mirror of
https://github.com/dolphin-emu/dolphin.git
synced 2025-01-26 15:55:31 +01:00
c85e0a2586
Keeps associated data together. It also eliminates the possibility of out parameters not being initialized properly. For example, consider the following example: -- some FramebufferManager implementation -- void FBMgrImpl::GetTargetSize(u32* width, u32* height) override { // Do nothing } -- somewhere else where the function is used -- u32 width, height; framebuffer_manager_instance->GetTargetSize(&width, &height); if (texture_width != width) <-- Uninitialized variable usage { ... } It makes it much more obvious to spot any initialization issues, because it requires something to be returned, as opposed to allowing an implementation to just not do anything.
1446 lines
55 KiB
C++
1446 lines
55 KiB
C++
// Copyright 2016 Dolphin Emulator Project
|
|
// Licensed under GPLv2+
|
|
// Refer to the license.txt file included.
|
|
|
|
#include "VideoBackends/Vulkan/FramebufferManager.h"
|
|
|
|
#include <algorithm>
|
|
#include <cstddef>
|
|
|
|
#include "Common/Assert.h"
|
|
#include "Common/CommonFuncs.h"
|
|
#include "Common/Logging/Log.h"
|
|
#include "Common/MsgHandler.h"
|
|
|
|
#include "Core/HW/Memmap.h"
|
|
|
|
#include "VideoBackends/Vulkan/CommandBufferManager.h"
|
|
#include "VideoBackends/Vulkan/ObjectCache.h"
|
|
#include "VideoBackends/Vulkan/StagingTexture2D.h"
|
|
#include "VideoBackends/Vulkan/StateTracker.h"
|
|
#include "VideoBackends/Vulkan/StreamBuffer.h"
|
|
#include "VideoBackends/Vulkan/Texture2D.h"
|
|
#include "VideoBackends/Vulkan/TextureConverter.h"
|
|
#include "VideoBackends/Vulkan/Util.h"
|
|
#include "VideoBackends/Vulkan/VertexFormat.h"
|
|
#include "VideoBackends/Vulkan/VulkanContext.h"
|
|
|
|
#include "VideoCommon/RenderBase.h"
|
|
#include "VideoCommon/VideoConfig.h"
|
|
|
|
namespace Vulkan
|
|
{
|
|
// Maximum number of pixels poked in one batch * 6
|
|
constexpr size_t MAX_POKE_VERTICES = 8192;
|
|
constexpr size_t POKE_VERTEX_BUFFER_SIZE = 8 * 1024 * 1024;
|
|
|
|
FramebufferManager::FramebufferManager()
|
|
{
|
|
}
|
|
|
|
FramebufferManager::~FramebufferManager()
|
|
{
|
|
DestroyEFBFramebuffer();
|
|
DestroyEFBRenderPass();
|
|
|
|
DestroyConversionShaders();
|
|
|
|
DestroyReadbackFramebuffer();
|
|
DestroyReadbackTextures();
|
|
DestroyReadbackShaders();
|
|
DestroyReadbackRenderPasses();
|
|
|
|
DestroyPokeVertexBuffer();
|
|
DestroyPokeShaders();
|
|
}
|
|
|
|
FramebufferManager* FramebufferManager::GetInstance()
|
|
{
|
|
return static_cast<FramebufferManager*>(g_framebuffer_manager.get());
|
|
}
|
|
|
|
bool FramebufferManager::Initialize()
|
|
{
|
|
if (!CreateEFBRenderPass())
|
|
{
|
|
PanicAlert("Failed to create EFB render pass");
|
|
return false;
|
|
}
|
|
if (!CreateEFBFramebuffer())
|
|
{
|
|
PanicAlert("Failed to create EFB textures");
|
|
return false;
|
|
}
|
|
|
|
if (!CompileConversionShaders())
|
|
{
|
|
PanicAlert("Failed to compile EFB shaders");
|
|
return false;
|
|
}
|
|
|
|
if (!CreateReadbackRenderPasses())
|
|
{
|
|
PanicAlert("Failed to create readback render passes");
|
|
return false;
|
|
}
|
|
if (!CompileReadbackShaders())
|
|
{
|
|
PanicAlert("Failed to compile readback shaders");
|
|
return false;
|
|
}
|
|
if (!CreateReadbackTextures())
|
|
{
|
|
PanicAlert("Failed to create readback textures");
|
|
return false;
|
|
}
|
|
if (!CreateReadbackFramebuffer())
|
|
{
|
|
PanicAlert("Failed to create readback framebuffer");
|
|
return false;
|
|
}
|
|
|
|
CreatePokeVertexFormat();
|
|
if (!CreatePokeVertexBuffer())
|
|
{
|
|
PanicAlert("Failed to create poke vertex buffer");
|
|
return false;
|
|
}
|
|
|
|
if (!CompilePokeShaders())
|
|
{
|
|
PanicAlert("Failed to compile poke shaders");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
std::pair<u32, u32> FramebufferManager::GetTargetSize() const
|
|
{
|
|
return std::make_pair(m_efb_width, m_efb_height);
|
|
}
|
|
|
|
bool FramebufferManager::CreateEFBRenderPass()
|
|
{
|
|
m_efb_samples = static_cast<VkSampleCountFlagBits>(g_ActiveConfig.iMultisamples);
|
|
|
|
// render pass for rendering to the efb
|
|
VkAttachmentDescription attachments[] = {
|
|
{0, EFB_COLOR_TEXTURE_FORMAT, m_efb_samples, VK_ATTACHMENT_LOAD_OP_LOAD,
|
|
VK_ATTACHMENT_STORE_OP_STORE, VK_ATTACHMENT_LOAD_OP_DONT_CARE,
|
|
VK_ATTACHMENT_STORE_OP_DONT_CARE, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
|
|
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL},
|
|
{0, EFB_DEPTH_TEXTURE_FORMAT, m_efb_samples, VK_ATTACHMENT_LOAD_OP_LOAD,
|
|
VK_ATTACHMENT_STORE_OP_STORE, VK_ATTACHMENT_LOAD_OP_DONT_CARE,
|
|
VK_ATTACHMENT_STORE_OP_DONT_CARE, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL,
|
|
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL}};
|
|
|
|
VkAttachmentReference color_attachment_references[] = {
|
|
{0, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL}};
|
|
|
|
VkAttachmentReference depth_attachment_reference = {
|
|
1, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL};
|
|
|
|
VkSubpassDescription subpass_description = {
|
|
0, VK_PIPELINE_BIND_POINT_GRAPHICS, 0, nullptr, 1, color_attachment_references,
|
|
nullptr, &depth_attachment_reference, 0, nullptr};
|
|
|
|
VkRenderPassCreateInfo pass_info = {VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,
|
|
nullptr,
|
|
0,
|
|
static_cast<u32>(ArraySize(attachments)),
|
|
attachments,
|
|
1,
|
|
&subpass_description,
|
|
0,
|
|
nullptr};
|
|
|
|
VkResult res = vkCreateRenderPass(g_vulkan_context->GetDevice(), &pass_info, nullptr,
|
|
&m_efb_load_render_pass);
|
|
if (res != VK_SUCCESS)
|
|
{
|
|
LOG_VULKAN_ERROR(res, "vkCreateRenderPass (EFB) failed: ");
|
|
return false;
|
|
}
|
|
|
|
// render pass for clearing color/depth on load, as opposed to loading it
|
|
attachments[0].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
|
|
attachments[1].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
|
|
res = vkCreateRenderPass(g_vulkan_context->GetDevice(), &pass_info, nullptr,
|
|
&m_efb_clear_render_pass);
|
|
if (res != VK_SUCCESS)
|
|
{
|
|
LOG_VULKAN_ERROR(res, "vkCreateRenderPass (EFB) failed: ");
|
|
return false;
|
|
}
|
|
|
|
// render pass for resolving depth, since we can't do it with vkCmdResolveImage
|
|
if (m_efb_samples != VK_SAMPLE_COUNT_1_BIT)
|
|
{
|
|
VkAttachmentDescription resolve_attachment = {0,
|
|
EFB_DEPTH_AS_COLOR_TEXTURE_FORMAT,
|
|
VK_SAMPLE_COUNT_1_BIT,
|
|
VK_ATTACHMENT_LOAD_OP_DONT_CARE,
|
|
VK_ATTACHMENT_STORE_OP_STORE,
|
|
VK_ATTACHMENT_LOAD_OP_DONT_CARE,
|
|
VK_ATTACHMENT_STORE_OP_DONT_CARE,
|
|
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
|
|
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL};
|
|
|
|
subpass_description.pDepthStencilAttachment = nullptr;
|
|
pass_info.pAttachments = &resolve_attachment;
|
|
pass_info.attachmentCount = 1;
|
|
res = vkCreateRenderPass(g_vulkan_context->GetDevice(), &pass_info, nullptr,
|
|
&m_depth_resolve_render_pass);
|
|
|
|
if (res != VK_SUCCESS)
|
|
{
|
|
LOG_VULKAN_ERROR(res, "vkCreateRenderPass (EFB depth resolve) failed: ");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void FramebufferManager::DestroyEFBRenderPass()
|
|
{
|
|
if (m_efb_load_render_pass != VK_NULL_HANDLE)
|
|
{
|
|
vkDestroyRenderPass(g_vulkan_context->GetDevice(), m_efb_load_render_pass, nullptr);
|
|
m_efb_load_render_pass = VK_NULL_HANDLE;
|
|
}
|
|
|
|
if (m_efb_clear_render_pass != VK_NULL_HANDLE)
|
|
{
|
|
vkDestroyRenderPass(g_vulkan_context->GetDevice(), m_efb_clear_render_pass, nullptr);
|
|
m_efb_clear_render_pass = VK_NULL_HANDLE;
|
|
}
|
|
|
|
if (m_depth_resolve_render_pass != VK_NULL_HANDLE)
|
|
{
|
|
vkDestroyRenderPass(g_vulkan_context->GetDevice(), m_depth_resolve_render_pass, nullptr);
|
|
m_depth_resolve_render_pass = VK_NULL_HANDLE;
|
|
}
|
|
}
|
|
|
|
bool FramebufferManager::CreateEFBFramebuffer()
|
|
{
|
|
m_efb_width = static_cast<u32>(std::max(Renderer::GetTargetWidth(), 1));
|
|
m_efb_height = static_cast<u32>(std::max(Renderer::GetTargetHeight(), 1));
|
|
m_efb_layers = (g_ActiveConfig.iStereoMode != STEREO_OFF) ? 2 : 1;
|
|
INFO_LOG(VIDEO, "EFB size: %ux%ux%u", m_efb_width, m_efb_height, m_efb_layers);
|
|
|
|
// Update the static variable in the base class. Why does this even exist?
|
|
FramebufferManagerBase::m_EFBLayers = m_efb_layers;
|
|
|
|
// Allocate EFB render targets
|
|
m_efb_color_texture =
|
|
Texture2D::Create(m_efb_width, m_efb_height, 1, m_efb_layers, EFB_COLOR_TEXTURE_FORMAT,
|
|
m_efb_samples, VK_IMAGE_VIEW_TYPE_2D_ARRAY, VK_IMAGE_TILING_OPTIMAL,
|
|
VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT |
|
|
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_SAMPLED_BIT);
|
|
|
|
// We need a second texture to swap with for changing pixel formats
|
|
m_efb_convert_color_texture =
|
|
Texture2D::Create(m_efb_width, m_efb_height, 1, m_efb_layers, EFB_COLOR_TEXTURE_FORMAT,
|
|
m_efb_samples, VK_IMAGE_VIEW_TYPE_2D_ARRAY, VK_IMAGE_TILING_OPTIMAL,
|
|
VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT |
|
|
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_SAMPLED_BIT);
|
|
|
|
m_efb_depth_texture = Texture2D::Create(
|
|
m_efb_width, m_efb_height, 1, m_efb_layers, EFB_DEPTH_TEXTURE_FORMAT, m_efb_samples,
|
|
VK_IMAGE_VIEW_TYPE_2D_ARRAY, VK_IMAGE_TILING_OPTIMAL,
|
|
VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT |
|
|
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | VK_IMAGE_USAGE_SAMPLED_BIT);
|
|
|
|
if (!m_efb_color_texture || !m_efb_convert_color_texture || !m_efb_depth_texture)
|
|
return false;
|
|
|
|
// Create resolved textures if MSAA is on
|
|
if (m_efb_samples != VK_SAMPLE_COUNT_1_BIT)
|
|
{
|
|
m_efb_resolve_color_texture = Texture2D::Create(
|
|
m_efb_width, m_efb_height, 1, m_efb_layers, EFB_COLOR_TEXTURE_FORMAT, VK_SAMPLE_COUNT_1_BIT,
|
|
VK_IMAGE_VIEW_TYPE_2D_ARRAY, VK_IMAGE_TILING_OPTIMAL,
|
|
VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT |
|
|
VK_IMAGE_USAGE_SAMPLED_BIT);
|
|
|
|
m_efb_resolve_depth_texture = Texture2D::Create(
|
|
m_efb_width, m_efb_height, 1, m_efb_layers, EFB_DEPTH_AS_COLOR_TEXTURE_FORMAT,
|
|
VK_SAMPLE_COUNT_1_BIT, VK_IMAGE_VIEW_TYPE_2D_ARRAY, VK_IMAGE_TILING_OPTIMAL,
|
|
VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT |
|
|
VK_IMAGE_USAGE_SAMPLED_BIT);
|
|
|
|
if (!m_efb_resolve_color_texture || !m_efb_resolve_depth_texture)
|
|
return false;
|
|
|
|
VkImageView attachment = m_efb_resolve_depth_texture->GetView();
|
|
VkFramebufferCreateInfo framebuffer_info = {VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,
|
|
nullptr,
|
|
0,
|
|
m_depth_resolve_render_pass,
|
|
1,
|
|
&attachment,
|
|
m_efb_width,
|
|
m_efb_height,
|
|
m_efb_layers};
|
|
|
|
VkResult res = vkCreateFramebuffer(g_vulkan_context->GetDevice(), &framebuffer_info, nullptr,
|
|
&m_depth_resolve_framebuffer);
|
|
if (res != VK_SUCCESS)
|
|
{
|
|
LOG_VULKAN_ERROR(res, "vkCreateFramebuffer failed: ");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
VkImageView framebuffer_attachments[] = {
|
|
m_efb_color_texture->GetView(), m_efb_depth_texture->GetView(),
|
|
};
|
|
|
|
VkFramebufferCreateInfo framebuffer_info = {VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,
|
|
nullptr,
|
|
0,
|
|
m_efb_load_render_pass,
|
|
static_cast<u32>(ArraySize(framebuffer_attachments)),
|
|
framebuffer_attachments,
|
|
m_efb_width,
|
|
m_efb_height,
|
|
m_efb_layers};
|
|
|
|
VkResult res = vkCreateFramebuffer(g_vulkan_context->GetDevice(), &framebuffer_info, nullptr,
|
|
&m_efb_framebuffer);
|
|
if (res != VK_SUCCESS)
|
|
{
|
|
LOG_VULKAN_ERROR(res, "vkCreateFramebuffer failed: ");
|
|
return false;
|
|
}
|
|
|
|
// Create second framebuffer for format conversions
|
|
framebuffer_attachments[0] = m_efb_convert_color_texture->GetView();
|
|
res = vkCreateFramebuffer(g_vulkan_context->GetDevice(), &framebuffer_info, nullptr,
|
|
&m_efb_convert_framebuffer);
|
|
if (res != VK_SUCCESS)
|
|
{
|
|
LOG_VULKAN_ERROR(res, "vkCreateFramebuffer failed: ");
|
|
return false;
|
|
}
|
|
|
|
// Transition to state that can be used to clear
|
|
m_efb_color_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
|
|
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
|
|
m_efb_depth_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
|
|
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
|
|
|
|
// Clear the contents of the buffers.
|
|
static const VkClearColorValue clear_color = {{0.0f, 0.0f, 0.0f, 0.0f}};
|
|
static const VkClearDepthStencilValue clear_depth = {0.0f, 0};
|
|
VkImageSubresourceRange clear_color_range = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, m_efb_layers};
|
|
VkImageSubresourceRange clear_depth_range = {VK_IMAGE_ASPECT_DEPTH_BIT, 0, 1, 0, m_efb_layers};
|
|
vkCmdClearColorImage(g_command_buffer_mgr->GetCurrentCommandBuffer(),
|
|
m_efb_color_texture->GetImage(), VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
|
|
&clear_color, 1, &clear_color_range);
|
|
vkCmdClearDepthStencilImage(g_command_buffer_mgr->GetCurrentCommandBuffer(),
|
|
m_efb_depth_texture->GetImage(), VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
|
|
&clear_depth, 1, &clear_depth_range);
|
|
|
|
// Transition to color attachment state ready for rendering.
|
|
m_efb_color_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
|
|
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
|
|
m_efb_depth_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
|
|
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL);
|
|
|
|
return true;
|
|
}
|
|
|
|
void FramebufferManager::DestroyEFBFramebuffer()
|
|
{
|
|
if (m_efb_framebuffer != VK_NULL_HANDLE)
|
|
{
|
|
vkDestroyFramebuffer(g_vulkan_context->GetDevice(), m_efb_framebuffer, nullptr);
|
|
m_efb_framebuffer = VK_NULL_HANDLE;
|
|
}
|
|
|
|
if (m_efb_convert_framebuffer != VK_NULL_HANDLE)
|
|
{
|
|
vkDestroyFramebuffer(g_vulkan_context->GetDevice(), m_efb_convert_framebuffer, nullptr);
|
|
m_efb_convert_framebuffer = VK_NULL_HANDLE;
|
|
}
|
|
|
|
if (m_depth_resolve_framebuffer != VK_NULL_HANDLE)
|
|
{
|
|
vkDestroyFramebuffer(g_vulkan_context->GetDevice(), m_depth_resolve_framebuffer, nullptr);
|
|
m_depth_resolve_framebuffer = VK_NULL_HANDLE;
|
|
}
|
|
|
|
m_efb_color_texture.reset();
|
|
m_efb_convert_color_texture.reset();
|
|
m_efb_depth_texture.reset();
|
|
m_efb_resolve_color_texture.reset();
|
|
m_efb_resolve_depth_texture.reset();
|
|
}
|
|
|
|
void FramebufferManager::ResizeEFBTextures()
|
|
{
|
|
DestroyEFBFramebuffer();
|
|
if (!CreateEFBFramebuffer())
|
|
PanicAlert("Failed to create EFB textures");
|
|
}
|
|
|
|
void FramebufferManager::RecreateRenderPass()
|
|
{
|
|
DestroyEFBRenderPass();
|
|
|
|
if (!CreateEFBRenderPass())
|
|
PanicAlert("Failed to create EFB render pass");
|
|
}
|
|
|
|
void FramebufferManager::RecompileShaders()
|
|
{
|
|
DestroyConversionShaders();
|
|
|
|
if (!CompileConversionShaders())
|
|
PanicAlert("Failed to compile EFB shaders");
|
|
|
|
DestroyReadbackShaders();
|
|
if (!CompileReadbackShaders())
|
|
PanicAlert("Failed to compile readback shaders");
|
|
}
|
|
|
|
void FramebufferManager::ReinterpretPixelData(int convtype)
|
|
{
|
|
VkShaderModule pixel_shader = VK_NULL_HANDLE;
|
|
if (convtype == 0)
|
|
{
|
|
pixel_shader = m_ps_rgb8_to_rgba6;
|
|
}
|
|
else if (convtype == 2)
|
|
{
|
|
pixel_shader = m_ps_rgba6_to_rgb8;
|
|
}
|
|
else
|
|
{
|
|
ERROR_LOG(VIDEO, "Unhandled reinterpret pixel data %d", convtype);
|
|
return;
|
|
}
|
|
|
|
// Transition EFB color buffer to shader resource, and the convert buffer to color attachment.
|
|
m_efb_color_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
|
|
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
|
|
m_efb_convert_color_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
|
|
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
|
|
|
|
UtilityShaderDraw draw(g_command_buffer_mgr->GetCurrentCommandBuffer(),
|
|
g_object_cache->GetPipelineLayout(PIPELINE_LAYOUT_STANDARD),
|
|
m_efb_load_render_pass, g_object_cache->GetScreenQuadVertexShader(),
|
|
g_object_cache->GetScreenQuadGeometryShader(), pixel_shader);
|
|
|
|
RasterizationState rs_state = Util::GetNoCullRasterizationState();
|
|
rs_state.samples = m_efb_samples;
|
|
rs_state.per_sample_shading = g_ActiveConfig.bSSAA ? VK_TRUE : VK_FALSE;
|
|
draw.SetRasterizationState(rs_state);
|
|
|
|
VkRect2D region = {{0, 0}, {m_efb_width, m_efb_height}};
|
|
draw.BeginRenderPass(m_efb_convert_framebuffer, region);
|
|
draw.SetPSSampler(0, m_efb_color_texture->GetView(), g_object_cache->GetPointSampler());
|
|
draw.SetViewportAndScissor(0, 0, m_efb_width, m_efb_height);
|
|
draw.DrawWithoutVertexBuffer(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP, 4);
|
|
draw.EndRenderPass();
|
|
|
|
// Swap EFB texture pointers
|
|
std::swap(m_efb_color_texture, m_efb_convert_color_texture);
|
|
std::swap(m_efb_framebuffer, m_efb_convert_framebuffer);
|
|
}
|
|
|
|
Texture2D* FramebufferManager::ResolveEFBColorTexture(const VkRect2D& region)
|
|
{
|
|
// Return the normal EFB texture if multisampling is off.
|
|
if (m_efb_samples == VK_SAMPLE_COUNT_1_BIT)
|
|
return m_efb_color_texture.get();
|
|
|
|
// Can't resolve within a render pass.
|
|
StateTracker::GetInstance()->EndRenderPass();
|
|
|
|
// Resolving is considered to be a transfer operation.
|
|
m_efb_color_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
|
|
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
|
|
m_efb_resolve_color_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
|
|
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
|
|
|
|
// Resolve to our already-created texture.
|
|
VkImageResolve resolve = {
|
|
{VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, m_efb_layers}, // VkImageSubresourceLayers srcSubresource
|
|
{region.offset.x, region.offset.y, 0}, // VkOffset3D srcOffset
|
|
{VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, m_efb_layers}, // VkImageSubresourceLayers dstSubresource
|
|
{region.offset.x, region.offset.y, 0}, // VkOffset3D dstOffset
|
|
{region.extent.width, region.extent.height, m_efb_layers} // VkExtent3D extent
|
|
};
|
|
vkCmdResolveImage(g_command_buffer_mgr->GetCurrentCommandBuffer(),
|
|
m_efb_color_texture->GetImage(), VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
|
|
m_efb_resolve_color_texture->GetImage(), VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
|
|
1, &resolve);
|
|
|
|
// Restore MSAA texture ready for rendering again
|
|
m_efb_color_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
|
|
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
|
|
return m_efb_resolve_color_texture.get();
|
|
}
|
|
|
|
Texture2D* FramebufferManager::ResolveEFBDepthTexture(const VkRect2D& region)
|
|
{
|
|
// Return the normal EFB texture if multisampling is off.
|
|
if (m_efb_samples == VK_SAMPLE_COUNT_1_BIT)
|
|
return m_efb_depth_texture.get();
|
|
|
|
// Can't resolve within a render pass.
|
|
StateTracker::GetInstance()->EndRenderPass();
|
|
|
|
m_efb_depth_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
|
|
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
|
|
|
|
// Draw using resolve shader to write the minimum depth of all samples to the resolve texture.
|
|
UtilityShaderDraw draw(g_command_buffer_mgr->GetCurrentCommandBuffer(),
|
|
g_object_cache->GetPipelineLayout(PIPELINE_LAYOUT_STANDARD),
|
|
m_depth_resolve_render_pass, g_object_cache->GetScreenQuadVertexShader(),
|
|
g_object_cache->GetScreenQuadGeometryShader(), m_ps_depth_resolve);
|
|
draw.BeginRenderPass(m_depth_resolve_framebuffer, region);
|
|
draw.SetPSSampler(0, m_efb_depth_texture->GetView(), g_object_cache->GetPointSampler());
|
|
draw.SetViewportAndScissor(region.offset.x, region.offset.y, region.extent.width,
|
|
region.extent.height);
|
|
draw.DrawWithoutVertexBuffer(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP, 4);
|
|
draw.EndRenderPass();
|
|
|
|
// Restore MSAA texture ready for rendering again
|
|
m_efb_depth_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
|
|
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL);
|
|
|
|
// Render pass transitions to shader resource.
|
|
m_efb_resolve_depth_texture->OverrideImageLayout(VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
|
|
return m_efb_resolve_depth_texture.get();
|
|
}
|
|
|
|
bool FramebufferManager::CompileConversionShaders()
|
|
{
|
|
static const char RGB8_TO_RGBA6_SHADER_SOURCE[] = R"(
|
|
#if MSAA_ENABLED
|
|
SAMPLER_BINDING(0) uniform sampler2DMSArray samp0;
|
|
#else
|
|
SAMPLER_BINDING(0) uniform sampler2DArray samp0;
|
|
#endif
|
|
layout(location = 0) in vec3 uv0;
|
|
layout(location = 0) out vec4 ocol0;
|
|
|
|
void main()
|
|
{
|
|
int layer = 0;
|
|
#if EFB_LAYERS > 1
|
|
layer = int(uv0.z);
|
|
#endif
|
|
|
|
ivec3 coords = ivec3(gl_FragCoord.xy, layer);
|
|
|
|
vec4 val;
|
|
#if !MSAA_ENABLED
|
|
// No MSAA - just load the first (and only) sample
|
|
val = texelFetch(samp0, coords, 0);
|
|
#elif SSAA_ENABLED
|
|
// Sample shading, shader runs once per sample
|
|
val = texelFetch(samp0, coords, gl_SampleID);
|
|
#else
|
|
// MSAA without sample shading, average out all samples.
|
|
val = vec4(0, 0, 0, 0);
|
|
for (int i = 0; i < MSAA_SAMPLES; i++)
|
|
val += texelFetch(samp0, coords, i);
|
|
val /= float(MSAA_SAMPLES);
|
|
#endif
|
|
|
|
ivec4 src8 = ivec4(round(val * 255.f));
|
|
ivec4 dst6;
|
|
dst6.r = src8.r >> 2;
|
|
dst6.g = ((src8.r & 0x3) << 4) | (src8.g >> 4);
|
|
dst6.b = ((src8.g & 0xF) << 2) | (src8.b >> 6);
|
|
dst6.a = src8.b & 0x3F;
|
|
|
|
ocol0 = float4(dst6) / 63.f;
|
|
}
|
|
)";
|
|
|
|
static const char RGBA6_TO_RGB8_SHADER_SOURCE[] = R"(
|
|
#if MSAA_ENABLED
|
|
SAMPLER_BINDING(0) uniform sampler2DMSArray samp0;
|
|
#else
|
|
SAMPLER_BINDING(0) uniform sampler2DArray samp0;
|
|
#endif
|
|
layout(location = 0) in vec3 uv0;
|
|
layout(location = 0) out vec4 ocol0;
|
|
|
|
void main()
|
|
{
|
|
int layer = 0;
|
|
#if EFB_LAYERS > 1
|
|
layer = int(uv0.z);
|
|
#endif
|
|
|
|
ivec3 coords = ivec3(gl_FragCoord.xy, layer);
|
|
|
|
vec4 val;
|
|
#if !MSAA_ENABLED
|
|
// No MSAA - just load the first (and only) sample
|
|
val = texelFetch(samp0, coords, 0);
|
|
#elif SSAA_ENABLED
|
|
// Sample shading, shader runs once per sample
|
|
val = texelFetch(samp0, coords, gl_SampleID);
|
|
#else
|
|
// MSAA without sample shading, average out all samples.
|
|
val = vec4(0, 0, 0, 0);
|
|
for (int i = 0; i < MSAA_SAMPLES; i++)
|
|
val += texelFetch(samp0, coords, i);
|
|
val /= float(MSAA_SAMPLES);
|
|
#endif
|
|
|
|
ivec4 src6 = ivec4(round(val * 63.f));
|
|
ivec4 dst8;
|
|
dst8.r = (src6.r << 2) | (src6.g >> 4);
|
|
dst8.g = ((src6.g & 0xF) << 4) | (src6.b >> 2);
|
|
dst8.b = ((src6.b & 0x3) << 6) | src6.a;
|
|
dst8.a = 255;
|
|
|
|
ocol0 = float4(dst8) / 255.f;
|
|
}
|
|
)";
|
|
|
|
static const char DEPTH_RESOLVE_SHADER_SOURCE[] = R"(
|
|
SAMPLER_BINDING(0) uniform sampler2DMSArray samp0;
|
|
layout(location = 0) in vec3 uv0;
|
|
layout(location = 0) out float ocol0;
|
|
|
|
void main()
|
|
{
|
|
int layer = 0;
|
|
#if EFB_LAYERS > 1
|
|
layer = int(uv0.z);
|
|
#endif
|
|
|
|
// gl_FragCoord is in window coordinates, and we're rendering to
|
|
// the same rectangle in the resolve texture.
|
|
ivec3 coords = ivec3(gl_FragCoord.xy, layer);
|
|
|
|
// Take the minimum of all depth samples.
|
|
ocol0 = texelFetch(samp0, coords, 0).r;
|
|
for (int i = 1; i < MSAA_SAMPLES; i++)
|
|
ocol0 = min(ocol0, texelFetch(samp0, coords, i).r);
|
|
}
|
|
)";
|
|
|
|
std::string header = g_object_cache->GetUtilityShaderHeader();
|
|
DestroyConversionShaders();
|
|
|
|
m_ps_rgb8_to_rgba6 = Util::CompileAndCreateFragmentShader(header + RGB8_TO_RGBA6_SHADER_SOURCE);
|
|
m_ps_rgba6_to_rgb8 = Util::CompileAndCreateFragmentShader(header + RGBA6_TO_RGB8_SHADER_SOURCE);
|
|
if (m_efb_samples != VK_SAMPLE_COUNT_1_BIT)
|
|
m_ps_depth_resolve = Util::CompileAndCreateFragmentShader(header + DEPTH_RESOLVE_SHADER_SOURCE);
|
|
|
|
return (m_ps_rgba6_to_rgb8 != VK_NULL_HANDLE && m_ps_rgb8_to_rgba6 != VK_NULL_HANDLE &&
|
|
(m_efb_samples == VK_SAMPLE_COUNT_1_BIT || m_ps_depth_resolve != VK_NULL_HANDLE));
|
|
}
|
|
|
|
void FramebufferManager::DestroyConversionShaders()
|
|
{
|
|
auto DestroyShader = [this](VkShaderModule& shader) {
|
|
if (shader != VK_NULL_HANDLE)
|
|
{
|
|
vkDestroyShaderModule(g_vulkan_context->GetDevice(), shader, nullptr);
|
|
shader = VK_NULL_HANDLE;
|
|
}
|
|
};
|
|
|
|
DestroyShader(m_ps_rgb8_to_rgba6);
|
|
DestroyShader(m_ps_rgba6_to_rgb8);
|
|
DestroyShader(m_ps_depth_resolve);
|
|
}
|
|
|
|
u32 FramebufferManager::PeekEFBColor(u32 x, u32 y)
|
|
{
|
|
if (!m_color_readback_texture_valid && !PopulateColorReadbackTexture())
|
|
return 0;
|
|
|
|
u32 value;
|
|
m_color_readback_texture->ReadTexel(x, y, &value, sizeof(value));
|
|
return value;
|
|
}
|
|
|
|
bool FramebufferManager::PopulateColorReadbackTexture()
|
|
{
|
|
// Can't be in our normal render pass.
|
|
StateTracker::GetInstance()->EndRenderPass();
|
|
StateTracker::GetInstance()->OnReadback();
|
|
|
|
// Issue a copy from framebuffer -> copy texture if we have >1xIR or MSAA on.
|
|
VkRect2D src_region = {{0, 0}, {m_efb_width, m_efb_height}};
|
|
Texture2D* src_texture = m_efb_color_texture.get();
|
|
VkImageAspectFlags src_aspect = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
if (m_efb_samples > 1)
|
|
src_texture = ResolveEFBColorTexture(src_region);
|
|
|
|
if (m_efb_width != EFB_WIDTH || m_efb_height != EFB_HEIGHT)
|
|
{
|
|
m_color_copy_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
|
|
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
|
|
|
|
UtilityShaderDraw draw(g_command_buffer_mgr->GetCurrentCommandBuffer(),
|
|
g_object_cache->GetPipelineLayout(PIPELINE_LAYOUT_STANDARD),
|
|
m_copy_color_render_pass, g_object_cache->GetScreenQuadVertexShader(),
|
|
VK_NULL_HANDLE, m_copy_color_shader);
|
|
|
|
VkRect2D rect = {{0, 0}, {EFB_WIDTH, EFB_HEIGHT}};
|
|
draw.BeginRenderPass(m_color_copy_framebuffer, rect);
|
|
|
|
// Transition EFB to shader read before drawing.
|
|
src_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
|
|
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
|
|
draw.SetPSSampler(0, src_texture->GetView(), g_object_cache->GetPointSampler());
|
|
draw.SetViewportAndScissor(0, 0, EFB_WIDTH, EFB_HEIGHT);
|
|
draw.DrawWithoutVertexBuffer(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP, 4);
|
|
draw.EndRenderPass();
|
|
|
|
// Restore EFB to color attachment, since we're done with it.
|
|
if (src_texture == m_efb_color_texture.get())
|
|
{
|
|
src_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
|
|
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
|
|
}
|
|
|
|
// Use this as a source texture now.
|
|
src_texture = m_color_copy_texture.get();
|
|
}
|
|
|
|
// Copy from EFB or copy texture to staging texture.
|
|
src_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
|
|
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
|
|
m_color_readback_texture->CopyFromImage(g_command_buffer_mgr->GetCurrentCommandBuffer(),
|
|
src_texture->GetImage(), src_aspect, 0, 0, EFB_WIDTH,
|
|
EFB_HEIGHT, 0, 0);
|
|
|
|
// Restore original layout if we used the EFB as a source.
|
|
if (src_texture == m_efb_color_texture.get())
|
|
{
|
|
src_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
|
|
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
|
|
}
|
|
|
|
// Wait until the copy is complete.
|
|
Util::ExecuteCurrentCommandsAndRestoreState(false, true);
|
|
|
|
// Map to host memory.
|
|
if (!m_color_readback_texture->IsMapped() && !m_color_readback_texture->Map())
|
|
return false;
|
|
|
|
m_color_readback_texture_valid = true;
|
|
return true;
|
|
}
|
|
|
|
float FramebufferManager::PeekEFBDepth(u32 x, u32 y)
|
|
{
|
|
if (!m_depth_readback_texture_valid && !PopulateDepthReadbackTexture())
|
|
return 0.0f;
|
|
|
|
float value;
|
|
m_depth_readback_texture->ReadTexel(x, y, &value, sizeof(value));
|
|
return value;
|
|
}
|
|
|
|
bool FramebufferManager::PopulateDepthReadbackTexture()
|
|
{
|
|
// Can't be in our normal render pass.
|
|
StateTracker::GetInstance()->EndRenderPass();
|
|
StateTracker::GetInstance()->OnReadback();
|
|
|
|
// Issue a copy from framebuffer -> copy texture if we have >1xIR or MSAA on.
|
|
VkRect2D src_region = {{0, 0}, {m_efb_width, m_efb_height}};
|
|
Texture2D* src_texture = m_efb_depth_texture.get();
|
|
VkImageAspectFlags src_aspect = VK_IMAGE_ASPECT_DEPTH_BIT;
|
|
if (m_efb_samples > 1)
|
|
{
|
|
// EFB depth resolves are written out as color textures
|
|
src_texture = ResolveEFBDepthTexture(src_region);
|
|
src_aspect = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
}
|
|
if (m_efb_width != EFB_WIDTH || m_efb_height != EFB_HEIGHT)
|
|
{
|
|
m_depth_copy_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
|
|
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
|
|
|
|
UtilityShaderDraw draw(g_command_buffer_mgr->GetCurrentCommandBuffer(),
|
|
g_object_cache->GetPipelineLayout(PIPELINE_LAYOUT_STANDARD),
|
|
m_copy_depth_render_pass, g_object_cache->GetScreenQuadVertexShader(),
|
|
VK_NULL_HANDLE, m_copy_depth_shader);
|
|
|
|
VkRect2D rect = {{0, 0}, {EFB_WIDTH, EFB_HEIGHT}};
|
|
draw.BeginRenderPass(m_depth_copy_framebuffer, rect);
|
|
|
|
// Transition EFB to shader read before drawing.
|
|
src_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
|
|
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
|
|
draw.SetPSSampler(0, src_texture->GetView(), g_object_cache->GetPointSampler());
|
|
draw.SetViewportAndScissor(0, 0, EFB_WIDTH, EFB_HEIGHT);
|
|
draw.DrawWithoutVertexBuffer(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP, 4);
|
|
draw.EndRenderPass();
|
|
|
|
// Restore EFB to depth attachment, since we're done with it.
|
|
if (src_texture == m_efb_depth_texture.get())
|
|
{
|
|
src_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
|
|
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL);
|
|
}
|
|
|
|
// Use this as a source texture now.
|
|
src_texture = m_depth_copy_texture.get();
|
|
src_aspect = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
}
|
|
|
|
// Copy from EFB or copy texture to staging texture.
|
|
src_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
|
|
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
|
|
m_depth_readback_texture->CopyFromImage(g_command_buffer_mgr->GetCurrentCommandBuffer(),
|
|
src_texture->GetImage(), src_aspect, 0, 0, EFB_WIDTH,
|
|
EFB_HEIGHT, 0, 0);
|
|
|
|
// Restore original layout if we used the EFB as a source.
|
|
if (src_texture == m_efb_depth_texture.get())
|
|
{
|
|
src_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
|
|
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL);
|
|
}
|
|
|
|
// Wait until the copy is complete.
|
|
Util::ExecuteCurrentCommandsAndRestoreState(false, true);
|
|
|
|
// Map to host memory.
|
|
if (!m_depth_readback_texture->IsMapped() && !m_depth_readback_texture->Map())
|
|
return false;
|
|
|
|
m_depth_readback_texture_valid = true;
|
|
return true;
|
|
}
|
|
|
|
void FramebufferManager::InvalidatePeekCache()
|
|
{
|
|
m_color_readback_texture_valid = false;
|
|
m_depth_readback_texture_valid = false;
|
|
}
|
|
|
|
bool FramebufferManager::CreateReadbackRenderPasses()
|
|
{
|
|
VkAttachmentDescription copy_attachment = {
|
|
0, // VkAttachmentDescriptionFlags flags
|
|
EFB_COLOR_TEXTURE_FORMAT, // VkFormat format
|
|
VK_SAMPLE_COUNT_1_BIT, // VkSampleCountFlagBits samples
|
|
VK_ATTACHMENT_LOAD_OP_DONT_CARE, // VkAttachmentLoadOp loadOp
|
|
VK_ATTACHMENT_STORE_OP_STORE, // VkAttachmentStoreOp storeOp
|
|
VK_ATTACHMENT_LOAD_OP_DONT_CARE, // VkAttachmentLoadOp stencilLoadOp
|
|
VK_ATTACHMENT_STORE_OP_DONT_CARE, // VkAttachmentStoreOp stencilStoreOp
|
|
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, // VkImageLayout initialLayout
|
|
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL // VkImageLayout finalLayout
|
|
};
|
|
VkAttachmentReference copy_attachment_ref = {
|
|
0, // uint32_t attachment
|
|
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL // VkImageLayout layout
|
|
};
|
|
VkSubpassDescription copy_subpass = {
|
|
0, // VkSubpassDescriptionFlags flags
|
|
VK_PIPELINE_BIND_POINT_GRAPHICS, // VkPipelineBindPoint pipelineBindPoint
|
|
0, // uint32_t inputAttachmentCount
|
|
nullptr, // const VkAttachmentReference* pInputAttachments
|
|
1, // uint32_t colorAttachmentCount
|
|
©_attachment_ref, // const VkAttachmentReference* pColorAttachments
|
|
nullptr, // const VkAttachmentReference* pResolveAttachments
|
|
nullptr, // const VkAttachmentReference* pDepthStencilAttachment
|
|
0, // uint32_t preserveAttachmentCount
|
|
nullptr // const uint32_t* pPreserveAttachments
|
|
};
|
|
VkRenderPassCreateInfo copy_pass = {
|
|
VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO, // VkStructureType sType
|
|
nullptr, // const void* pNext
|
|
0, // VkRenderPassCreateFlags flags
|
|
1, // uint32_t attachmentCount
|
|
©_attachment, // const VkAttachmentDescription* pAttachments
|
|
1, // uint32_t subpassCount
|
|
©_subpass, // const VkSubpassDescription* pSubpasses
|
|
0, // uint32_t dependencyCount
|
|
nullptr // const VkSubpassDependency* pDependencies
|
|
};
|
|
|
|
VkResult res = vkCreateRenderPass(g_vulkan_context->GetDevice(), ©_pass, nullptr,
|
|
&m_copy_color_render_pass);
|
|
if (res != VK_SUCCESS)
|
|
{
|
|
LOG_VULKAN_ERROR(res, "vkCreateRenderPass failed: ");
|
|
return false;
|
|
}
|
|
|
|
// Depth is similar to copy, just a different format.
|
|
copy_attachment.format = EFB_DEPTH_AS_COLOR_TEXTURE_FORMAT;
|
|
res = vkCreateRenderPass(g_vulkan_context->GetDevice(), ©_pass, nullptr,
|
|
&m_copy_depth_render_pass);
|
|
if (res != VK_SUCCESS)
|
|
{
|
|
LOG_VULKAN_ERROR(res, "vkCreateRenderPass failed: ");
|
|
return false;
|
|
}
|
|
|
|
// Some devices don't support point sizes >1 (e.g. Adreno).
|
|
// If we can't use a point size above our maximum IR, use triangles instead.
|
|
// This means a 6x increase in the size of the vertices, though.
|
|
if (!g_vulkan_context->GetDeviceFeatures().largePoints ||
|
|
g_vulkan_context->GetDeviceLimits().pointSizeGranularity > 1 ||
|
|
g_vulkan_context->GetDeviceLimits().pointSizeRange[0] > 1 ||
|
|
g_vulkan_context->GetDeviceLimits().pointSizeRange[1] < 16)
|
|
{
|
|
m_poke_primitive_topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP;
|
|
}
|
|
else
|
|
{
|
|
// Points should be okay.
|
|
m_poke_primitive_topology = VK_PRIMITIVE_TOPOLOGY_POINT_LIST;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void FramebufferManager::DestroyReadbackRenderPasses()
|
|
{
|
|
if (m_copy_color_render_pass != VK_NULL_HANDLE)
|
|
{
|
|
vkDestroyRenderPass(g_vulkan_context->GetDevice(), m_copy_color_render_pass, nullptr);
|
|
m_copy_color_render_pass = VK_NULL_HANDLE;
|
|
}
|
|
if (m_copy_depth_render_pass != VK_NULL_HANDLE)
|
|
{
|
|
vkDestroyRenderPass(g_vulkan_context->GetDevice(), m_copy_depth_render_pass, nullptr);
|
|
m_copy_depth_render_pass = VK_NULL_HANDLE;
|
|
}
|
|
}
|
|
|
|
bool FramebufferManager::CompileReadbackShaders()
|
|
{
|
|
std::string source;
|
|
|
|
// TODO: Use input attachment here instead?
|
|
// TODO: MSAA resolve in shader.
|
|
static const char COPY_COLOR_SHADER_SOURCE[] = R"(
|
|
SAMPLER_BINDING(0) uniform sampler2DArray samp0;
|
|
layout(location = 0) in vec3 uv0;
|
|
layout(location = 0) out vec4 ocol0;
|
|
void main()
|
|
{
|
|
ocol0 = texture(samp0, uv0);
|
|
}
|
|
)";
|
|
|
|
static const char COPY_DEPTH_SHADER_SOURCE[] = R"(
|
|
SAMPLER_BINDING(0) uniform sampler2DArray samp0;
|
|
layout(location = 0) in vec3 uv0;
|
|
layout(location = 0) out float ocol0;
|
|
void main()
|
|
{
|
|
ocol0 = texture(samp0, uv0).r;
|
|
}
|
|
)";
|
|
|
|
source = g_object_cache->GetUtilityShaderHeader() + COPY_COLOR_SHADER_SOURCE;
|
|
m_copy_color_shader = Util::CompileAndCreateFragmentShader(source);
|
|
|
|
source = g_object_cache->GetUtilityShaderHeader() + COPY_DEPTH_SHADER_SOURCE;
|
|
m_copy_depth_shader = Util::CompileAndCreateFragmentShader(source);
|
|
|
|
return m_copy_color_shader != VK_NULL_HANDLE && m_copy_depth_shader != VK_NULL_HANDLE;
|
|
}
|
|
|
|
void FramebufferManager::DestroyReadbackShaders()
|
|
{
|
|
if (m_copy_color_shader != VK_NULL_HANDLE)
|
|
{
|
|
vkDestroyShaderModule(g_vulkan_context->GetDevice(), m_copy_color_shader, nullptr);
|
|
m_copy_color_shader = VK_NULL_HANDLE;
|
|
}
|
|
if (m_copy_depth_shader != VK_NULL_HANDLE)
|
|
{
|
|
vkDestroyShaderModule(g_vulkan_context->GetDevice(), m_copy_depth_shader, nullptr);
|
|
m_copy_depth_shader = VK_NULL_HANDLE;
|
|
}
|
|
}
|
|
|
|
bool FramebufferManager::CreateReadbackTextures()
|
|
{
|
|
m_color_copy_texture =
|
|
Texture2D::Create(EFB_WIDTH, EFB_HEIGHT, 1, 1, EFB_COLOR_TEXTURE_FORMAT,
|
|
VK_SAMPLE_COUNT_1_BIT, VK_IMAGE_VIEW_TYPE_2D, VK_IMAGE_TILING_OPTIMAL,
|
|
VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT |
|
|
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT);
|
|
|
|
m_color_readback_texture = StagingTexture2D::Create(STAGING_BUFFER_TYPE_READBACK, EFB_WIDTH,
|
|
EFB_HEIGHT, EFB_COLOR_TEXTURE_FORMAT);
|
|
if (!m_color_copy_texture || !m_color_readback_texture)
|
|
{
|
|
ERROR_LOG(VIDEO, "Failed to create EFB color readback texture");
|
|
return false;
|
|
}
|
|
|
|
m_depth_copy_texture =
|
|
Texture2D::Create(EFB_WIDTH, EFB_HEIGHT, 1, 1, EFB_DEPTH_AS_COLOR_TEXTURE_FORMAT,
|
|
VK_SAMPLE_COUNT_1_BIT, VK_IMAGE_VIEW_TYPE_2D, VK_IMAGE_TILING_OPTIMAL,
|
|
VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT |
|
|
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT);
|
|
|
|
m_depth_readback_texture = StagingTexture2D::Create(STAGING_BUFFER_TYPE_READBACK, EFB_WIDTH,
|
|
EFB_HEIGHT, EFB_DEPTH_TEXTURE_FORMAT);
|
|
if (!m_depth_copy_texture || !m_depth_readback_texture)
|
|
{
|
|
ERROR_LOG(VIDEO, "Failed to create EFB depth readback texture");
|
|
return false;
|
|
}
|
|
|
|
// With Vulkan, we can leave these textures mapped and use invalidate/flush calls instead.
|
|
if (!m_color_readback_texture->Map() || !m_depth_readback_texture->Map())
|
|
{
|
|
ERROR_LOG(VIDEO, "Failed to map EFB readback textures");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void FramebufferManager::DestroyReadbackTextures()
|
|
{
|
|
m_color_copy_texture.reset();
|
|
m_color_readback_texture.reset();
|
|
m_color_readback_texture_valid = false;
|
|
m_depth_copy_texture.reset();
|
|
m_depth_readback_texture.reset();
|
|
m_depth_readback_texture_valid = false;
|
|
}
|
|
|
|
bool FramebufferManager::CreateReadbackFramebuffer()
|
|
{
|
|
VkImageView framebuffer_attachment = m_color_copy_texture->GetView();
|
|
VkFramebufferCreateInfo framebuffer_info = {
|
|
VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO, // VkStructureType sType
|
|
nullptr, // const void* pNext
|
|
0, // VkFramebufferCreateFlags flags
|
|
m_copy_color_render_pass, // VkRenderPass renderPass
|
|
1, // uint32_t attachmentCount
|
|
&framebuffer_attachment, // const VkImageView* pAttachments
|
|
EFB_WIDTH, // uint32_t width
|
|
EFB_HEIGHT, // uint32_t height
|
|
1 // uint32_t layers
|
|
};
|
|
VkResult res = vkCreateFramebuffer(g_vulkan_context->GetDevice(), &framebuffer_info, nullptr,
|
|
&m_color_copy_framebuffer);
|
|
if (res != VK_SUCCESS)
|
|
{
|
|
LOG_VULKAN_ERROR(res, "vkCreateFramebuffer failed: ");
|
|
return false;
|
|
}
|
|
|
|
// Swap for depth
|
|
framebuffer_info.renderPass = m_copy_depth_render_pass;
|
|
framebuffer_attachment = m_depth_copy_texture->GetView();
|
|
res = vkCreateFramebuffer(g_vulkan_context->GetDevice(), &framebuffer_info, nullptr,
|
|
&m_depth_copy_framebuffer);
|
|
if (res != VK_SUCCESS)
|
|
{
|
|
LOG_VULKAN_ERROR(res, "vkCreateFramebuffer failed: ");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void FramebufferManager::DestroyReadbackFramebuffer()
|
|
{
|
|
if (m_color_copy_framebuffer != VK_NULL_HANDLE)
|
|
{
|
|
vkDestroyFramebuffer(g_vulkan_context->GetDevice(), m_color_copy_framebuffer, nullptr);
|
|
m_color_copy_framebuffer = VK_NULL_HANDLE;
|
|
}
|
|
if (m_depth_copy_framebuffer != VK_NULL_HANDLE)
|
|
{
|
|
vkDestroyFramebuffer(g_vulkan_context->GetDevice(), m_depth_copy_framebuffer, nullptr);
|
|
m_depth_copy_framebuffer = VK_NULL_HANDLE;
|
|
}
|
|
}
|
|
|
|
void FramebufferManager::PokeEFBColor(u32 x, u32 y, u32 color)
|
|
{
|
|
// Flush if we exceeded the number of vertices per batch.
|
|
if ((m_color_poke_vertices.size() + 6) > MAX_POKE_VERTICES)
|
|
FlushEFBPokes();
|
|
|
|
CreatePokeVertices(&m_color_poke_vertices, x, y, 0.0f, color);
|
|
|
|
// Update the peek cache if it's valid, since we know the color of the pixel now.
|
|
if (m_color_readback_texture_valid)
|
|
m_color_readback_texture->WriteTexel(x, y, &color, sizeof(color));
|
|
}
|
|
|
|
void FramebufferManager::PokeEFBDepth(u32 x, u32 y, float depth)
|
|
{
|
|
// Flush if we exceeded the number of vertices per batch.
|
|
if ((m_color_poke_vertices.size() + 6) > MAX_POKE_VERTICES)
|
|
FlushEFBPokes();
|
|
|
|
CreatePokeVertices(&m_depth_poke_vertices, x, y, depth, 0);
|
|
|
|
// Update the peek cache if it's valid, since we know the color of the pixel now.
|
|
if (m_depth_readback_texture_valid)
|
|
m_depth_readback_texture->WriteTexel(x, y, &depth, sizeof(depth));
|
|
}
|
|
|
|
void FramebufferManager::CreatePokeVertices(std::vector<EFBPokeVertex>* destination_list, u32 x,
|
|
u32 y, float z, u32 color)
|
|
{
|
|
// Some devices don't support point sizes >1 (e.g. Adreno).
|
|
if (m_poke_primitive_topology == VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP)
|
|
{
|
|
// generate quad from the single point (clip-space coordinates)
|
|
float x1 = float(x) * 2.0f / EFB_WIDTH - 1.0f;
|
|
float y1 = float(y) * 2.0f / EFB_HEIGHT - 1.0f;
|
|
float x2 = float(x + 1) * 2.0f / EFB_WIDTH - 1.0f;
|
|
float y2 = float(y + 1) * 2.0f / EFB_HEIGHT - 1.0f;
|
|
destination_list->push_back({{x1, y1, z, 1.0f}, color});
|
|
destination_list->push_back({{x2, y1, z, 1.0f}, color});
|
|
destination_list->push_back({{x1, y2, z, 1.0f}, color});
|
|
destination_list->push_back({{x1, y2, z, 1.0f}, color});
|
|
destination_list->push_back({{x2, y1, z, 1.0f}, color});
|
|
destination_list->push_back({{x2, y2, z, 1.0f}, color});
|
|
}
|
|
else
|
|
{
|
|
// GPU will expand the point to a quad.
|
|
float cs_x = float(x) * 2.0f / EFB_WIDTH - 1.0f;
|
|
float cs_y = float(y) * 2.0f / EFB_HEIGHT - 1.0f;
|
|
float point_size = m_efb_width / static_cast<float>(EFB_WIDTH);
|
|
destination_list->push_back({{cs_x, cs_y, z, point_size}, color});
|
|
}
|
|
}
|
|
|
|
void FramebufferManager::FlushEFBPokes()
|
|
{
|
|
if (!m_color_poke_vertices.empty())
|
|
{
|
|
DrawPokeVertices(m_color_poke_vertices.data(), m_color_poke_vertices.size(), true, false);
|
|
m_color_poke_vertices.clear();
|
|
}
|
|
|
|
if (!m_depth_poke_vertices.empty())
|
|
{
|
|
DrawPokeVertices(m_depth_poke_vertices.data(), m_depth_poke_vertices.size(), false, true);
|
|
m_depth_poke_vertices.clear();
|
|
}
|
|
}
|
|
|
|
void FramebufferManager::DrawPokeVertices(const EFBPokeVertex* vertices, size_t vertex_count,
|
|
bool write_color, bool write_depth)
|
|
{
|
|
// Relatively simple since we don't have any bindings.
|
|
VkCommandBuffer command_buffer = g_command_buffer_mgr->GetCurrentCommandBuffer();
|
|
|
|
// We don't use the utility shader in order to keep the vertices compact.
|
|
PipelineInfo pipeline_info = {};
|
|
pipeline_info.vertex_format = m_poke_vertex_format.get();
|
|
pipeline_info.pipeline_layout = g_object_cache->GetPipelineLayout(PIPELINE_LAYOUT_STANDARD);
|
|
pipeline_info.vs = m_poke_vertex_shader;
|
|
pipeline_info.gs = (m_efb_layers > 1) ? m_poke_geometry_shader : VK_NULL_HANDLE;
|
|
pipeline_info.ps = m_poke_fragment_shader;
|
|
pipeline_info.render_pass = m_efb_load_render_pass;
|
|
pipeline_info.rasterization_state.bits = Util::GetNoCullRasterizationState().bits;
|
|
pipeline_info.rasterization_state.samples = m_efb_samples;
|
|
pipeline_info.depth_stencil_state.bits = Util::GetNoDepthTestingDepthStencilState().bits;
|
|
pipeline_info.blend_state.bits = Util::GetNoBlendingBlendState().bits;
|
|
pipeline_info.blend_state.write_mask = 0;
|
|
pipeline_info.primitive_topology = m_poke_primitive_topology;
|
|
if (write_color)
|
|
{
|
|
pipeline_info.blend_state.write_mask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT |
|
|
VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT;
|
|
}
|
|
if (write_depth)
|
|
{
|
|
pipeline_info.depth_stencil_state.test_enable = VK_TRUE;
|
|
pipeline_info.depth_stencil_state.write_enable = VK_TRUE;
|
|
pipeline_info.depth_stencil_state.compare_op = VK_COMPARE_OP_ALWAYS;
|
|
}
|
|
|
|
VkPipeline pipeline = g_object_cache->GetPipeline(pipeline_info);
|
|
if (pipeline == VK_NULL_HANDLE)
|
|
{
|
|
PanicAlert("Failed to get pipeline for EFB poke draw");
|
|
return;
|
|
}
|
|
|
|
// Populate vertex buffer.
|
|
size_t vertices_size = sizeof(EFBPokeVertex) * m_color_poke_vertices.size();
|
|
if (!m_poke_vertex_stream_buffer->ReserveMemory(vertices_size, sizeof(EfbPokeData), true, true,
|
|
false))
|
|
{
|
|
// Kick a command buffer first.
|
|
WARN_LOG(VIDEO, "Kicking command buffer due to no EFB poke space.");
|
|
Util::ExecuteCurrentCommandsAndRestoreState(false);
|
|
command_buffer = g_command_buffer_mgr->GetCurrentCommandBuffer();
|
|
|
|
if (!m_poke_vertex_stream_buffer->ReserveMemory(vertices_size, sizeof(EfbPokeData), true, true,
|
|
false))
|
|
{
|
|
PanicAlert("Failed to get space for EFB poke vertices");
|
|
return;
|
|
}
|
|
}
|
|
VkBuffer vb_buffer = m_poke_vertex_stream_buffer->GetBuffer();
|
|
VkDeviceSize vb_offset = m_poke_vertex_stream_buffer->GetCurrentOffset();
|
|
memcpy(m_poke_vertex_stream_buffer->GetCurrentHostPointer(), vertices, vertices_size);
|
|
m_poke_vertex_stream_buffer->CommitMemory(vertices_size);
|
|
|
|
// Set up state.
|
|
StateTracker::GetInstance()->EndClearRenderPass();
|
|
StateTracker::GetInstance()->BeginRenderPass();
|
|
StateTracker::GetInstance()->SetPendingRebind();
|
|
Util::SetViewportAndScissor(command_buffer, 0, 0, m_efb_width, m_efb_height);
|
|
vkCmdBindPipeline(command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
|
|
vkCmdBindVertexBuffers(command_buffer, 0, 1, &vb_buffer, &vb_offset);
|
|
vkCmdDraw(command_buffer, static_cast<u32>(vertex_count), 1, 0, 0);
|
|
}
|
|
|
|
void FramebufferManager::CreatePokeVertexFormat()
|
|
{
|
|
PortableVertexDeclaration vtx_decl = {};
|
|
vtx_decl.position.enable = true;
|
|
vtx_decl.position.type = VAR_FLOAT;
|
|
vtx_decl.position.components = 4;
|
|
vtx_decl.position.integer = false;
|
|
vtx_decl.position.offset = offsetof(EFBPokeVertex, position);
|
|
vtx_decl.colors[0].enable = true;
|
|
vtx_decl.colors[0].type = VAR_UNSIGNED_BYTE;
|
|
vtx_decl.colors[0].components = 4;
|
|
vtx_decl.colors[0].integer = false;
|
|
vtx_decl.colors[0].offset = offsetof(EFBPokeVertex, color);
|
|
vtx_decl.stride = sizeof(EFBPokeVertex);
|
|
|
|
m_poke_vertex_format = std::make_unique<VertexFormat>(vtx_decl);
|
|
}
|
|
|
|
bool FramebufferManager::CreatePokeVertexBuffer()
|
|
{
|
|
m_poke_vertex_stream_buffer = StreamBuffer::Create(
|
|
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, POKE_VERTEX_BUFFER_SIZE, POKE_VERTEX_BUFFER_SIZE);
|
|
if (!m_poke_vertex_stream_buffer)
|
|
{
|
|
ERROR_LOG(VIDEO, "Failed to create EFB poke vertex buffer");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void FramebufferManager::DestroyPokeVertexBuffer()
|
|
{
|
|
m_poke_vertex_stream_buffer.reset();
|
|
}
|
|
|
|
bool FramebufferManager::CompilePokeShaders()
|
|
{
|
|
static const char POKE_VERTEX_SHADER_SOURCE[] = R"(
|
|
layout(location = 0) in vec4 ipos;
|
|
layout(location = 5) in vec4 icol0;
|
|
|
|
layout(location = 0) out vec4 col0;
|
|
|
|
void main()
|
|
{
|
|
gl_Position = vec4(ipos.xyz, 1.0f);
|
|
#if USE_POINT_SIZE
|
|
gl_PointSize = ipos.w;
|
|
#endif
|
|
col0 = icol0;
|
|
}
|
|
|
|
)";
|
|
|
|
static const char POKE_GEOMETRY_SHADER_SOURCE[] = R"(
|
|
layout(triangles) in;
|
|
layout(triangle_strip, max_vertices = EFB_LAYERS * 3) out;
|
|
|
|
in VertexData
|
|
{
|
|
vec4 col0;
|
|
} in_data[];
|
|
|
|
out VertexData
|
|
{
|
|
vec4 col0;
|
|
} out_data;
|
|
|
|
void main()
|
|
{
|
|
for (int j = 0; j < EFB_LAYERS; j++)
|
|
{
|
|
for (int i = 0; i < 3; i++)
|
|
{
|
|
gl_Layer = j;
|
|
gl_Position = gl_in[i].gl_Position;
|
|
out_data.col0 = in_data[i].col0;
|
|
EmitVertex();
|
|
}
|
|
EndPrimitive();
|
|
}
|
|
}
|
|
)";
|
|
|
|
static const char POKE_PIXEL_SHADER_SOURCE[] = R"(
|
|
layout(location = 0) in vec4 col0;
|
|
layout(location = 0) out vec4 ocol0;
|
|
void main()
|
|
{
|
|
ocol0 = col0;
|
|
}
|
|
)";
|
|
|
|
std::string source = g_object_cache->GetUtilityShaderHeader();
|
|
if (m_poke_primitive_topology == VK_PRIMITIVE_TOPOLOGY_POINT_LIST)
|
|
source += "#define USE_POINT_SIZE 1\n";
|
|
source += POKE_VERTEX_SHADER_SOURCE;
|
|
m_poke_vertex_shader = Util::CompileAndCreateVertexShader(source);
|
|
if (m_poke_vertex_shader == VK_NULL_HANDLE)
|
|
return false;
|
|
|
|
if (g_vulkan_context->SupportsGeometryShaders())
|
|
{
|
|
source = g_object_cache->GetUtilityShaderHeader() + POKE_GEOMETRY_SHADER_SOURCE;
|
|
m_poke_geometry_shader = Util::CompileAndCreateGeometryShader(source);
|
|
if (m_poke_geometry_shader == VK_NULL_HANDLE)
|
|
return false;
|
|
}
|
|
|
|
source = g_object_cache->GetUtilityShaderHeader() + POKE_PIXEL_SHADER_SOURCE;
|
|
m_poke_fragment_shader = Util::CompileAndCreateFragmentShader(source);
|
|
if (m_poke_fragment_shader == VK_NULL_HANDLE)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
void FramebufferManager::DestroyPokeShaders()
|
|
{
|
|
if (m_poke_vertex_shader != VK_NULL_HANDLE)
|
|
{
|
|
vkDestroyShaderModule(g_vulkan_context->GetDevice(), m_poke_vertex_shader, nullptr);
|
|
m_poke_vertex_shader = VK_NULL_HANDLE;
|
|
}
|
|
if (m_poke_geometry_shader != VK_NULL_HANDLE)
|
|
{
|
|
vkDestroyShaderModule(g_vulkan_context->GetDevice(), m_poke_geometry_shader, nullptr);
|
|
m_poke_geometry_shader = VK_NULL_HANDLE;
|
|
}
|
|
if (m_poke_fragment_shader != VK_NULL_HANDLE)
|
|
{
|
|
vkDestroyShaderModule(g_vulkan_context->GetDevice(), m_poke_fragment_shader, nullptr);
|
|
m_poke_vertex_shader = VK_NULL_HANDLE;
|
|
}
|
|
}
|
|
|
|
std::unique_ptr<XFBSourceBase> FramebufferManager::CreateXFBSource(unsigned int target_width,
|
|
unsigned int target_height,
|
|
unsigned int layers)
|
|
{
|
|
TextureCacheBase::TCacheEntryConfig config;
|
|
config.width = target_width;
|
|
config.height = target_height;
|
|
config.layers = layers;
|
|
config.rendertarget = true;
|
|
auto* base_texture = TextureCache::GetInstance()->CreateTexture(config);
|
|
auto* texture = static_cast<TextureCache::TCacheEntry*>(base_texture);
|
|
if (!texture)
|
|
{
|
|
PanicAlert("Failed to create texture for XFB source");
|
|
return nullptr;
|
|
}
|
|
|
|
return std::make_unique<XFBSource>(std::unique_ptr<TextureCache::TCacheEntry>(texture));
|
|
}
|
|
|
|
void FramebufferManager::CopyToRealXFB(u32 xfb_addr, u32 fb_stride, u32 fb_height,
|
|
const EFBRectangle& source_rc, float gamma)
|
|
{
|
|
// Pending/batched EFB pokes should be included in the copied image.
|
|
FlushEFBPokes();
|
|
|
|
// Schedule early command-buffer execution.
|
|
StateTracker::GetInstance()->EndRenderPass();
|
|
StateTracker::GetInstance()->OnReadback();
|
|
|
|
// GPU EFB textures -> Guest memory
|
|
u8* xfb_ptr = Memory::GetPointer(xfb_addr);
|
|
_assert_(xfb_ptr);
|
|
|
|
// source_rc is in native coordinates, so scale it to the internal resolution.
|
|
TargetRectangle scaled_rc = g_renderer->ConvertEFBRectangle(source_rc);
|
|
VkRect2D scaled_rc_vk = {
|
|
{scaled_rc.left, scaled_rc.top},
|
|
{static_cast<u32>(scaled_rc.GetWidth()), static_cast<u32>(scaled_rc.GetHeight())}};
|
|
Texture2D* src_texture = ResolveEFBColorTexture(scaled_rc_vk);
|
|
|
|
// The destination stride can differ from the copy region width, in which case the pixels
|
|
// outside the copy region should not be written to.
|
|
TextureCache::GetInstance()->GetTextureConverter()->EncodeTextureToMemoryYUYV(
|
|
xfb_ptr, static_cast<u32>(source_rc.GetWidth()), fb_stride, fb_height, src_texture,
|
|
scaled_rc);
|
|
|
|
// If we sourced directly from the EFB framebuffer, restore it to a color attachment.
|
|
if (src_texture == m_efb_color_texture.get())
|
|
{
|
|
src_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
|
|
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
|
|
}
|
|
}
|
|
|
|
XFBSource::XFBSource(std::unique_ptr<TextureCache::TCacheEntry> texture)
|
|
: XFBSourceBase(), m_texture(std::move(texture))
|
|
{
|
|
}
|
|
|
|
XFBSource::~XFBSource()
|
|
{
|
|
}
|
|
|
|
void XFBSource::DecodeToTexture(u32 xfb_addr, u32 fb_width, u32 fb_height)
|
|
{
|
|
// Guest memory -> GPU EFB Textures
|
|
const u8* src_ptr = Memory::GetPointer(xfb_addr);
|
|
_assert_(src_ptr);
|
|
TextureCache::GetInstance()->GetTextureConverter()->DecodeYUYVTextureFromMemory(
|
|
m_texture.get(), src_ptr, fb_width, fb_width * 2, fb_height);
|
|
}
|
|
|
|
void XFBSource::CopyEFB(float gamma)
|
|
{
|
|
// Pending/batched EFB pokes should be included in the copied image.
|
|
FramebufferManager::GetInstance()->FlushEFBPokes();
|
|
|
|
// Virtual XFB, copy EFB at native resolution to m_texture
|
|
MathUtil::Rectangle<int> rect(0, 0, static_cast<int>(texWidth), static_cast<int>(texHeight));
|
|
VkRect2D vk_rect = {{rect.left, rect.top},
|
|
{static_cast<u32>(rect.GetWidth()), static_cast<u32>(rect.GetHeight())}};
|
|
|
|
Texture2D* src_texture = FramebufferManager::GetInstance()->ResolveEFBColorTexture(vk_rect);
|
|
TextureCache::GetInstance()->CopyRectangleFromTexture(m_texture.get(), rect, src_texture, rect);
|
|
|
|
// If we sourced directly from the EFB framebuffer, restore it to a color attachment.
|
|
if (src_texture == FramebufferManager::GetInstance()->GetEFBColorTexture())
|
|
{
|
|
src_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(),
|
|
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
|
|
}
|
|
}
|
|
|
|
} // namespace Vulkan
|