join_with_preceding && !can_join_with_succeeding)
{
// join two mappings to one
auto it_preceding = it - 1;
const size_t total_size = it_preceding->m_size + size;
if (!VirtualFree(it_preceding->m_start, total_size, MEM_RELEASE | MEM_COALESCE_PLACEHOLDERS))
{
NOTICE_LOG_FMT(MEMMAP, "Region coalescing failed: {}", GetLastErrorString());
return false;
}
it_preceding->m_size = total_size;
regions.erase(it);
}
else if (!can_join_with_preceding && can_join_with_succeeding)
{
// join two mappings to one
auto it_succeeding = it + 1;
const size_t total_size = size + it_succeeding->m_size;
if (!VirtualFree(it->m_start, total_size, MEM_RELEASE | MEM_COALESCE_PLACEHOLDERS))
{
NOTICE_LOG_FMT(MEMMAP, "Region coalescing failed: {}", GetLastErrorString());
return false;
}
it->m_size = total_size;
regions.erase(it_succeeding);
}
return true;
}
void MemArena::UnmapFromMemoryRegion(void* view, size_t size)
{
if (m_api_ms_win_core_memory_l1_1_6_handle.IsOpen())
{
if (static_cast<PUnmapViewOfFileEx>(m_address_UnmapViewOfFileEx)(view,
MEM_PRESERVE_PLACEHOLDER))
{
if (!JoinRegionsAfterUnmap(view, size))
PanicAlertFmt("Joining memory region failed.");
}
else
{
PanicAlertFmt("Unmapping memory region failed: {}", GetLastErrorString());
}
return;
}
UnmapViewOfFile(view);
}
} // namespace Common