mirror of
https://github.com/dolphin-emu/dolphin.git
synced 2025-01-10 16:19:28 +01:00
833 lines
26 KiB
C++
833 lines
26 KiB
C++
// Copyright 2013 Dolphin Emulator Project
|
|
// Licensed under GPLv2
|
|
// Refer to the license.txt file included.
|
|
|
|
#include <cmath>
|
|
|
|
#include "Common/ChunkFile.h"
|
|
#include "Common/Common.h"
|
|
#include "VideoBackends/Software/DebugUtil.h"
|
|
#include "VideoBackends/Software/EfbInterface.h"
|
|
#include "VideoBackends/Software/SWStatistics.h"
|
|
#include "VideoBackends/Software/SWVideoConfig.h"
|
|
#include "VideoBackends/Software/Tev.h"
|
|
#include "VideoBackends/Software/TextureSampler.h"
|
|
#include "VideoBackends/Software/XFMemLoader.h"
|
|
|
|
#ifdef _DEBUG
|
|
#define ALLOW_TEV_DUMPS 1
|
|
#else
|
|
#define ALLOW_TEV_DUMPS 0
|
|
#endif
|
|
|
|
void Tev::Init()
|
|
{
|
|
FixedConstants[0] = 0;
|
|
FixedConstants[1] = 32;
|
|
FixedConstants[2] = 64;
|
|
FixedConstants[3] = 96;
|
|
FixedConstants[4] = 128;
|
|
FixedConstants[5] = 159;
|
|
FixedConstants[6] = 191;
|
|
FixedConstants[7] = 223;
|
|
FixedConstants[8] = 255;
|
|
|
|
for (s16& comp : Zero16)
|
|
{
|
|
comp = 0;
|
|
}
|
|
|
|
m_ColorInputLUT[0][RED_INP] = &Reg[0][RED_C]; m_ColorInputLUT[0][GRN_INP] = &Reg[0][GRN_C]; m_ColorInputLUT[0][BLU_INP] = &Reg[0][BLU_C]; // prev.rgb
|
|
m_ColorInputLUT[1][RED_INP] = &Reg[0][ALP_C]; m_ColorInputLUT[1][GRN_INP] = &Reg[0][ALP_C]; m_ColorInputLUT[1][BLU_INP] = &Reg[0][ALP_C]; // prev.aaa
|
|
m_ColorInputLUT[2][RED_INP] = &Reg[1][RED_C]; m_ColorInputLUT[2][GRN_INP] = &Reg[1][GRN_C]; m_ColorInputLUT[2][BLU_INP] = &Reg[1][BLU_C]; // c0.rgb
|
|
m_ColorInputLUT[3][RED_INP] = &Reg[1][ALP_C]; m_ColorInputLUT[3][GRN_INP] = &Reg[1][ALP_C]; m_ColorInputLUT[3][BLU_INP] = &Reg[1][ALP_C]; // c0.aaa
|
|
m_ColorInputLUT[4][RED_INP] = &Reg[2][RED_C]; m_ColorInputLUT[4][GRN_INP] = &Reg[2][GRN_C]; m_ColorInputLUT[4][BLU_INP] = &Reg[2][BLU_C]; // c1.rgb
|
|
m_ColorInputLUT[5][RED_INP] = &Reg[2][ALP_C]; m_ColorInputLUT[5][GRN_INP] = &Reg[2][ALP_C]; m_ColorInputLUT[5][BLU_INP] = &Reg[2][ALP_C]; // c1.aaa
|
|
m_ColorInputLUT[6][RED_INP] = &Reg[3][RED_C]; m_ColorInputLUT[6][GRN_INP] = &Reg[3][GRN_C]; m_ColorInputLUT[6][BLU_INP] = &Reg[3][BLU_C]; // c2.rgb
|
|
m_ColorInputLUT[7][RED_INP] = &Reg[3][ALP_C]; m_ColorInputLUT[7][GRN_INP] = &Reg[3][ALP_C]; m_ColorInputLUT[7][BLU_INP] = &Reg[3][ALP_C]; // c2.aaa
|
|
m_ColorInputLUT[8][RED_INP] = &TexColor[RED_C]; m_ColorInputLUT[8][GRN_INP] = &TexColor[GRN_C]; m_ColorInputLUT[8][BLU_INP] = &TexColor[BLU_C]; // tex.rgb
|
|
m_ColorInputLUT[9][RED_INP] = &TexColor[ALP_C]; m_ColorInputLUT[9][GRN_INP] = &TexColor[ALP_C]; m_ColorInputLUT[9][BLU_INP] = &TexColor[ALP_C]; // tex.aaa
|
|
m_ColorInputLUT[10][RED_INP] = &RasColor[RED_C]; m_ColorInputLUT[10][GRN_INP] = &RasColor[GRN_C]; m_ColorInputLUT[10][BLU_INP] = &RasColor[BLU_C]; // ras.rgb
|
|
m_ColorInputLUT[11][RED_INP] = &RasColor[ALP_C]; m_ColorInputLUT[11][GRN_INP] = &RasColor[ALP_C]; m_ColorInputLUT[11][BLU_INP] = &RasColor[ALP_C]; // ras.rgb
|
|
m_ColorInputLUT[12][RED_INP] = &FixedConstants[8]; m_ColorInputLUT[12][GRN_INP] = &FixedConstants[8]; m_ColorInputLUT[12][BLU_INP] = &FixedConstants[8]; // one
|
|
m_ColorInputLUT[13][RED_INP] = &FixedConstants[4]; m_ColorInputLUT[13][GRN_INP] = &FixedConstants[4]; m_ColorInputLUT[13][BLU_INP] = &FixedConstants[4]; // half
|
|
m_ColorInputLUT[14][RED_INP] = &StageKonst[RED_C]; m_ColorInputLUT[14][GRN_INP] = &StageKonst[GRN_C]; m_ColorInputLUT[14][BLU_INP] = &StageKonst[BLU_C]; // konst
|
|
m_ColorInputLUT[15][RED_INP] = &FixedConstants[0]; m_ColorInputLUT[15][GRN_INP] = &FixedConstants[0]; m_ColorInputLUT[15][BLU_INP] = &FixedConstants[0]; // zero
|
|
|
|
m_AlphaInputLUT[0] = &Reg[0][ALP_C]; // prev
|
|
m_AlphaInputLUT[1] = &Reg[1][ALP_C]; // c0
|
|
m_AlphaInputLUT[2] = &Reg[2][ALP_C]; // c1
|
|
m_AlphaInputLUT[3] = &Reg[3][ALP_C]; // c2
|
|
m_AlphaInputLUT[4] = &TexColor[ALP_C]; // tex
|
|
m_AlphaInputLUT[5] = &RasColor[ALP_C]; // ras
|
|
m_AlphaInputLUT[6] = &StageKonst[ALP_C]; // konst
|
|
m_AlphaInputLUT[7] = &Zero16[ALP_C]; // zero
|
|
|
|
for (int comp = 0; comp < 4; comp++)
|
|
{
|
|
m_KonstLUT[0][comp] = &FixedConstants[8];
|
|
m_KonstLUT[1][comp] = &FixedConstants[7];
|
|
m_KonstLUT[2][comp] = &FixedConstants[6];
|
|
m_KonstLUT[3][comp] = &FixedConstants[5];
|
|
m_KonstLUT[4][comp] = &FixedConstants[4];
|
|
m_KonstLUT[5][comp] = &FixedConstants[3];
|
|
m_KonstLUT[6][comp] = &FixedConstants[2];
|
|
m_KonstLUT[7][comp] = &FixedConstants[1];
|
|
|
|
// These are "invalid" values, not meant to be used. On hardware,
|
|
// they all output zero.
|
|
for (int i = 8; i < 16; ++i)
|
|
{
|
|
m_KonstLUT[i][comp] = &FixedConstants[0];
|
|
}
|
|
|
|
if (comp != ALP_C)
|
|
{
|
|
m_KonstLUT[12][comp] = &KonstantColors[0][comp];
|
|
m_KonstLUT[13][comp] = &KonstantColors[1][comp];
|
|
m_KonstLUT[14][comp] = &KonstantColors[2][comp];
|
|
m_KonstLUT[15][comp] = &KonstantColors[3][comp];
|
|
}
|
|
|
|
m_KonstLUT[16][comp] = &KonstantColors[0][RED_C];
|
|
m_KonstLUT[17][comp] = &KonstantColors[1][RED_C];
|
|
m_KonstLUT[18][comp] = &KonstantColors[2][RED_C];
|
|
m_KonstLUT[19][comp] = &KonstantColors[3][RED_C];
|
|
m_KonstLUT[20][comp] = &KonstantColors[0][GRN_C];
|
|
m_KonstLUT[21][comp] = &KonstantColors[1][GRN_C];
|
|
m_KonstLUT[22][comp] = &KonstantColors[2][GRN_C];
|
|
m_KonstLUT[23][comp] = &KonstantColors[3][GRN_C];
|
|
m_KonstLUT[24][comp] = &KonstantColors[0][BLU_C];
|
|
m_KonstLUT[25][comp] = &KonstantColors[1][BLU_C];
|
|
m_KonstLUT[26][comp] = &KonstantColors[2][BLU_C];
|
|
m_KonstLUT[27][comp] = &KonstantColors[3][BLU_C];
|
|
m_KonstLUT[28][comp] = &KonstantColors[0][ALP_C];
|
|
m_KonstLUT[29][comp] = &KonstantColors[1][ALP_C];
|
|
m_KonstLUT[30][comp] = &KonstantColors[2][ALP_C];
|
|
m_KonstLUT[31][comp] = &KonstantColors[3][ALP_C];
|
|
}
|
|
|
|
m_BiasLUT[0] = 0;
|
|
m_BiasLUT[1] = 128;
|
|
m_BiasLUT[2] = -128;
|
|
m_BiasLUT[3] = 0;
|
|
|
|
m_ScaleLShiftLUT[0] = 0;
|
|
m_ScaleLShiftLUT[1] = 1;
|
|
m_ScaleLShiftLUT[2] = 2;
|
|
m_ScaleLShiftLUT[3] = 0;
|
|
|
|
m_ScaleRShiftLUT[0] = 0;
|
|
m_ScaleRShiftLUT[1] = 0;
|
|
m_ScaleRShiftLUT[2] = 0;
|
|
m_ScaleRShiftLUT[3] = 1;
|
|
}
|
|
|
|
static inline s16 Clamp255(s16 in)
|
|
{
|
|
return in>255?255:(in<0?0:in);
|
|
}
|
|
|
|
static inline s16 Clamp1024(s16 in)
|
|
{
|
|
return in>1023?1023:(in<-1024?-1024:in);
|
|
}
|
|
|
|
void Tev::SetRasColor(int colorChan, int swaptable)
|
|
{
|
|
switch (colorChan)
|
|
{
|
|
case 0: // Color0
|
|
{
|
|
u8 *color = Color[0];
|
|
RasColor[RED_C] = color[bpmem.tevksel[swaptable].swap1];
|
|
RasColor[GRN_C] = color[bpmem.tevksel[swaptable].swap2];
|
|
swaptable++;
|
|
RasColor[BLU_C] = color[bpmem.tevksel[swaptable].swap1];
|
|
RasColor[ALP_C] = color[bpmem.tevksel[swaptable].swap2];
|
|
}
|
|
break;
|
|
case 1: // Color1
|
|
{
|
|
u8 *color = Color[1];
|
|
RasColor[RED_C] = color[bpmem.tevksel[swaptable].swap1];
|
|
RasColor[GRN_C] = color[bpmem.tevksel[swaptable].swap2];
|
|
swaptable++;
|
|
RasColor[BLU_C] = color[bpmem.tevksel[swaptable].swap1];
|
|
RasColor[ALP_C] = color[bpmem.tevksel[swaptable].swap2];
|
|
}
|
|
break;
|
|
case 5: // alpha bump
|
|
{
|
|
for (s16& comp : RasColor)
|
|
{
|
|
comp = AlphaBump;
|
|
}
|
|
}
|
|
break;
|
|
case 6: // alpha bump normalized
|
|
{
|
|
u8 normalized = AlphaBump | AlphaBump >> 5;
|
|
for (s16& comp : RasColor)
|
|
{
|
|
comp = normalized;
|
|
}
|
|
}
|
|
break;
|
|
default: // zero
|
|
{
|
|
for (s16& comp : RasColor)
|
|
{
|
|
comp = 0;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
void Tev::DrawColorRegular(TevStageCombiner::ColorCombiner &cc, const InputRegType inputs[4])
|
|
{
|
|
for (int i = 0; i < 3; i++)
|
|
{
|
|
const InputRegType& InputReg = inputs[BLU_C + i];
|
|
|
|
u16 c = InputReg.c + (InputReg.c >> 7);
|
|
|
|
s32 temp = InputReg.a * (256 - c) + (InputReg.b * c);
|
|
temp <<= m_ScaleLShiftLUT[cc.shift];
|
|
temp += (cc.shift == 3) ? 0 : (cc.op == 1) ? 127 : 128;
|
|
temp >>= 8;
|
|
temp = cc.op ? -temp : temp;
|
|
|
|
s32 result = ((InputReg.d + m_BiasLUT[cc.bias]) << m_ScaleLShiftLUT[cc.shift]) + temp;
|
|
result = result >> m_ScaleRShiftLUT[cc.shift];
|
|
|
|
Reg[cc.dest][BLU_C + i] = result;
|
|
}
|
|
}
|
|
|
|
void Tev::DrawColorCompare(TevStageCombiner::ColorCombiner &cc, const InputRegType inputs[4])
|
|
{
|
|
for (int i = BLU_C; i <= RED_C; i++)
|
|
{
|
|
switch ((cc.shift<<1)|cc.op|8) // encoded compare mode
|
|
{
|
|
case TEVCMP_R8_GT:
|
|
Reg[cc.dest][i] = inputs[i].d + ((inputs[RED_C].a > inputs[RED_C].b) ? inputs[i].c : 0);
|
|
break;
|
|
|
|
case TEVCMP_R8_EQ:
|
|
Reg[cc.dest][i] = inputs[i].d + ((inputs[RED_C].a == inputs[RED_C].b) ? inputs[i].c : 0);
|
|
break;
|
|
|
|
case TEVCMP_GR16_GT:
|
|
{
|
|
u32 a = (inputs[GRN_C].a << 8) | inputs[RED_C].a;
|
|
u32 b = (inputs[GRN_C].b << 8) | inputs[RED_C].b;
|
|
Reg[cc.dest][i] = inputs[i].d + ((a > b) ? inputs[i].c : 0);
|
|
}
|
|
break;
|
|
|
|
case TEVCMP_GR16_EQ:
|
|
{
|
|
u32 a = (inputs[GRN_C].a << 8) | inputs[RED_C].a;
|
|
u32 b = (inputs[GRN_C].b << 8) | inputs[RED_C].b;
|
|
Reg[cc.dest][i] = inputs[i].d + ((a == b) ? inputs[i].c : 0);
|
|
}
|
|
break;
|
|
|
|
case TEVCMP_BGR24_GT:
|
|
{
|
|
u32 a = (inputs[BLU_C].a << 16) | (inputs[GRN_C].a << 8) | inputs[RED_C].a;
|
|
u32 b = (inputs[BLU_C].b << 16) | (inputs[GRN_C].b << 8) | inputs[RED_C].b;
|
|
Reg[cc.dest][i] = inputs[i].d + ((a > b) ? inputs[i].c : 0);
|
|
}
|
|
break;
|
|
|
|
case TEVCMP_BGR24_EQ:
|
|
{
|
|
u32 a = (inputs[BLU_C].a << 16) | (inputs[GRN_C].a << 8) | inputs[RED_C].a;
|
|
u32 b = (inputs[BLU_C].b << 16) | (inputs[GRN_C].b << 8) | inputs[RED_C].b;
|
|
Reg[cc.dest][i] = inputs[i].d + ((a == b) ? inputs[i].c : 0);
|
|
}
|
|
break;
|
|
|
|
case TEVCMP_RGB8_GT:
|
|
Reg[cc.dest][i] = inputs[i].d + ((inputs[i].a > inputs[i].b) ? inputs[i].c : 0);
|
|
break;
|
|
|
|
case TEVCMP_RGB8_EQ:
|
|
Reg[cc.dest][i] = inputs[i].d + ((inputs[i].a == inputs[i].b) ? inputs[i].c : 0);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void Tev::DrawAlphaRegular(TevStageCombiner::AlphaCombiner &ac, const InputRegType inputs[4])
|
|
{
|
|
const InputRegType& InputReg = inputs[ALP_C];
|
|
|
|
u16 c = InputReg.c + (InputReg.c >> 7);
|
|
|
|
s32 temp = InputReg.a * (256 - c) + (InputReg.b * c);
|
|
temp <<= m_ScaleLShiftLUT[ac.shift];
|
|
temp += (ac.shift != 3) ? 0 : (ac.op == 1) ? 127 : 128;
|
|
temp = ac.op ? (-temp >> 8) : (temp >> 8);
|
|
|
|
s32 result = ((InputReg.d + m_BiasLUT[ac.bias]) << m_ScaleLShiftLUT[ac.shift]) + temp;
|
|
result = result >> m_ScaleRShiftLUT[ac.shift];
|
|
|
|
Reg[ac.dest][ALP_C] = result;
|
|
}
|
|
|
|
void Tev::DrawAlphaCompare(TevStageCombiner::AlphaCombiner& ac, const InputRegType inputs[4])
|
|
{
|
|
switch ((ac.shift<<1)|ac.op|8) // encoded compare mode
|
|
{
|
|
case TEVCMP_R8_GT:
|
|
Reg[ac.dest][ALP_C] = inputs[ALP_C].d + ((inputs[RED_C].a > inputs[RED_C].b) ? inputs[ALP_C].c : 0);
|
|
break;
|
|
|
|
case TEVCMP_R8_EQ:
|
|
Reg[ac.dest][ALP_C] = inputs[ALP_C].d + ((inputs[RED_C].a == inputs[RED_C].b) ? inputs[ALP_C].c : 0);
|
|
break;
|
|
|
|
case TEVCMP_GR16_GT:
|
|
{
|
|
u32 a = (inputs[GRN_C].a << 8) | inputs[RED_C].a;
|
|
u32 b = (inputs[GRN_C].b << 8) | inputs[RED_C].b;
|
|
Reg[ac.dest][ALP_C] = inputs[ALP_C].d + ((a > b) ? inputs[ALP_C].c : 0);
|
|
}
|
|
break;
|
|
|
|
case TEVCMP_GR16_EQ:
|
|
{
|
|
u32 a = (inputs[GRN_C].a << 8) | inputs[RED_C].a;
|
|
u32 b = (inputs[GRN_C].b << 8) | inputs[RED_C].b;
|
|
Reg[ac.dest][ALP_C] = inputs[ALP_C].d + ((a == b) ? inputs[ALP_C].c : 0);
|
|
}
|
|
break;
|
|
|
|
case TEVCMP_BGR24_GT:
|
|
{
|
|
u32 a = (inputs[BLU_C].a << 16) | (inputs[GRN_C].a << 8) | inputs[RED_C].a;
|
|
u32 b = (inputs[BLU_C].b << 16) | (inputs[GRN_C].b << 8) | inputs[RED_C].b;
|
|
Reg[ac.dest][ALP_C] = inputs[ALP_C].d + ((a > b) ? inputs[ALP_C].c : 0);
|
|
}
|
|
break;
|
|
|
|
case TEVCMP_BGR24_EQ:
|
|
{
|
|
u32 a = (inputs[BLU_C].a << 16) | (inputs[GRN_C].a << 8) | inputs[RED_C].a;
|
|
u32 b = (inputs[BLU_C].b << 16) | (inputs[GRN_C].b << 8) | inputs[RED_C].b;
|
|
Reg[ac.dest][ALP_C] = inputs[ALP_C].d + ((a == b) ? inputs[ALP_C].c : 0);
|
|
}
|
|
break;
|
|
|
|
case TEVCMP_A8_GT:
|
|
Reg[ac.dest][ALP_C] = inputs[ALP_C].d + ((inputs[ALP_C].a > inputs[ALP_C].b) ? inputs[ALP_C].c : 0);
|
|
break;
|
|
|
|
case TEVCMP_A8_EQ:
|
|
Reg[ac.dest][ALP_C] = inputs[ALP_C].d + ((inputs[ALP_C].a == inputs[ALP_C].b) ? inputs[ALP_C].c : 0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static bool AlphaCompare(int alpha, int ref, AlphaTest::CompareMode comp)
|
|
{
|
|
switch (comp)
|
|
{
|
|
case AlphaTest::ALWAYS: return true;
|
|
case AlphaTest::NEVER: return false;
|
|
case AlphaTest::LEQUAL: return alpha <= ref;
|
|
case AlphaTest::LESS: return alpha < ref;
|
|
case AlphaTest::GEQUAL: return alpha >= ref;
|
|
case AlphaTest::GREATER: return alpha > ref;
|
|
case AlphaTest::EQUAL: return alpha == ref;
|
|
case AlphaTest::NEQUAL: return alpha != ref;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool TevAlphaTest(int alpha)
|
|
{
|
|
bool comp0 = AlphaCompare(alpha, bpmem.alpha_test.ref0, bpmem.alpha_test.comp0);
|
|
bool comp1 = AlphaCompare(alpha, bpmem.alpha_test.ref1, bpmem.alpha_test.comp1);
|
|
|
|
switch (bpmem.alpha_test.logic)
|
|
{
|
|
case 0: return comp0 && comp1; // and
|
|
case 1: return comp0 || comp1; // or
|
|
case 2: return comp0 ^ comp1; // xor
|
|
case 3: return !(comp0 ^ comp1); // xnor
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static inline s32 WrapIndirectCoord(s32 coord, int wrapMode)
|
|
{
|
|
switch (wrapMode)
|
|
{
|
|
case ITW_OFF:
|
|
return coord;
|
|
case ITW_256:
|
|
return (coord % (256 << 7));
|
|
case ITW_128:
|
|
return (coord % (128 << 7));
|
|
case ITW_64:
|
|
return (coord % (64 << 7));
|
|
case ITW_32:
|
|
return (coord % (32 << 7));
|
|
case ITW_16:
|
|
return (coord % (16 << 7));
|
|
case ITW_0:
|
|
return 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void Tev::Indirect(unsigned int stageNum, s32 s, s32 t)
|
|
{
|
|
TevStageIndirect &indirect = bpmem.tevind[stageNum];
|
|
u8 *indmap = IndirectTex[indirect.bt];
|
|
|
|
s32 indcoord[3];
|
|
|
|
// alpha bump select
|
|
switch (indirect.bs)
|
|
{
|
|
case ITBA_OFF:
|
|
AlphaBump = 0;
|
|
break;
|
|
case ITBA_S:
|
|
AlphaBump = indmap[TextureSampler::ALP_SMP];
|
|
break;
|
|
case ITBA_T:
|
|
AlphaBump = indmap[TextureSampler::BLU_SMP];
|
|
break;
|
|
case ITBA_U:
|
|
AlphaBump = indmap[TextureSampler::GRN_SMP];
|
|
break;
|
|
}
|
|
|
|
// bias select
|
|
s16 biasValue = indirect.fmt==ITF_8?-128:1;
|
|
s16 bias[3];
|
|
bias[0] = indirect.bias&1?biasValue:0;
|
|
bias[1] = indirect.bias&2?biasValue:0;
|
|
bias[2] = indirect.bias&4?biasValue:0;
|
|
|
|
// format
|
|
switch (indirect.fmt)
|
|
{
|
|
case ITF_8:
|
|
indcoord[0] = indmap[TextureSampler::ALP_SMP] + bias[0];
|
|
indcoord[1] = indmap[TextureSampler::BLU_SMP] + bias[1];
|
|
indcoord[2] = indmap[TextureSampler::GRN_SMP] + bias[2];
|
|
AlphaBump = AlphaBump & 0xf8;
|
|
break;
|
|
case ITF_5:
|
|
indcoord[0] = (indmap[TextureSampler::ALP_SMP] & 0x1f) + bias[0];
|
|
indcoord[1] = (indmap[TextureSampler::BLU_SMP] & 0x1f) + bias[1];
|
|
indcoord[2] = (indmap[TextureSampler::GRN_SMP] & 0x1f) + bias[2];
|
|
AlphaBump = AlphaBump & 0xe0;
|
|
break;
|
|
case ITF_4:
|
|
indcoord[0] = (indmap[TextureSampler::ALP_SMP] & 0x0f) + bias[0];
|
|
indcoord[1] = (indmap[TextureSampler::BLU_SMP] & 0x0f) + bias[1];
|
|
indcoord[2] = (indmap[TextureSampler::GRN_SMP] & 0x0f) + bias[2];
|
|
AlphaBump = AlphaBump & 0xf0;
|
|
break;
|
|
case ITF_3:
|
|
indcoord[0] = (indmap[TextureSampler::ALP_SMP] & 0x07) + bias[0];
|
|
indcoord[1] = (indmap[TextureSampler::BLU_SMP] & 0x07) + bias[1];
|
|
indcoord[2] = (indmap[TextureSampler::GRN_SMP] & 0x07) + bias[2];
|
|
AlphaBump = AlphaBump & 0xf8;
|
|
break;
|
|
default:
|
|
PanicAlert("Tev::Indirect");
|
|
return;
|
|
}
|
|
|
|
s32 indtevtrans[2] = { 0,0 };
|
|
|
|
// matrix multiply - results might overflow, but we don't care since we only use the lower 24 bits of the result.
|
|
int indmtxid = indirect.mid & 3;
|
|
if (indmtxid)
|
|
{
|
|
IND_MTX &indmtx = bpmem.indmtx[indmtxid - 1];
|
|
int scale = ((u32)indmtx.col0.s0 << 0) |
|
|
((u32)indmtx.col1.s1 << 2) |
|
|
((u32)indmtx.col2.s2 << 4);
|
|
|
|
int shift;
|
|
|
|
switch (indirect.mid & 12)
|
|
{
|
|
case 0:
|
|
// matrix values are S0.10, output format is S17.7, so divide by 8
|
|
shift = (17 - scale);
|
|
indtevtrans[0] = (indmtx.col0.ma * indcoord[0] + indmtx.col1.mc * indcoord[1] + indmtx.col2.me * indcoord[2]) >> 3;
|
|
indtevtrans[1] = (indmtx.col0.mb * indcoord[0] + indmtx.col1.md * indcoord[1] + indmtx.col2.mf * indcoord[2]) >> 3;
|
|
break;
|
|
case 4: // s matrix
|
|
// s is S17.7, matrix elements are divided by 256, output is S17.7, so divide by 256. - TODO: Maybe, since s is actually stored as S24, we should divide by 256*64?
|
|
shift = (17 - scale);
|
|
indtevtrans[0] = s * indcoord[0] / 256;
|
|
indtevtrans[1] = t * indcoord[0] / 256;
|
|
break;
|
|
case 8: // t matrix
|
|
shift = (17 - scale);
|
|
indtevtrans[0] = s * indcoord[1] / 256;
|
|
indtevtrans[1] = t * indcoord[1] / 256;
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
|
|
indtevtrans[0] = shift >= 0 ? indtevtrans[0] >> shift : indtevtrans[0] << -shift;
|
|
indtevtrans[1] = shift >= 0 ? indtevtrans[1] >> shift : indtevtrans[1] << -shift;
|
|
}
|
|
|
|
if (indirect.fb_addprev)
|
|
{
|
|
TexCoord.s += (int)(WrapIndirectCoord(s, indirect.sw) + indtevtrans[0]);
|
|
TexCoord.t += (int)(WrapIndirectCoord(t, indirect.tw) + indtevtrans[1]);
|
|
}
|
|
else
|
|
{
|
|
TexCoord.s = (int)(WrapIndirectCoord(s, indirect.sw) + indtevtrans[0]);
|
|
TexCoord.t = (int)(WrapIndirectCoord(t, indirect.tw) + indtevtrans[1]);
|
|
}
|
|
}
|
|
|
|
void Tev::Draw()
|
|
{
|
|
_assert_(Position[0] >= 0 && Position[0] < EFB_WIDTH);
|
|
_assert_(Position[1] >= 0 && Position[1] < EFB_HEIGHT);
|
|
|
|
INCSTAT(swstats.thisFrame.tevPixelsIn);
|
|
|
|
for (unsigned int stageNum = 0; stageNum < bpmem.genMode.numindstages; stageNum++)
|
|
{
|
|
int stageNum2 = stageNum >> 1;
|
|
int stageOdd = stageNum&1;
|
|
|
|
u32 texcoordSel = bpmem.tevindref.getTexCoord(stageNum);
|
|
u32 texmap = bpmem.tevindref.getTexMap(stageNum);
|
|
|
|
const TEXSCALE& texscale = bpmem.texscale[stageNum2];
|
|
s32 scaleS = stageOdd ? texscale.ss1:texscale.ss0;
|
|
s32 scaleT = stageOdd ? texscale.ts1:texscale.ts0;
|
|
|
|
TextureSampler::Sample(Uv[texcoordSel].s >> scaleS, Uv[texcoordSel].t >> scaleT,
|
|
IndirectLod[stageNum], IndirectLinear[stageNum], texmap, IndirectTex[stageNum]);
|
|
|
|
#if ALLOW_TEV_DUMPS
|
|
if (g_SWVideoConfig.bDumpTevStages)
|
|
{
|
|
u8 stage[4] = {
|
|
IndirectTex[stageNum][TextureSampler::ALP_SMP],
|
|
IndirectTex[stageNum][TextureSampler::BLU_SMP],
|
|
IndirectTex[stageNum][TextureSampler::GRN_SMP],
|
|
255
|
|
};
|
|
DebugUtil::DrawTempBuffer(stage, INDIRECT + stageNum);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
for (unsigned int stageNum = 0; stageNum <= bpmem.genMode.numtevstages; stageNum++)
|
|
{
|
|
int stageNum2 = stageNum >> 1;
|
|
int stageOdd = stageNum&1;
|
|
TwoTevStageOrders &order = bpmem.tevorders[stageNum2];
|
|
TevKSel &kSel = bpmem.tevksel[stageNum2];
|
|
|
|
// stage combiners
|
|
TevStageCombiner::ColorCombiner &cc = bpmem.combiners[stageNum].colorC;
|
|
TevStageCombiner::AlphaCombiner &ac = bpmem.combiners[stageNum].alphaC;
|
|
|
|
int texcoordSel = order.getTexCoord(stageOdd);
|
|
int texmap = order.getTexMap(stageOdd);
|
|
|
|
Indirect(stageNum, Uv[texcoordSel].s, Uv[texcoordSel].t);
|
|
|
|
// sample texture
|
|
if (order.getEnable(stageOdd))
|
|
{
|
|
// RGBA
|
|
u8 texel[4];
|
|
|
|
TextureSampler::Sample(TexCoord.s, TexCoord.t, TextureLod[stageNum], TextureLinear[stageNum], texmap, texel);
|
|
|
|
#if ALLOW_TEV_DUMPS
|
|
if (g_SWVideoConfig.bDumpTevTextureFetches)
|
|
DebugUtil::DrawTempBuffer(texel, DIRECT_TFETCH + stageNum);
|
|
#endif
|
|
|
|
int swaptable = ac.tswap * 2;
|
|
|
|
TexColor[RED_C] = texel[bpmem.tevksel[swaptable].swap1];
|
|
TexColor[GRN_C] = texel[bpmem.tevksel[swaptable].swap2];
|
|
swaptable++;
|
|
TexColor[BLU_C] = texel[bpmem.tevksel[swaptable].swap1];
|
|
TexColor[ALP_C] = texel[bpmem.tevksel[swaptable].swap2];
|
|
}
|
|
|
|
// set konst for this stage
|
|
int kc = kSel.getKC(stageOdd);
|
|
int ka = kSel.getKA(stageOdd);
|
|
StageKonst[RED_C] = *(m_KonstLUT[kc][RED_C]);
|
|
StageKonst[GRN_C] = *(m_KonstLUT[kc][GRN_C]);
|
|
StageKonst[BLU_C] = *(m_KonstLUT[kc][BLU_C]);
|
|
StageKonst[ALP_C] = *(m_KonstLUT[ka][ALP_C]);
|
|
|
|
// set color
|
|
SetRasColor(order.getColorChan(stageOdd), ac.rswap * 2);
|
|
|
|
// combine inputs
|
|
InputRegType inputs[4];
|
|
for (int i = 0; i < 3; i++)
|
|
{
|
|
inputs[BLU_C + i].a = *m_ColorInputLUT[cc.a][i];
|
|
inputs[BLU_C + i].b = *m_ColorInputLUT[cc.b][i];
|
|
inputs[BLU_C + i].c = *m_ColorInputLUT[cc.c][i];
|
|
inputs[BLU_C + i].d = *m_ColorInputLUT[cc.d][i];
|
|
}
|
|
inputs[ALP_C].a = *m_AlphaInputLUT[ac.a];
|
|
inputs[ALP_C].b = *m_AlphaInputLUT[ac.b];
|
|
inputs[ALP_C].c = *m_AlphaInputLUT[ac.c];
|
|
inputs[ALP_C].d = *m_AlphaInputLUT[ac.d];
|
|
|
|
if (cc.bias != 3)
|
|
DrawColorRegular(cc, inputs);
|
|
else
|
|
DrawColorCompare(cc, inputs);
|
|
|
|
if (cc.clamp)
|
|
{
|
|
Reg[cc.dest][RED_C] = Clamp255(Reg[cc.dest][RED_C]);
|
|
Reg[cc.dest][GRN_C] = Clamp255(Reg[cc.dest][GRN_C]);
|
|
Reg[cc.dest][BLU_C] = Clamp255(Reg[cc.dest][BLU_C]);
|
|
}
|
|
else
|
|
{
|
|
Reg[cc.dest][RED_C] = Clamp1024(Reg[cc.dest][RED_C]);
|
|
Reg[cc.dest][GRN_C] = Clamp1024(Reg[cc.dest][GRN_C]);
|
|
Reg[cc.dest][BLU_C] = Clamp1024(Reg[cc.dest][BLU_C]);
|
|
}
|
|
|
|
if (ac.bias != 3)
|
|
DrawAlphaRegular(ac, inputs);
|
|
else
|
|
DrawAlphaCompare(ac, inputs);
|
|
|
|
if (ac.clamp)
|
|
Reg[ac.dest][ALP_C] = Clamp255(Reg[ac.dest][ALP_C]);
|
|
else
|
|
Reg[ac.dest][ALP_C] = Clamp1024(Reg[ac.dest][ALP_C]);
|
|
|
|
#if ALLOW_TEV_DUMPS
|
|
if (g_SWVideoConfig.bDumpTevStages)
|
|
{
|
|
u8 stage[4] = {(u8)Reg[0][RED_C], (u8)Reg[0][GRN_C], (u8)Reg[0][BLU_C], (u8)Reg[0][ALP_C]};
|
|
DebugUtil::DrawTempBuffer(stage, DIRECT + stageNum);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// convert to 8 bits per component
|
|
// the results of the last tev stage are put onto the screen,
|
|
// regardless of the used destination register - TODO: Verify!
|
|
u32 color_index = bpmem.combiners[bpmem.genMode.numtevstages].colorC.dest;
|
|
u32 alpha_index = bpmem.combiners[bpmem.genMode.numtevstages].alphaC.dest;
|
|
u8 output[4] = {(u8)Reg[alpha_index][ALP_C], (u8)Reg[color_index][BLU_C], (u8)Reg[color_index][GRN_C], (u8)Reg[color_index][RED_C]};
|
|
|
|
if (!TevAlphaTest(output[ALP_C]))
|
|
return;
|
|
|
|
// z texture
|
|
if (bpmem.ztex2.op)
|
|
{
|
|
u32 ztex = bpmem.ztex1.bias;
|
|
switch (bpmem.ztex2.type)
|
|
{
|
|
case 0: // 8 bit
|
|
ztex += TexColor[ALP_C];
|
|
break;
|
|
case 1: // 16 bit
|
|
ztex += TexColor[ALP_C] << 8 | TexColor[RED_C];
|
|
break;
|
|
case 2: // 24 bit
|
|
ztex += TexColor[RED_C] << 16 | TexColor[GRN_C] << 8 | TexColor[BLU_C];
|
|
break;
|
|
}
|
|
|
|
if (bpmem.ztex2.op == ZTEXTURE_ADD)
|
|
ztex += Position[2];
|
|
|
|
Position[2] = ztex & 0x00ffffff;
|
|
}
|
|
|
|
// fog
|
|
if (bpmem.fog.c_proj_fsel.fsel)
|
|
{
|
|
float ze;
|
|
|
|
if (bpmem.fog.c_proj_fsel.proj == 0)
|
|
{
|
|
// perspective
|
|
// ze = A/(B - (Zs >> B_SHF))
|
|
s32 denom = bpmem.fog.b_magnitude - (Position[2] >> bpmem.fog.b_shift);
|
|
//in addition downscale magnitude and zs to 0.24 bits
|
|
ze = (bpmem.fog.a.GetA() * 16777215.0f) / (float)denom;
|
|
}
|
|
else
|
|
{
|
|
// orthographic
|
|
// ze = a*Zs
|
|
//in addition downscale zs to 0.24 bits
|
|
ze = bpmem.fog.a.GetA() * ((float)Position[2] / 16777215.0f);
|
|
|
|
}
|
|
|
|
if (bpmem.fogRange.Base.Enabled)
|
|
{
|
|
// TODO: This is untested and should definitely be checked against real hw.
|
|
// - No idea if offset is really normalized against the viewport width or against the projection matrix or yet something else
|
|
// - scaling of the "k" coefficient isn't clear either.
|
|
|
|
// First, calculate the offset from the viewport center (normalized to 0..1)
|
|
float offset = (Position[0] - (bpmem.fogRange.Base.Center - 342)) / (float)xfmem.viewport.wd;
|
|
|
|
// Based on that, choose the index such that points which are far away from the z-axis use the 10th "k" value and such that central points use the first value.
|
|
float floatindex = 9.f - std::abs(offset) * 9.f;
|
|
floatindex = (floatindex < 0.f) ? 0.f : (floatindex > 9.f) ? 9.f : floatindex; // TODO: This shouldn't be necessary!
|
|
|
|
// Get the two closest integer indices, look up the corresponding samples
|
|
int indexlower = (int)floor(floatindex);
|
|
int indexupper = indexlower + 1;
|
|
// Look up coefficient... Seems like multiplying by 4 makes Fortune Street work properly (fog is too strong without the factor)
|
|
float klower = bpmem.fogRange.K[indexlower/2].GetValue(indexlower%2) * 4.f;
|
|
float kupper = bpmem.fogRange.K[indexupper/2].GetValue(indexupper%2) * 4.f;
|
|
|
|
// linearly interpolate the samples and multiple ze by the resulting adjustment factor
|
|
float factor = indexupper - floatindex;
|
|
float k = klower * factor + kupper * (1.f - factor);
|
|
float x_adjust = sqrt(offset*offset + k*k)/k;
|
|
ze *= x_adjust; // NOTE: This is basically dividing by a cosine (hidden behind GXInitFogAdjTable): 1/cos = c/b = sqrt(a^2+b^2)/b
|
|
}
|
|
|
|
ze -= bpmem.fog.c_proj_fsel.GetC();
|
|
|
|
// clamp 0 to 1
|
|
float fog = (ze<0.0f) ? 0.0f : ((ze>1.0f) ? 1.0f : ze);
|
|
|
|
switch (bpmem.fog.c_proj_fsel.fsel)
|
|
{
|
|
case 4: // exp
|
|
fog = 1.0f - pow(2.0f, -8.0f * fog);
|
|
break;
|
|
case 5: // exp2
|
|
fog = 1.0f - pow(2.0f, -8.0f * fog * fog);
|
|
break;
|
|
case 6: // backward exp
|
|
fog = 1.0f - fog;
|
|
fog = pow(2.0f, -8.0f * fog);
|
|
break;
|
|
case 7: // backward exp2
|
|
fog = 1.0f - fog;
|
|
fog = pow(2.0f, -8.0f * fog * fog);
|
|
break;
|
|
}
|
|
|
|
// lerp from output to fog color
|
|
u32 fogInt = (u32)(fog * 256);
|
|
u32 invFog = 256 - fogInt;
|
|
|
|
output[RED_C] = (output[RED_C] * invFog + fogInt * bpmem.fog.color.r) >> 8;
|
|
output[GRN_C] = (output[GRN_C] * invFog + fogInt * bpmem.fog.color.g) >> 8;
|
|
output[BLU_C] = (output[BLU_C] * invFog + fogInt * bpmem.fog.color.b) >> 8;
|
|
}
|
|
|
|
bool late_ztest = !bpmem.zcontrol.early_ztest || !g_SWVideoConfig.bZComploc;
|
|
if (late_ztest && bpmem.zmode.testenable)
|
|
{
|
|
// TODO: Check against hw if these values get incremented even if depth testing is disabled
|
|
EfbInterface::IncPerfCounterQuadCount(PQ_ZCOMP_INPUT);
|
|
|
|
if (!EfbInterface::ZCompare(Position[0], Position[1], Position[2]))
|
|
return;
|
|
|
|
EfbInterface::IncPerfCounterQuadCount(PQ_ZCOMP_OUTPUT);
|
|
}
|
|
|
|
#if ALLOW_TEV_DUMPS
|
|
if (g_SWVideoConfig.bDumpTevStages)
|
|
{
|
|
for (u32 i = 0; i < bpmem.genMode.numindstages; ++i)
|
|
DebugUtil::CopyTempBuffer(Position[0], Position[1], INDIRECT, i, "Indirect");
|
|
for (u32 i = 0; i <= bpmem.genMode.numtevstages; ++i)
|
|
DebugUtil::CopyTempBuffer(Position[0], Position[1], DIRECT, i, "Stage");
|
|
}
|
|
|
|
if (g_SWVideoConfig.bDumpTevTextureFetches)
|
|
{
|
|
for (u32 i = 0; i <= bpmem.genMode.numtevstages; ++i)
|
|
{
|
|
TwoTevStageOrders &order = bpmem.tevorders[i >> 1];
|
|
if (order.getEnable(i & 1))
|
|
DebugUtil::CopyTempBuffer(Position[0], Position[1], DIRECT_TFETCH, i, "TFetch");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
INCSTAT(swstats.thisFrame.tevPixelsOut);
|
|
EfbInterface::IncPerfCounterQuadCount(PQ_BLEND_INPUT);
|
|
|
|
EfbInterface::BlendTev(Position[0], Position[1], output);
|
|
}
|
|
|
|
void Tev::SetRegColor(int reg, int comp, bool konst, s16 color)
|
|
{
|
|
if (konst)
|
|
{
|
|
KonstantColors[reg][comp] = color;
|
|
}
|
|
else
|
|
{
|
|
Reg[reg][comp] = color;
|
|
}
|
|
}
|
|
|
|
void Tev::DoState(PointerWrap &p)
|
|
{
|
|
p.DoArray(Reg, sizeof(Reg));
|
|
|
|
p.DoArray(KonstantColors, sizeof(KonstantColors));
|
|
p.DoArray(TexColor,4);
|
|
p.DoArray(RasColor,4);
|
|
p.DoArray(StageKonst,4);
|
|
p.DoArray(Zero16,4);
|
|
|
|
p.DoArray(FixedConstants,9);
|
|
p.Do(AlphaBump);
|
|
p.DoArray(IndirectTex, sizeof(IndirectTex));
|
|
p.Do(TexCoord);
|
|
|
|
p.DoArray(m_BiasLUT,4);
|
|
p.DoArray(m_ScaleLShiftLUT,4);
|
|
p.DoArray(m_ScaleRShiftLUT,4);
|
|
|
|
p.DoArray(Position,3);
|
|
p.DoArray(Color, sizeof(Color));
|
|
p.DoArray(Uv, 8);
|
|
p.DoArray(IndirectLod,4);
|
|
p.DoArray(IndirectLinear,4);
|
|
p.DoArray(TextureLod,16);
|
|
p.DoArray(TextureLinear,16);
|
|
}
|