326 lines
12 KiB
C++

// Copyright 2010 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
// ---------------------------------------------------------------------------------------------
// GC graphics pipeline
// ---------------------------------------------------------------------------------------------
// 3d commands are issued through the fifo. The GPU draws to the 2MB EFB.
// The efb can be copied back into ram in two forms: as textures or as XFB.
// The XFB is the region in RAM that the VI chip scans out to the television.
// So, after all rendering to EFB is done, the image is copied into one of two XFBs in RAM.
// Next frame, that one is scanned out and the other one gets the copy. = double buffering.
// ---------------------------------------------------------------------------------------------
#pragma once
#include <array>
#include <condition_variable>
#include <memory>
#include <mutex>
#include <string>
#include <thread>
#include <tuple>
#include <vector>
#include "Common/CommonTypes.h"
#include "Common/Event.h"
#include "Common/Flag.h"
#include "Common/MathUtil.h"
#include "VideoCommon/AVIDump.h"
#include "VideoCommon/AsyncShaderCompiler.h"
#include "VideoCommon/BPMemory.h"
#include "VideoCommon/FPSCounter.h"
#include "VideoCommon/RenderState.h"
#include "VideoCommon/TextureConfig.h"
#include "VideoCommon/VideoCommon.h"
class AbstractFramebuffer;
class AbstractPipeline;
class AbstractShader;
class AbstractTexture;
class AbstractStagingTexture;
class PostProcessingShaderImplementation;
struct TextureConfig;
struct ComputePipelineConfig;
struct AbstractPipelineConfig;
enum class ShaderStage;
enum class EFBAccessType;
enum class StagingTextureType;
struct EfbPokeData
{
u16 x, y;
u32 data;
};
extern int frameCount;
enum class OSDMessage : s32
{
IRChanged = 1,
ARToggled = 2,
EFBCopyToggled = 3,
FogToggled = 4,
SpeedChanged = 5,
XFBChanged = 6,
VolumeChanged = 7,
};
// Renderer really isn't a very good name for this class - it's more like "Misc".
// The long term goal is to get rid of this class and replace it with others that make
// more sense.
class Renderer
{
public:
Renderer(int backbuffer_width, int backbuffer_height, AbstractTextureFormat backbuffer_format);
virtual ~Renderer();
using ClearColor = std::array<float, 4>;
virtual bool IsHeadless() const = 0;
virtual bool Initialize();
virtual void Shutdown();
virtual void SetPipeline(const AbstractPipeline* pipeline) {}
virtual void SetScissorRect(const MathUtil::Rectangle<int>& rc) {}
virtual void SetTexture(u32 index, const AbstractTexture* texture) {}
virtual void SetSamplerState(u32 index, const SamplerState& state) {}
virtual void UnbindTexture(const AbstractTexture* texture) {}
virtual void SetInterlacingMode() {}
virtual void SetViewport(float x, float y, float width, float height, float near_depth,
float far_depth)
{
}
virtual void SetFullscreen(bool enable_fullscreen) {}
virtual bool IsFullscreen() const { return false; }
virtual void ApplyState() {}
virtual void RestoreState() {}
virtual void ResetAPIState() {}
virtual void RestoreAPIState() {}
virtual std::unique_ptr<AbstractTexture> CreateTexture(const TextureConfig& config) = 0;
virtual std::unique_ptr<AbstractStagingTexture>
CreateStagingTexture(StagingTextureType type, const TextureConfig& config) = 0;
virtual std::unique_ptr<AbstractFramebuffer>
CreateFramebuffer(const AbstractTexture* color_attachment,
const AbstractTexture* depth_attachment) = 0;
// Framebuffer operations.
virtual void SetFramebuffer(const AbstractFramebuffer* framebuffer) {}
virtual void SetAndDiscardFramebuffer(const AbstractFramebuffer* framebuffer) {}
virtual void SetAndClearFramebuffer(const AbstractFramebuffer* framebuffer,
const ClearColor& color_value = {}, float depth_value = 0.0f)
{
}
// Shader modules/objects.
virtual std::unique_ptr<AbstractShader>
CreateShaderFromSource(ShaderStage stage, const char* source, size_t length) = 0;
virtual std::unique_ptr<AbstractShader>
CreateShaderFromBinary(ShaderStage stage, const void* data, size_t length) = 0;
virtual std::unique_ptr<AbstractPipeline>
CreatePipeline(const AbstractPipelineConfig& config) = 0;
const AbstractFramebuffer* GetCurrentFramebuffer() const { return m_current_framebuffer; }
u32 GetCurrentFramebufferWidth() const { return m_current_framebuffer_width; }
u32 GetCurrentFramebufferHeight() const { return m_current_framebuffer_height; }
// Ideal internal resolution - multiple of the native EFB resolution
int GetTargetWidth() const { return m_target_width; }
int GetTargetHeight() const { return m_target_height; }
// Display resolution
int GetBackbufferWidth() const { return m_backbuffer_width; }
int GetBackbufferHeight() const { return m_backbuffer_height; }
void SetWindowSize(int width, int height);
// EFB coordinate conversion functions
// Use this to convert a whole native EFB rect to backbuffer coordinates
virtual TargetRectangle ConvertEFBRectangle(const EFBRectangle& rc) = 0;
const TargetRectangle& GetTargetRectangle() const { return m_target_rectangle; }
float CalculateDrawAspectRatio() const;
std::tuple<float, float> ScaleToDisplayAspectRatio(int width, int height) const;
void UpdateDrawRectangle();
// Use this to convert a single target rectangle to two stereo rectangles
std::tuple<TargetRectangle, TargetRectangle>
ConvertStereoRectangle(const TargetRectangle& rc) const;
unsigned int GetEFBScale() const;
// Use this to upscale native EFB coordinates to IDEAL internal resolution
int EFBToScaledX(int x) const;
int EFBToScaledY(int y) const;
// Floating point versions of the above - only use them if really necessary
float EFBToScaledXf(float x) const;
float EFBToScaledYf(float y) const;
// Random utilities
void SaveScreenshot(const std::string& filename, bool wait_for_completion);
void DrawDebugText();
virtual void RenderText(const std::string& text, int left, int top, u32 color) = 0;
virtual void ClearScreen(const EFBRectangle& rc, bool colorEnable, bool alphaEnable, bool zEnable,
u32 color, u32 z) = 0;
virtual void ReinterpretPixelData(unsigned int convtype) = 0;
void RenderToXFB(u32 xfbAddr, const EFBRectangle& sourceRc, u32 fbStride, u32 fbHeight,
float Gamma = 1.0f);
virtual u32 AccessEFB(EFBAccessType type, u32 x, u32 y, u32 poke_data) = 0;
virtual void PokeEFB(EFBAccessType type, const EfbPokeData* points, size_t num_points) = 0;
virtual u16 BBoxRead(int index) = 0;
virtual void BBoxWrite(int index, u16 value) = 0;
// Finish up the current frame, print some stats
void Swap(u32 xfbAddr, u32 fbWidth, u32 fbStride, u32 fbHeight, const EFBRectangle& rc,
u64 ticks);
virtual void SwapImpl(AbstractTexture* texture, const EFBRectangle& rc, u64 ticks) = 0;
PEControl::PixelFormat GetPrevPixelFormat() const { return m_prev_efb_format; }
void StorePixelFormat(PEControl::PixelFormat new_format) { m_prev_efb_format = new_format; }
PostProcessingShaderImplementation* GetPostProcessor() const { return m_post_processor.get(); }
// Final surface changing
// This is called when the surface is resized (WX) or the window changes (Android).
void ChangeSurface(void* new_surface_handle);
void ResizeSurface();
bool UseVertexDepthRange() const;
virtual std::unique_ptr<VideoCommon::AsyncShaderCompiler> CreateAsyncShaderCompiler();
// Drawing utility shaders.
virtual void DrawUtilityPipeline(const void* uniforms, u32 uniforms_size, const void* vertices,
u32 vertex_stride, u32 num_vertices)
{
}
virtual void DispatchComputeShader(const AbstractShader* shader, const void* uniforms,
u32 uniforms_size, u32 groups_x, u32 groups_y, u32 groups_z)
{
}
void ShowOSDMessage(OSDMessage message);
protected:
std::tuple<int, int> CalculateTargetScale(int x, int y) const;
bool CalculateTargetSize();
bool CheckForHostConfigChanges();
void CheckFifoRecording();
void RecordVideoMemory();
// TODO: Remove the width/height parameters once we make the EFB an abstract framebuffer.
const AbstractFramebuffer* m_current_framebuffer = nullptr;
u32 m_current_framebuffer_width = 1;
u32 m_current_framebuffer_height = 1;
Common::Flag m_screenshot_request;
Common::Event m_screenshot_completed;
std::mutex m_screenshot_lock;
std::string m_screenshot_name;
bool m_aspect_wide = false;
// The framebuffer size
int m_target_width = 0;
int m_target_height = 0;
// Backbuffer (window) size and render area
int m_backbuffer_width = 0;
int m_backbuffer_height = 0;
AbstractTextureFormat m_backbuffer_format = AbstractTextureFormat::Undefined;
TargetRectangle m_target_rectangle = {};
FPSCounter m_fps_counter;
std::unique_ptr<PostProcessingShaderImplementation> m_post_processor;
void* m_new_surface_handle = nullptr;
Common::Flag m_surface_changed;
Common::Flag m_surface_resized;
std::mutex m_swap_mutex;
u32 m_last_host_config_bits = 0;
u32 m_last_efb_multisamples = 1;
private:
void RunFrameDumps();
std::tuple<int, int> CalculateOutputDimensions(int width, int height);
PEControl::PixelFormat m_prev_efb_format = PEControl::INVALID_FMT;
unsigned int m_efb_scale = 1;
// These will be set on the first call to SetWindowSize.
int m_last_window_request_width = 0;
int m_last_window_request_height = 0;
// frame dumping
std::thread m_frame_dump_thread;
Common::Event m_frame_dump_start;
Common::Event m_frame_dump_done;
Common::Flag m_frame_dump_thread_running;
u32 m_frame_dump_image_counter = 0;
bool m_frame_dump_frame_running = false;
struct FrameDumpConfig
{
const u8* data;
int width;
int height;
int stride;
AVIDump::Frame state;
} m_frame_dump_config;
// Texture used for screenshot/frame dumping
std::unique_ptr<AbstractTexture> m_frame_dump_render_texture;
std::array<std::unique_ptr<AbstractStagingTexture>, 2> m_frame_dump_readback_textures;
AVIDump::Frame m_last_frame_state;
bool m_last_frame_exported = false;
// Tracking of XFB textures so we don't render duplicate frames.
AbstractTexture* m_last_xfb_texture = nullptr;
u64 m_last_xfb_id = std::numeric_limits<u64>::max();
u64 m_last_xfb_ticks = 0;
EFBRectangle m_last_xfb_region;
// Note: Only used for auto-ir
u32 m_last_xfb_width = MAX_XFB_WIDTH;
u32 m_last_xfb_height = MAX_XFB_HEIGHT;
s32 m_osd_message = 0;
s32 m_osd_time = 0;
// NOTE: The methods below are called on the framedumping thread.
bool StartFrameDumpToAVI(const FrameDumpConfig& config);
void DumpFrameToAVI(const FrameDumpConfig& config);
void StopFrameDumpToAVI();
std::string GetFrameDumpNextImageFileName() const;
bool StartFrameDumpToImage(const FrameDumpConfig& config);
void DumpFrameToImage(const FrameDumpConfig& config);
void ShutdownFrameDumping();
bool IsFrameDumping();
// Asynchronously encodes the current staging texture to the frame dump.
void DumpCurrentFrame();
// Fills the frame dump render texture with the current XFB texture.
void RenderFrameDump();
// Queues the current frame for readback, which will be written to AVI next frame.
void QueueFrameDumpReadback();
// Asynchronously encodes the specified pointer of frame data to the frame dump.
void DumpFrameData(const u8* data, int w, int h, int stride, const AVIDump::Frame& state);
// Ensures all rendered frames are queued for encoding.
void FlushFrameDump();
// Ensures all encoded frames have been written to the output file.
void FinishFrameData();
};
extern std::unique_ptr<Renderer> g_renderer;