mirror of
https://github.com/dolphin-emu/dolphin.git
synced 2025-01-12 17:19:10 +01:00
344 lines
11 KiB
C++
344 lines
11 KiB
C++
// Copyright 2016 Dolphin Emulator Project
|
|
// Licensed under GPLv2+
|
|
// Refer to the license.txt file included.
|
|
|
|
#include <gtest/gtest.h>
|
|
|
|
#include <array>
|
|
#include <bitset>
|
|
|
|
#include "Core/Config/Config.h"
|
|
#include "Core/ConfigManager.h"
|
|
#include "Core/Core.h"
|
|
#include "Core/CoreTiming.h"
|
|
#include "Core/PowerPC/PowerPC.h"
|
|
#include "UICommon/UICommon.h"
|
|
|
|
// Numbers are chosen randomly to make sure the correct one is given.
|
|
static constexpr std::array<u64, 5> CB_IDS{{42, 144, 93, 1026, UINT64_C(0xFFFF7FFFF7FFFF)}};
|
|
static constexpr int MAX_SLICE_LENGTH = 20000; // Copied from CoreTiming internals
|
|
|
|
static std::bitset<CB_IDS.size()> s_callbacks_ran_flags;
|
|
static u64 s_expected_callback = 0;
|
|
static s64 s_lateness = 0;
|
|
|
|
template <unsigned int IDX>
|
|
void CallbackTemplate(u64 userdata, s64 lateness)
|
|
{
|
|
static_assert(IDX < CB_IDS.size(), "IDX out of range");
|
|
s_callbacks_ran_flags.set(IDX);
|
|
EXPECT_EQ(CB_IDS[IDX], userdata);
|
|
EXPECT_EQ(CB_IDS[IDX], s_expected_callback);
|
|
EXPECT_EQ(s_lateness, lateness);
|
|
}
|
|
|
|
class ScopeInit final
|
|
{
|
|
public:
|
|
ScopeInit()
|
|
{
|
|
Core::DeclareAsCPUThread();
|
|
UICommon::SetUserDirectory("");
|
|
Config::Init();
|
|
SConfig::Init();
|
|
PowerPC::Init(PowerPC::CORE_INTERPRETER);
|
|
CoreTiming::Init();
|
|
}
|
|
~ScopeInit()
|
|
{
|
|
CoreTiming::Shutdown();
|
|
PowerPC::Shutdown();
|
|
SConfig::Shutdown();
|
|
Config::Shutdown();
|
|
Core::UndeclareAsCPUThread();
|
|
}
|
|
};
|
|
|
|
static void AdvanceAndCheck(u32 idx, int downcount, int expected_lateness = 0,
|
|
int cpu_downcount = 0)
|
|
{
|
|
s_callbacks_ran_flags = 0;
|
|
s_expected_callback = CB_IDS[idx];
|
|
s_lateness = expected_lateness;
|
|
|
|
PowerPC::ppcState.downcount = cpu_downcount; // Pretend we executed X cycles of instructions.
|
|
CoreTiming::Advance();
|
|
|
|
EXPECT_EQ(decltype(s_callbacks_ran_flags)().set(idx), s_callbacks_ran_flags);
|
|
EXPECT_EQ(downcount, PowerPC::ppcState.downcount);
|
|
}
|
|
|
|
TEST(CoreTiming, BasicOrder)
|
|
{
|
|
ScopeInit guard;
|
|
|
|
CoreTiming::EventType* cb_a = CoreTiming::RegisterEvent("callbackA", CallbackTemplate<0>);
|
|
CoreTiming::EventType* cb_b = CoreTiming::RegisterEvent("callbackB", CallbackTemplate<1>);
|
|
CoreTiming::EventType* cb_c = CoreTiming::RegisterEvent("callbackC", CallbackTemplate<2>);
|
|
CoreTiming::EventType* cb_d = CoreTiming::RegisterEvent("callbackD", CallbackTemplate<3>);
|
|
CoreTiming::EventType* cb_e = CoreTiming::RegisterEvent("callbackE", CallbackTemplate<4>);
|
|
|
|
// Enter slice 0
|
|
CoreTiming::Advance();
|
|
|
|
// D -> B -> C -> A -> E
|
|
CoreTiming::ScheduleEvent(1000, cb_a, CB_IDS[0]);
|
|
EXPECT_EQ(1000, PowerPC::ppcState.downcount);
|
|
CoreTiming::ScheduleEvent(500, cb_b, CB_IDS[1]);
|
|
EXPECT_EQ(500, PowerPC::ppcState.downcount);
|
|
CoreTiming::ScheduleEvent(800, cb_c, CB_IDS[2]);
|
|
EXPECT_EQ(500, PowerPC::ppcState.downcount);
|
|
CoreTiming::ScheduleEvent(100, cb_d, CB_IDS[3]);
|
|
EXPECT_EQ(100, PowerPC::ppcState.downcount);
|
|
CoreTiming::ScheduleEvent(1200, cb_e, CB_IDS[4]);
|
|
EXPECT_EQ(100, PowerPC::ppcState.downcount);
|
|
|
|
AdvanceAndCheck(3, 400);
|
|
AdvanceAndCheck(1, 300);
|
|
AdvanceAndCheck(2, 200);
|
|
AdvanceAndCheck(0, 200);
|
|
AdvanceAndCheck(4, MAX_SLICE_LENGTH);
|
|
}
|
|
|
|
namespace SharedSlotTest
|
|
{
|
|
static unsigned int s_counter = 0;
|
|
|
|
template <unsigned int ID>
|
|
void FifoCallback(u64 userdata, s64 lateness)
|
|
{
|
|
static_assert(ID < CB_IDS.size(), "ID out of range");
|
|
s_callbacks_ran_flags.set(ID);
|
|
EXPECT_EQ(CB_IDS[ID], userdata);
|
|
EXPECT_EQ(ID, s_counter);
|
|
EXPECT_EQ(s_lateness, lateness);
|
|
++s_counter;
|
|
}
|
|
}
|
|
|
|
TEST(CoreTiming, SharedSlot)
|
|
{
|
|
using namespace SharedSlotTest;
|
|
|
|
ScopeInit guard;
|
|
|
|
CoreTiming::EventType* cb_a = CoreTiming::RegisterEvent("callbackA", FifoCallback<0>);
|
|
CoreTiming::EventType* cb_b = CoreTiming::RegisterEvent("callbackB", FifoCallback<1>);
|
|
CoreTiming::EventType* cb_c = CoreTiming::RegisterEvent("callbackC", FifoCallback<2>);
|
|
CoreTiming::EventType* cb_d = CoreTiming::RegisterEvent("callbackD", FifoCallback<3>);
|
|
CoreTiming::EventType* cb_e = CoreTiming::RegisterEvent("callbackE", FifoCallback<4>);
|
|
|
|
CoreTiming::ScheduleEvent(1000, cb_a, CB_IDS[0]);
|
|
CoreTiming::ScheduleEvent(1000, cb_b, CB_IDS[1]);
|
|
CoreTiming::ScheduleEvent(1000, cb_c, CB_IDS[2]);
|
|
CoreTiming::ScheduleEvent(1000, cb_d, CB_IDS[3]);
|
|
CoreTiming::ScheduleEvent(1000, cb_e, CB_IDS[4]);
|
|
|
|
// Enter slice 0
|
|
CoreTiming::Advance();
|
|
EXPECT_EQ(1000, PowerPC::ppcState.downcount);
|
|
|
|
s_callbacks_ran_flags = 0;
|
|
s_counter = 0;
|
|
s_lateness = 0;
|
|
PowerPC::ppcState.downcount = 0;
|
|
CoreTiming::Advance();
|
|
EXPECT_EQ(MAX_SLICE_LENGTH, PowerPC::ppcState.downcount);
|
|
EXPECT_EQ(0x1FULL, s_callbacks_ran_flags.to_ullong());
|
|
}
|
|
|
|
TEST(CoreTiming, PredictableLateness)
|
|
{
|
|
ScopeInit guard;
|
|
|
|
CoreTiming::EventType* cb_a = CoreTiming::RegisterEvent("callbackA", CallbackTemplate<0>);
|
|
CoreTiming::EventType* cb_b = CoreTiming::RegisterEvent("callbackB", CallbackTemplate<1>);
|
|
|
|
// Enter slice 0
|
|
CoreTiming::Advance();
|
|
|
|
CoreTiming::ScheduleEvent(100, cb_a, CB_IDS[0]);
|
|
CoreTiming::ScheduleEvent(200, cb_b, CB_IDS[1]);
|
|
|
|
AdvanceAndCheck(0, 90, 10, -10); // (100 - 10)
|
|
AdvanceAndCheck(1, MAX_SLICE_LENGTH, 50, -50);
|
|
}
|
|
|
|
namespace ChainSchedulingTest
|
|
{
|
|
static int s_reschedules = 0;
|
|
|
|
static void RescheduleCallback(u64 userdata, s64 lateness)
|
|
{
|
|
--s_reschedules;
|
|
EXPECT_TRUE(s_reschedules >= 0);
|
|
EXPECT_EQ(s_lateness, lateness);
|
|
|
|
if (s_reschedules > 0)
|
|
CoreTiming::ScheduleEvent(1000, reinterpret_cast<CoreTiming::EventType*>(userdata), userdata);
|
|
}
|
|
}
|
|
|
|
TEST(CoreTiming, ChainScheduling)
|
|
{
|
|
using namespace ChainSchedulingTest;
|
|
|
|
ScopeInit guard;
|
|
|
|
CoreTiming::EventType* cb_a = CoreTiming::RegisterEvent("callbackA", CallbackTemplate<0>);
|
|
CoreTiming::EventType* cb_b = CoreTiming::RegisterEvent("callbackB", CallbackTemplate<1>);
|
|
CoreTiming::EventType* cb_c = CoreTiming::RegisterEvent("callbackC", CallbackTemplate<2>);
|
|
CoreTiming::EventType* cb_rs =
|
|
CoreTiming::RegisterEvent("callbackReschedule", RescheduleCallback);
|
|
|
|
// Enter slice 0
|
|
CoreTiming::Advance();
|
|
|
|
CoreTiming::ScheduleEvent(800, cb_a, CB_IDS[0]);
|
|
CoreTiming::ScheduleEvent(1000, cb_b, CB_IDS[1]);
|
|
CoreTiming::ScheduleEvent(2200, cb_c, CB_IDS[2]);
|
|
CoreTiming::ScheduleEvent(1000, cb_rs, reinterpret_cast<u64>(cb_rs));
|
|
EXPECT_EQ(800, PowerPC::ppcState.downcount);
|
|
|
|
s_reschedules = 3;
|
|
AdvanceAndCheck(0, 200); // cb_a
|
|
AdvanceAndCheck(1, 1000); // cb_b, cb_rs
|
|
EXPECT_EQ(2, s_reschedules);
|
|
|
|
PowerPC::ppcState.downcount = 0;
|
|
CoreTiming::Advance(); // cb_rs
|
|
EXPECT_EQ(1, s_reschedules);
|
|
EXPECT_EQ(200, PowerPC::ppcState.downcount);
|
|
|
|
AdvanceAndCheck(2, 800); // cb_c
|
|
|
|
PowerPC::ppcState.downcount = 0;
|
|
CoreTiming::Advance(); // cb_rs
|
|
EXPECT_EQ(0, s_reschedules);
|
|
EXPECT_EQ(MAX_SLICE_LENGTH, PowerPC::ppcState.downcount);
|
|
}
|
|
|
|
namespace ScheduleIntoPastTest
|
|
{
|
|
static CoreTiming::EventType* s_cb_next = nullptr;
|
|
|
|
static void ChainCallback(u64 userdata, s64 lateness)
|
|
{
|
|
EXPECT_EQ(CB_IDS[0] + 1, userdata);
|
|
EXPECT_EQ(0, lateness);
|
|
|
|
CoreTiming::ScheduleEvent(-1000, s_cb_next, userdata - 1);
|
|
}
|
|
}
|
|
|
|
// This can happen when scheduling from outside the CPU Thread.
|
|
// Also, if the callback is very late, it may reschedule itself for the next period which
|
|
// is also in the past.
|
|
TEST(CoreTiming, ScheduleIntoPast)
|
|
{
|
|
using namespace ScheduleIntoPastTest;
|
|
|
|
ScopeInit guard;
|
|
|
|
s_cb_next = CoreTiming::RegisterEvent("callbackA", CallbackTemplate<0>);
|
|
CoreTiming::EventType* cb_b = CoreTiming::RegisterEvent("callbackB", CallbackTemplate<1>);
|
|
CoreTiming::EventType* cb_chain = CoreTiming::RegisterEvent("callbackChain", ChainCallback);
|
|
|
|
// Enter slice 0
|
|
CoreTiming::Advance();
|
|
|
|
CoreTiming::ScheduleEvent(1000, cb_chain, CB_IDS[0] + 1);
|
|
EXPECT_EQ(1000, PowerPC::ppcState.downcount);
|
|
|
|
AdvanceAndCheck(0, MAX_SLICE_LENGTH, 1000); // Run cb_chain into late cb_a
|
|
|
|
// Schedule late from wrong thread
|
|
// The problem with scheduling CPU events from outside the CPU Thread is that g_global_timer
|
|
// is not reliable outside the CPU Thread. It's possible for the other thread to sample the
|
|
// global timer right before the timer is updated by Advance() then submit a new event using
|
|
// the stale value, i.e. effectively half-way through the previous slice.
|
|
// NOTE: We're only testing that the scheduler doesn't break, not whether this makes sense.
|
|
Core::UndeclareAsCPUThread();
|
|
CoreTiming::g.global_timer -= 1000;
|
|
CoreTiming::ScheduleEvent(0, cb_b, CB_IDS[1], CoreTiming::FromThread::NON_CPU);
|
|
CoreTiming::g.global_timer += 1000;
|
|
Core::DeclareAsCPUThread();
|
|
AdvanceAndCheck(1, MAX_SLICE_LENGTH, MAX_SLICE_LENGTH + 1000);
|
|
|
|
// Schedule directly into the past from the CPU.
|
|
// This shouldn't happen in practice, but it's best if we don't mess up the slice length and
|
|
// downcount if we do.
|
|
CoreTiming::ScheduleEvent(-1000, s_cb_next, CB_IDS[0]);
|
|
EXPECT_EQ(0, PowerPC::ppcState.downcount);
|
|
AdvanceAndCheck(0, MAX_SLICE_LENGTH, 1000);
|
|
}
|
|
|
|
TEST(CoreTiming, Overclocking)
|
|
{
|
|
ScopeInit guard;
|
|
|
|
CoreTiming::EventType* cb_a = CoreTiming::RegisterEvent("callbackA", CallbackTemplate<0>);
|
|
CoreTiming::EventType* cb_b = CoreTiming::RegisterEvent("callbackB", CallbackTemplate<1>);
|
|
CoreTiming::EventType* cb_c = CoreTiming::RegisterEvent("callbackC", CallbackTemplate<2>);
|
|
CoreTiming::EventType* cb_d = CoreTiming::RegisterEvent("callbackD", CallbackTemplate<3>);
|
|
CoreTiming::EventType* cb_e = CoreTiming::RegisterEvent("callbackE", CallbackTemplate<4>);
|
|
|
|
// Overclock
|
|
SConfig::GetInstance().m_OCEnable = true;
|
|
SConfig::GetInstance().m_OCFactor = 2.0;
|
|
|
|
// Enter slice 0
|
|
// Updates s_last_OC_factor.
|
|
CoreTiming::Advance();
|
|
|
|
CoreTiming::ScheduleEvent(100, cb_a, CB_IDS[0]);
|
|
CoreTiming::ScheduleEvent(200, cb_b, CB_IDS[1]);
|
|
CoreTiming::ScheduleEvent(400, cb_c, CB_IDS[2]);
|
|
CoreTiming::ScheduleEvent(800, cb_d, CB_IDS[3]);
|
|
CoreTiming::ScheduleEvent(1600, cb_e, CB_IDS[4]);
|
|
EXPECT_EQ(200, PowerPC::ppcState.downcount);
|
|
|
|
AdvanceAndCheck(0, 200); // (200 - 100) * 2
|
|
AdvanceAndCheck(1, 400); // (400 - 200) * 2
|
|
AdvanceAndCheck(2, 800); // (800 - 400) * 2
|
|
AdvanceAndCheck(3, 1600); // (1600 - 800) * 2
|
|
AdvanceAndCheck(4, MAX_SLICE_LENGTH * 2);
|
|
|
|
// Underclock
|
|
SConfig::GetInstance().m_OCFactor = 0.5;
|
|
CoreTiming::Advance();
|
|
|
|
CoreTiming::ScheduleEvent(100, cb_a, CB_IDS[0]);
|
|
CoreTiming::ScheduleEvent(200, cb_b, CB_IDS[1]);
|
|
CoreTiming::ScheduleEvent(400, cb_c, CB_IDS[2]);
|
|
CoreTiming::ScheduleEvent(800, cb_d, CB_IDS[3]);
|
|
CoreTiming::ScheduleEvent(1600, cb_e, CB_IDS[4]);
|
|
EXPECT_EQ(50, PowerPC::ppcState.downcount);
|
|
|
|
AdvanceAndCheck(0, 50); // (200 - 100) / 2
|
|
AdvanceAndCheck(1, 100); // (400 - 200) / 2
|
|
AdvanceAndCheck(2, 200); // (800 - 400) / 2
|
|
AdvanceAndCheck(3, 400); // (1600 - 800) / 2
|
|
AdvanceAndCheck(4, MAX_SLICE_LENGTH / 2);
|
|
|
|
// Try switching the clock mid-emulation
|
|
SConfig::GetInstance().m_OCFactor = 1.0;
|
|
CoreTiming::Advance();
|
|
|
|
CoreTiming::ScheduleEvent(100, cb_a, CB_IDS[0]);
|
|
CoreTiming::ScheduleEvent(200, cb_b, CB_IDS[1]);
|
|
CoreTiming::ScheduleEvent(400, cb_c, CB_IDS[2]);
|
|
CoreTiming::ScheduleEvent(800, cb_d, CB_IDS[3]);
|
|
CoreTiming::ScheduleEvent(1600, cb_e, CB_IDS[4]);
|
|
EXPECT_EQ(100, PowerPC::ppcState.downcount);
|
|
|
|
AdvanceAndCheck(0, 100); // (200 - 100)
|
|
SConfig::GetInstance().m_OCFactor = 2.0;
|
|
AdvanceAndCheck(1, 400); // (400 - 200) * 2
|
|
AdvanceAndCheck(2, 800); // (800 - 400) * 2
|
|
SConfig::GetInstance().m_OCFactor = 0.1f;
|
|
AdvanceAndCheck(3, 80); // (1600 - 800) / 10
|
|
SConfig::GetInstance().m_OCFactor = 1.0;
|
|
AdvanceAndCheck(4, MAX_SLICE_LENGTH);
|
|
}
|