626 lines
22 KiB
C++

// Copyright 2016 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "VideoBackends/Vulkan/VKSwapChain.h"
#include <algorithm>
#include <cstdint>
#include "Common/Assert.h"
#include "Common/CommonFuncs.h"
#include "Common/Logging/Log.h"
#include "Common/MsgHandler.h"
#include "VideoBackends/Vulkan/CommandBufferManager.h"
#include "VideoBackends/Vulkan/ObjectCache.h"
#include "VideoBackends/Vulkan/VKTexture.h"
#include "VideoBackends/Vulkan/VulkanContext.h"
#include "VideoCommon/Present.h"
#if defined(VK_USE_PLATFORM_XLIB_KHR)
#include <X11/Xlib.h>
#endif
namespace Vulkan
{
SwapChain::SwapChain(const WindowSystemInfo& wsi, VkSurfaceKHR surface, bool vsync)
: m_wsi(wsi), m_surface(surface), m_vsync_enabled(vsync),
m_fullscreen_supported(g_vulkan_context->SupportsExclusiveFullscreen(wsi, surface))
{
}
SwapChain::~SwapChain()
{
DestroySwapChainImages();
DestroySwapChain();
DestroySurface();
}
VkSurfaceKHR SwapChain::CreateVulkanSurface(VkInstance instance, const WindowSystemInfo& wsi)
{
#if defined(VK_USE_PLATFORM_WIN32_KHR)
if (wsi.type == WindowSystemType::Windows)
{
VkWin32SurfaceCreateInfoKHR surface_create_info = {
VK_STRUCTURE_TYPE_WIN32_SURFACE_CREATE_INFO_KHR, // VkStructureType sType
nullptr, // const void* pNext
0, // VkWin32SurfaceCreateFlagsKHR flags
nullptr, // HINSTANCE hinstance
reinterpret_cast<HWND>(wsi.render_surface) // HWND hwnd
};
VkSurfaceKHR surface;
VkResult res = vkCreateWin32SurfaceKHR(instance, &surface_create_info, nullptr, &surface);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkCreateWin32SurfaceKHR failed: ");
return VK_NULL_HANDLE;
}
return surface;
}
#endif
#if defined(VK_USE_PLATFORM_XLIB_KHR)
if (wsi.type == WindowSystemType::X11)
{
VkXlibSurfaceCreateInfoKHR surface_create_info = {
VK_STRUCTURE_TYPE_XLIB_SURFACE_CREATE_INFO_KHR, // VkStructureType sType
nullptr, // const void* pNext
0, // VkXlibSurfaceCreateFlagsKHR flags
static_cast<Display*>(wsi.display_connection), // Display* dpy
reinterpret_cast<Window>(wsi.render_surface) // Window window
};
VkSurfaceKHR surface;
VkResult res = vkCreateXlibSurfaceKHR(instance, &surface_create_info, nullptr, &surface);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkCreateXlibSurfaceKHR failed: ");
return VK_NULL_HANDLE;
}
return surface;
}
#endif
#if defined(VK_USE_PLATFORM_ANDROID_KHR)
if (wsi.type == WindowSystemType::Android)
{
VkAndroidSurfaceCreateInfoKHR surface_create_info = {
VK_STRUCTURE_TYPE_ANDROID_SURFACE_CREATE_INFO_KHR, // VkStructureType sType
nullptr, // const void* pNext
0, // VkAndroidSurfaceCreateFlagsKHR flags
reinterpret_cast<ANativeWindow*>(wsi.render_surface) // ANativeWindow* window
};
VkSurfaceKHR surface;
VkResult res = vkCreateAndroidSurfaceKHR(instance, &surface_create_info, nullptr, &surface);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkCreateAndroidSurfaceKHR failed: ");
return VK_NULL_HANDLE;
}
return surface;
}
#endif
#if defined(VK_USE_PLATFORM_METAL_EXT)
if (wsi.type == WindowSystemType::MacOS)
{
VkMetalSurfaceCreateInfoEXT surface_create_info = {
VK_STRUCTURE_TYPE_METAL_SURFACE_CREATE_INFO_EXT, nullptr, 0,
static_cast<const CAMetalLayer*>(wsi.render_surface)};
VkSurfaceKHR surface;
VkResult res = vkCreateMetalSurfaceEXT(instance, &surface_create_info, nullptr, &surface);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkCreateMetalSurfaceEXT failed: ");
return VK_NULL_HANDLE;
}
return surface;
}
#endif
return VK_NULL_HANDLE;
}
std::unique_ptr<SwapChain> SwapChain::Create(const WindowSystemInfo& wsi, VkSurfaceKHR surface,
bool vsync)
{
std::unique_ptr<SwapChain> swap_chain = std::make_unique<SwapChain>(wsi, surface, vsync);
if (!swap_chain->CreateSwapChain() || !swap_chain->SetupSwapChainImages())
return nullptr;
return swap_chain;
}
bool SwapChain::SelectSurfaceFormat()
{
u32 format_count;
VkResult res = vkGetPhysicalDeviceSurfaceFormatsKHR(g_vulkan_context->GetPhysicalDevice(),
m_surface, &format_count, nullptr);
if (res != VK_SUCCESS || format_count == 0)
{
LOG_VULKAN_ERROR(res, "vkGetPhysicalDeviceSurfaceFormatsKHR failed: ");
return false;
}
std::vector<VkSurfaceFormatKHR> surface_formats(format_count);
res = vkGetPhysicalDeviceSurfaceFormatsKHR(g_vulkan_context->GetPhysicalDevice(), m_surface,
&format_count, surface_formats.data());
ASSERT(res == VK_SUCCESS);
// If there is a single undefined surface format, the device doesn't care, so we'll just use RGBA8
if (surface_formats[0].format == VK_FORMAT_UNDEFINED)
{
m_surface_format.format = VK_FORMAT_R8G8B8A8_UNORM;
m_surface_format.colorSpace = VK_COLOR_SPACE_SRGB_NONLINEAR_KHR;
return true;
}
const VkSurfaceFormatKHR* surface_format_RGBA8 = nullptr;
const VkSurfaceFormatKHR* surface_format_BGRA8 = nullptr;
const VkSurfaceFormatKHR* surface_format_RGB10_A2 = nullptr;
const VkSurfaceFormatKHR* surface_format_RGBA16F_scRGB = nullptr;
// Try to find all suitable formats.
for (const VkSurfaceFormatKHR& surface_format : surface_formats)
{
// Some drivers seem to return a RGBA8 SRGB format here (Intel Mesa).
// Some other drivers return both a RGBA8 SRGB and UNORM formats (Nvidia).
// This results in gamma correction when presenting to the screen, which we don't want,
// because we already apply gamma ourselves, and we might not use sRGB gamma.
// Force using a linear format instead, if this is the case.
VkFormat format = VKTexture::GetLinearFormat(surface_format.format);
if (format == VK_FORMAT_R8G8B8A8_UNORM)
surface_format_RGBA8 = &surface_format;
else if (format == VK_FORMAT_B8G8R8A8_UNORM)
surface_format_BGRA8 = &surface_format;
else if (format == VK_FORMAT_A2B10G10R10_UNORM_PACK32 &&
surface_format.colorSpace == VK_COLOR_SPACE_SRGB_NONLINEAR_KHR)
surface_format_RGB10_A2 = &surface_format;
else if (format == VK_FORMAT_R16G16B16A16_SFLOAT &&
surface_format.colorSpace == VK_COLOR_SPACE_EXTENDED_SRGB_LINEAR_EXT)
surface_format_RGBA16F_scRGB = &surface_format;
else
continue;
}
const VkSurfaceFormatKHR* surface_format = nullptr;
// Pick the best format.
// "g_ActiveConfig" might not have been been updated yet.
if (g_Config.bHDR && surface_format_RGBA16F_scRGB)
surface_format = surface_format_RGBA16F_scRGB;
else if (surface_format_RGB10_A2)
surface_format = surface_format_RGB10_A2;
else if (surface_format_RGBA8)
surface_format = surface_format_RGBA8;
else if (surface_format_BGRA8)
surface_format = surface_format_BGRA8;
if (surface_format)
{
const VkFormat format = VKTexture::GetLinearFormat(surface_format->format);
if (format == VK_FORMAT_R8G8B8A8_UNORM)
m_texture_format = AbstractTextureFormat::RGBA8;
else if (format == VK_FORMAT_B8G8R8A8_UNORM)
m_texture_format = AbstractTextureFormat::BGRA8;
else if (format == VK_FORMAT_A2B10G10R10_UNORM_PACK32)
m_texture_format = AbstractTextureFormat::RGB10_A2;
else if (format == VK_FORMAT_R16G16B16A16_SFLOAT)
m_texture_format = AbstractTextureFormat::RGBA16F;
m_surface_format.format = format;
m_surface_format.colorSpace = surface_format->colorSpace;
return true;
}
PanicAlertFmt("Failed to find a suitable format for swap chain buffers.");
return false;
}
bool SwapChain::SelectPresentMode()
{
VkResult res;
u32 mode_count;
res = vkGetPhysicalDeviceSurfacePresentModesKHR(g_vulkan_context->GetPhysicalDevice(), m_surface,
&mode_count, nullptr);
if (res != VK_SUCCESS || mode_count == 0)
{
LOG_VULKAN_ERROR(res, "vkGetPhysicalDeviceSurfaceFormatsKHR failed: ");
return false;
}
std::vector<VkPresentModeKHR> present_modes(mode_count);
res = vkGetPhysicalDeviceSurfacePresentModesKHR(g_vulkan_context->GetPhysicalDevice(), m_surface,
&mode_count, present_modes.data());
ASSERT(res == VK_SUCCESS);
// Checks if a particular mode is supported, if it is, returns that mode.
auto CheckForMode = [&present_modes](VkPresentModeKHR check_mode) {
auto it = std::find_if(present_modes.begin(), present_modes.end(),
[check_mode](VkPresentModeKHR mode) { return check_mode == mode; });
return it != present_modes.end();
};
// If vsync is enabled, use VK_PRESENT_MODE_FIFO_KHR.
// This check should not fail with conforming drivers, as the FIFO present mode is mandated by
// the specification (VK_KHR_swapchain). In case it isn't though, fall through to any other mode.
if (m_vsync_enabled && CheckForMode(VK_PRESENT_MODE_FIFO_KHR))
{
m_present_mode = VK_PRESENT_MODE_FIFO_KHR;
return true;
}
// Prefer screen-tearing, if possible, for lowest latency.
if (CheckForMode(VK_PRESENT_MODE_IMMEDIATE_KHR))
{
m_present_mode = VK_PRESENT_MODE_IMMEDIATE_KHR;
return true;
}
// Use optimized-vsync above vsync.
if (CheckForMode(VK_PRESENT_MODE_MAILBOX_KHR))
{
m_present_mode = VK_PRESENT_MODE_MAILBOX_KHR;
return true;
}
// Fall back to whatever is available.
m_present_mode = present_modes[0];
return true;
}
bool SwapChain::CreateSwapChain()
{
// Look up surface properties to determine image count and dimensions
VkSurfaceCapabilitiesKHR surface_capabilities;
VkResult res = vkGetPhysicalDeviceSurfaceCapabilitiesKHR(g_vulkan_context->GetPhysicalDevice(),
m_surface, &surface_capabilities);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkGetPhysicalDeviceSurfaceCapabilitiesKHR failed: ");
return false;
}
// Select swap chain format and present mode
if (!SelectSurfaceFormat() || !SelectPresentMode())
return false;
// Select number of images in swap chain, we prefer one buffer in the background to work on
uint32_t image_count = surface_capabilities.minImageCount + 1;
// maxImageCount can be zero, in which case there isn't an upper limit on the number of buffers.
if (surface_capabilities.maxImageCount > 0)
image_count = std::min(image_count, surface_capabilities.maxImageCount);
// Determine the dimensions of the swap chain. Values of -1 indicate the size we specify here
// determines window size?
VkExtent2D size = surface_capabilities.currentExtent;
if (size.width == UINT32_MAX)
{
size.width = std::max(g_presenter->GetBackbufferWidth(), 1);
size.height = std::max(g_presenter->GetBackbufferHeight(), 1);
}
size.width = std::clamp(size.width, surface_capabilities.minImageExtent.width,
surface_capabilities.maxImageExtent.width);
size.height = std::clamp(size.height, surface_capabilities.minImageExtent.height,
surface_capabilities.maxImageExtent.height);
// Prefer identity transform if possible
VkSurfaceTransformFlagBitsKHR transform = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR;
if (!(surface_capabilities.supportedTransforms & VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR))
transform = surface_capabilities.currentTransform;
// Select swap chain flags, we only need a colour attachment
VkImageUsageFlags image_usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
if (!(surface_capabilities.supportedUsageFlags & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT))
{
ERROR_LOG_FMT(VIDEO, "Vulkan: Swap chain does not support usage as color attachment");
return false;
}
// Select the number of image layers for Quad-Buffered stereoscopy
uint32_t image_layers = g_ActiveConfig.stereo_mode == StereoMode::QuadBuffer ? 2 : 1;
// Store the old/current swap chain when recreating for resize
VkSwapchainKHR old_swap_chain = m_swap_chain;
m_swap_chain = VK_NULL_HANDLE;
// Now we can actually create the swap chain
VkSwapchainCreateInfoKHR swap_chain_info = {VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR,
nullptr,
0,
m_surface,
image_count,
m_surface_format.format,
m_surface_format.colorSpace,
size,
image_layers,
image_usage,
VK_SHARING_MODE_EXCLUSIVE,
0,
nullptr,
transform,
VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR,
m_present_mode,
VK_TRUE,
old_swap_chain};
std::array<uint32_t, 2> indices = {{
g_vulkan_context->GetGraphicsQueueFamilyIndex(),
g_vulkan_context->GetPresentQueueFamilyIndex(),
}};
if (g_vulkan_context->GetGraphicsQueueFamilyIndex() !=
g_vulkan_context->GetPresentQueueFamilyIndex())
{
swap_chain_info.imageSharingMode = VK_SHARING_MODE_CONCURRENT;
swap_chain_info.queueFamilyIndexCount = 2;
swap_chain_info.pQueueFamilyIndices = indices.data();
}
#ifdef SUPPORTS_VULKAN_EXCLUSIVE_FULLSCREEN
if (m_fullscreen_supported)
{
VkSurfaceFullScreenExclusiveInfoEXT fullscreen_support = {};
swap_chain_info.pNext = &fullscreen_support;
fullscreen_support.sType = VK_STRUCTURE_TYPE_SURFACE_FULL_SCREEN_EXCLUSIVE_INFO_EXT;
fullscreen_support.fullScreenExclusive = VK_FULL_SCREEN_EXCLUSIVE_APPLICATION_CONTROLLED_EXT;
auto platform_info = g_vulkan_context->GetPlatformExclusiveFullscreenInfo(m_wsi);
fullscreen_support.pNext = &platform_info;
res = vkCreateSwapchainKHR(g_vulkan_context->GetDevice(), &swap_chain_info, nullptr,
&m_swap_chain);
if (res != VK_SUCCESS)
{
// Try without exclusive fullscreen.
WARN_LOG_FMT(VIDEO, "Failed to create exclusive fullscreen swapchain, trying without.");
swap_chain_info.pNext = nullptr;
g_Config.backend_info.bSupportsExclusiveFullscreen = false;
g_ActiveConfig.backend_info.bSupportsExclusiveFullscreen = false;
m_fullscreen_supported = false;
}
}
#endif
if (m_swap_chain == VK_NULL_HANDLE)
{
res = vkCreateSwapchainKHR(g_vulkan_context->GetDevice(), &swap_chain_info, nullptr,
&m_swap_chain);
}
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkCreateSwapchainKHR failed: ");
return false;
}
// Now destroy the old swap chain, since it's been recreated.
// We can do this immediately since all work should have been completed before calling resize.
if (old_swap_chain != VK_NULL_HANDLE)
vkDestroySwapchainKHR(g_vulkan_context->GetDevice(), old_swap_chain, nullptr);
m_width = size.width;
m_height = size.height;
m_layers = image_layers;
return true;
}
bool SwapChain::SetupSwapChainImages()
{
ASSERT(m_swap_chain_images.empty());
uint32_t image_count;
VkResult res =
vkGetSwapchainImagesKHR(g_vulkan_context->GetDevice(), m_swap_chain, &image_count, nullptr);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkGetSwapchainImagesKHR failed: ");
return false;
}
std::vector<VkImage> images(image_count);
res = vkGetSwapchainImagesKHR(g_vulkan_context->GetDevice(), m_swap_chain, &image_count,
images.data());
ASSERT(res == VK_SUCCESS);
const TextureConfig texture_config(
TextureConfig(m_width, m_height, 1, m_layers, 1, m_texture_format,
AbstractTextureFlag_RenderTarget, AbstractTextureType::Texture_2DArray));
const VkRenderPass load_render_pass = g_object_cache->GetRenderPass(
m_surface_format.format, VK_FORMAT_UNDEFINED, 1, VK_ATTACHMENT_LOAD_OP_LOAD);
const VkRenderPass clear_render_pass = g_object_cache->GetRenderPass(
m_surface_format.format, VK_FORMAT_UNDEFINED, 1, VK_ATTACHMENT_LOAD_OP_CLEAR);
if (load_render_pass == VK_NULL_HANDLE || clear_render_pass == VK_NULL_HANDLE)
{
PanicAlertFmt("Failed to get swap chain render passes.");
return false;
}
m_swap_chain_images.reserve(image_count);
for (uint32_t i = 0; i < image_count; i++)
{
SwapChainImage image;
image.image = images[i];
// Create texture object, which creates a view of the backbuffer
image.texture =
VKTexture::CreateAdopted(texture_config, image.image,
m_layers > 1 ? VK_IMAGE_VIEW_TYPE_2D_ARRAY : VK_IMAGE_VIEW_TYPE_2D,
VK_IMAGE_LAYOUT_UNDEFINED);
if (!image.texture)
return false;
image.framebuffer = VKFramebuffer::Create(image.texture.get(), nullptr, {});
if (!image.framebuffer)
{
image.texture.reset();
return false;
}
m_swap_chain_images.emplace_back(std::move(image));
}
return true;
}
void SwapChain::DestroySwapChainImages()
{
for (auto& it : m_swap_chain_images)
{
// Images themselves are cleaned up by the swap chain object
it.framebuffer.reset();
it.texture.reset();
}
m_swap_chain_images.clear();
}
void SwapChain::DestroySwapChain()
{
if (m_swap_chain == VK_NULL_HANDLE)
return;
// Release exclusive fullscreen before destroying.
if (m_current_fullscreen_state)
SetFullscreenState(false);
vkDestroySwapchainKHR(g_vulkan_context->GetDevice(), m_swap_chain, nullptr);
m_swap_chain = VK_NULL_HANDLE;
}
VkResult SwapChain::AcquireNextImage()
{
VkResult res = vkAcquireNextImageKHR(g_vulkan_context->GetDevice(), m_swap_chain, UINT64_MAX,
g_command_buffer_mgr->GetCurrentCommandBufferSemaphore(),
VK_NULL_HANDLE, &m_current_swap_chain_image_index);
m_current_swap_chain_image_is_valid = res >= 0;
if (IsCurrentImageValid())
g_command_buffer_mgr->MarkCurrentCommandBufferSemaphoreUsed();
if (res != VK_SUCCESS && res != VK_ERROR_OUT_OF_DATE_KHR && res != VK_SUBOPTIMAL_KHR)
LOG_VULKAN_ERROR(res, "vkAcquireNextImageKHR failed: ");
return res;
}
bool SwapChain::ResizeSwapChain()
{
DestroySwapChainImages();
if (!CreateSwapChain() || !SetupSwapChainImages())
{
PanicAlertFmt("Failed to re-configure swap chain images, this is fatal (for now)");
return false;
}
return true;
}
bool SwapChain::RecreateSwapChain()
{
DestroySwapChainImages();
DestroySwapChain();
if (!CreateSwapChain() || !SetupSwapChainImages())
{
PanicAlertFmt("Failed to re-configure swap chain images, this is fatal (for now)");
return false;
}
return true;
}
bool SwapChain::SetVSync(bool enabled)
{
if (m_vsync_enabled == enabled)
return true;
// Recreate the swap chain with the new present mode.
m_vsync_enabled = enabled;
return RecreateSwapChain();
}
bool SwapChain::SetFullscreenState(bool state)
{
#ifdef SUPPORTS_VULKAN_EXCLUSIVE_FULLSCREEN
if (m_current_fullscreen_state == state)
return true;
if (state)
{
VkResult res = vkAcquireFullScreenExclusiveModeEXT(g_vulkan_context->GetDevice(), m_swap_chain);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkAcquireFullScreenExclusiveModeEXT failed:");
return false;
}
INFO_LOG_FMT(VIDEO, "Exclusive fullscreen acquired.");
}
else
{
VkResult res = vkReleaseFullScreenExclusiveModeEXT(g_vulkan_context->GetDevice(), m_swap_chain);
if (res != VK_SUCCESS)
LOG_VULKAN_ERROR(res, "vkReleaseFullScreenExclusiveModeEXT failed:");
INFO_LOG_FMT(VIDEO, "Exclusive fullscreen released.");
}
m_current_fullscreen_state = state;
return true;
#else
return false;
#endif
}
bool SwapChain::RecreateSurface(void* native_handle)
{
// Destroy the old swap chain, images, and surface.
DestroySwapChainImages();
DestroySwapChain();
DestroySurface();
// Re-create the surface with the new native handle
m_wsi.render_surface = native_handle;
m_surface = CreateVulkanSurface(g_vulkan_context->GetVulkanInstance(), m_wsi);
if (m_surface == VK_NULL_HANDLE)
return false;
// The validation layers get angry at us if we don't call this before creating the swapchain.
VkBool32 present_supported = VK_TRUE;
VkResult res = vkGetPhysicalDeviceSurfaceSupportKHR(
g_vulkan_context->GetPhysicalDevice(), g_vulkan_context->GetPresentQueueFamilyIndex(),
m_surface, &present_supported);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkGetPhysicalDeviceSurfaceSupportKHR failed: ");
return false;
}
if (!present_supported)
{
PanicAlertFmt("Recreated surface does not support presenting.");
return false;
}
// Update exclusive fullscreen support (unlikely to change).
m_fullscreen_supported = g_vulkan_context->SupportsExclusiveFullscreen(m_wsi, m_surface);
g_Config.backend_info.bSupportsExclusiveFullscreen = m_fullscreen_supported;
g_ActiveConfig.backend_info.bSupportsExclusiveFullscreen = m_fullscreen_supported;
m_current_fullscreen_state = false;
m_next_fullscreen_state = false;
// Finally re-create the swap chain
if (!CreateSwapChain() || !SetupSwapChainImages())
return false;
return true;
}
void SwapChain::DestroySurface()
{
vkDestroySurfaceKHR(g_vulkan_context->GetVulkanInstance(), m_surface, nullptr);
m_surface = VK_NULL_HANDLE;
}
} // namespace Vulkan