dolphin/Source/Core/Core/FifoPlayer/FifoAnalyzer.cpp
Lioncash 50a476c371 Assert: Uppercase assertion macros
Macros should be all upper-cased. This is also kind of a wart that's
been sticking out for quite a while now (we avoid prefixing
underscores).
2018-03-14 22:03:12 -04:00

294 lines
6.6 KiB
C++

// Copyright 2011 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include "Core/FifoPlayer/FifoAnalyzer.h"
#include <algorithm>
#include <numeric>
#include "Common/Assert.h"
#include "Common/Swap.h"
#include "Core/FifoPlayer/FifoRecordAnalyzer.h"
#include "VideoCommon/OpcodeDecoding.h"
#include "VideoCommon/VertexLoader.h"
#include "VideoCommon/VertexLoader_Normal.h"
#include "VideoCommon/VertexLoader_Position.h"
#include "VideoCommon/VertexLoader_TextCoord.h"
namespace FifoAnalyzer
{
bool s_DrawingObject;
FifoAnalyzer::CPMemory s_CpMem;
void Init()
{
VertexLoader_Normal::Init();
}
u8 ReadFifo8(const u8*& data)
{
u8 value = data[0];
data += 1;
return value;
}
u16 ReadFifo16(const u8*& data)
{
u16 value = Common::swap16(data);
data += 2;
return value;
}
u32 ReadFifo32(const u8*& data)
{
u32 value = Common::swap32(data);
data += 4;
return value;
}
u32 AnalyzeCommand(const u8* data, DecodeMode mode)
{
const u8* dataStart = data;
int cmd = ReadFifo8(data);
switch (cmd)
{
case OpcodeDecoder::GX_NOP:
case 0x44:
case OpcodeDecoder::GX_CMD_INVL_VC:
break;
case OpcodeDecoder::GX_LOAD_CP_REG:
{
s_DrawingObject = false;
u32 cmd2 = ReadFifo8(data);
u32 value = ReadFifo32(data);
LoadCPReg(cmd2, value, s_CpMem);
break;
}
case OpcodeDecoder::GX_LOAD_XF_REG:
{
s_DrawingObject = false;
u32 cmd2 = ReadFifo32(data);
u8 streamSize = ((cmd2 >> 16) & 15) + 1;
data += streamSize * 4;
break;
}
case OpcodeDecoder::GX_LOAD_INDX_A:
case OpcodeDecoder::GX_LOAD_INDX_B:
case OpcodeDecoder::GX_LOAD_INDX_C:
case OpcodeDecoder::GX_LOAD_INDX_D:
{
s_DrawingObject = false;
int array = 0xc + (cmd - OpcodeDecoder::GX_LOAD_INDX_A) / 8;
u32 value = ReadFifo32(data);
if (mode == DECODE_RECORD)
FifoRecordAnalyzer::ProcessLoadIndexedXf(value, array);
break;
}
case OpcodeDecoder::GX_CMD_CALL_DL:
// The recorder should have expanded display lists into the fifo stream and skipped the call to
// start them
// That is done to make it easier to track where memory is updated
ASSERT(false);
data += 8;
break;
case OpcodeDecoder::GX_LOAD_BP_REG:
{
s_DrawingObject = false;
ReadFifo32(data);
break;
}
default:
if (cmd & 0x80)
{
s_DrawingObject = true;
int sizes[21];
CalculateVertexElementSizes(sizes, cmd & OpcodeDecoder::GX_VAT_MASK, s_CpMem);
// Determine offset of each element that might be a vertex array
// The first 9 elements are never vertex arrays so we just accumulate their sizes.
int offsets[12];
int offset = std::accumulate(&sizes[0], &sizes[9], 0u);
for (int i = 0; i < 12; ++i)
{
offsets[i] = offset;
offset += sizes[i + 9];
}
int vertexSize = offset;
int numVertices = ReadFifo16(data);
if (mode == DECODE_RECORD && numVertices > 0)
{
for (int i = 0; i < 12; ++i)
{
FifoRecordAnalyzer::WriteVertexArray(i, data + offsets[i], vertexSize, numVertices);
}
}
data += numVertices * vertexSize;
}
else
{
PanicAlert("FifoPlayer: Unknown Opcode (0x%x).\n", cmd);
return 0;
}
break;
}
return (u32)(data - dataStart);
}
void LoadCPReg(u32 subCmd, u32 value, CPMemory& cpMem)
{
switch (subCmd & 0xF0)
{
case 0x50:
cpMem.vtxDesc.Hex &= ~0x1FFFF; // keep the Upper bits
cpMem.vtxDesc.Hex |= value;
break;
case 0x60:
cpMem.vtxDesc.Hex &= 0x1FFFF; // keep the lower 17Bits
cpMem.vtxDesc.Hex |= (u64)value << 17;
break;
case 0x70:
ASSERT((subCmd & 0x0F) < 8);
cpMem.vtxAttr[subCmd & 7].g0.Hex = value;
break;
case 0x80:
ASSERT((subCmd & 0x0F) < 8);
cpMem.vtxAttr[subCmd & 7].g1.Hex = value;
break;
case 0x90:
ASSERT((subCmd & 0x0F) < 8);
cpMem.vtxAttr[subCmd & 7].g2.Hex = value;
break;
case 0xA0:
cpMem.arrayBases[subCmd & 0xF] = value;
break;
case 0xB0:
cpMem.arrayStrides[subCmd & 0xF] = value & 0xFF;
break;
}
}
void CalculateVertexElementSizes(int sizes[], int vatIndex, const CPMemory& cpMem)
{
const TVtxDesc& vtxDesc = cpMem.vtxDesc;
const VAT& vtxAttr = cpMem.vtxAttr[vatIndex];
// Colors
const u64 colDesc[2] = {vtxDesc.Color0, vtxDesc.Color1};
const u32 colComp[2] = {vtxAttr.g0.Color0Comp, vtxAttr.g0.Color1Comp};
const u32 tcElements[8] = {vtxAttr.g0.Tex0CoordElements, vtxAttr.g1.Tex1CoordElements,
vtxAttr.g1.Tex2CoordElements, vtxAttr.g1.Tex3CoordElements,
vtxAttr.g1.Tex4CoordElements, vtxAttr.g2.Tex5CoordElements,
vtxAttr.g2.Tex6CoordElements, vtxAttr.g2.Tex7CoordElements};
const u32 tcFormat[8] = {vtxAttr.g0.Tex0CoordFormat, vtxAttr.g1.Tex1CoordFormat,
vtxAttr.g1.Tex2CoordFormat, vtxAttr.g1.Tex3CoordFormat,
vtxAttr.g1.Tex4CoordFormat, vtxAttr.g2.Tex5CoordFormat,
vtxAttr.g2.Tex6CoordFormat, vtxAttr.g2.Tex7CoordFormat};
// Add position and texture matrix indices
u64 vtxDescHex = cpMem.vtxDesc.Hex;
for (int i = 0; i < 9; ++i)
{
sizes[i] = vtxDescHex & 1;
vtxDescHex >>= 1;
}
// Position
sizes[9] = VertexLoader_Position::GetSize(vtxDesc.Position, vtxAttr.g0.PosFormat,
vtxAttr.g0.PosElements);
// Normals
if (vtxDesc.Normal != NOT_PRESENT)
{
sizes[10] = VertexLoader_Normal::GetSize(vtxDesc.Normal, vtxAttr.g0.NormalFormat,
vtxAttr.g0.NormalElements, vtxAttr.g0.NormalIndex3);
}
else
{
sizes[10] = 0;
}
// Colors
for (int i = 0; i < 2; i++)
{
int size = 0;
switch (colDesc[i])
{
case NOT_PRESENT:
break;
case DIRECT:
switch (colComp[i])
{
case FORMAT_16B_565:
size = 2;
break;
case FORMAT_24B_888:
size = 3;
break;
case FORMAT_32B_888x:
size = 4;
break;
case FORMAT_16B_4444:
size = 2;
break;
case FORMAT_24B_6666:
size = 3;
break;
case FORMAT_32B_8888:
size = 4;
break;
default:
ASSERT(0);
break;
}
break;
case INDEX8:
size = 1;
break;
case INDEX16:
size = 2;
break;
}
sizes[11 + i] = size;
}
// Texture coordinates
vtxDescHex = vtxDesc.Hex >> 17;
for (int i = 0; i < 8; i++)
{
sizes[13 + i] = VertexLoader_TextCoord::GetSize(vtxDescHex & 3, tcFormat[i], tcElements[i]);
vtxDescHex >>= 2;
}
}
}