dolphin/Source/Core/VideoCommon/TextureConversionShader.cpp
Pokechu22 290e62f179 Remove casts to integers for texture and EFB formats
The only remaining casts for these types that I know of are in TextureInfo (where format_name is set to the int version of the format, and since that affects filenames and probably would break resource packs, I'm not changing it) and in TextureDecoder_Common's TexDecoder_DrawOverlay, which will be handled separately.
2022-07-15 12:29:40 -07:00

1457 lines
48 KiB
C++

// Copyright 2009 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "VideoCommon/TextureConversionShader.h"
#include <map>
#include <sstream>
#include <string_view>
#include "Common/CommonTypes.h"
#include "Common/MathUtil.h"
#include "Common/MsgHandler.h"
#include "VideoCommon/ShaderGenCommon.h"
#include "VideoCommon/TextureCacheBase.h"
#include "VideoCommon/VertexManagerBase.h"
#include "VideoCommon/VideoCommon.h"
#include "VideoCommon/VideoConfig.h"
namespace TextureConversionShaderTiled
{
static bool IntensityConstantAdded = false;
u16 GetEncodedSampleCount(EFBCopyFormat format)
{
switch (format)
{
case EFBCopyFormat::R4:
return 8;
case EFBCopyFormat::RA4:
return 4;
case EFBCopyFormat::RA8:
return 2;
case EFBCopyFormat::RGB565:
return 2;
case EFBCopyFormat::RGB5A3:
return 2;
case EFBCopyFormat::RGBA8:
return 1;
case EFBCopyFormat::A8:
case EFBCopyFormat::R8_0x1:
case EFBCopyFormat::R8:
case EFBCopyFormat::G8:
case EFBCopyFormat::B8:
return 4;
case EFBCopyFormat::RG8:
case EFBCopyFormat::GB8:
return 2;
case EFBCopyFormat::XFB:
return 2;
default:
PanicAlertFmt("Invalid EFB Copy Format {}! (GetEncodedSampleCount)", format);
return 1;
}
}
static void WriteHeader(ShaderCode& code, APIType api_type)
{
// left, top, of source rectangle within source texture
// width of the destination rectangle, scale_factor (1 or 2)
code.Write("UBO_BINDING(std140, 1) uniform PSBlock {{\n"
" int4 position;\n"
" float y_scale;\n"
" float gamma_rcp;\n"
" float2 clamp_tb;\n"
" float3 filter_coefficients;\n"
"}};\n");
if (g_ActiveConfig.backend_info.bSupportsGeometryShaders)
{
code.Write("VARYING_LOCATION(0) in VertexData {{\n"
" float3 v_tex0;\n"
"}};\n");
}
else
{
code.Write("VARYING_LOCATION(0) in float3 v_tex0;\n");
}
code.Write("SAMPLER_BINDING(0) uniform sampler2DArray samp0;\n"
"FRAGMENT_OUTPUT_LOCATION(0) out float4 ocol0;\n");
// Alpha channel in the copy is set to 1 the EFB format does not have an alpha channel.
code.Write("float4 RGBA8ToRGB8(float4 src)\n"
"{{\n"
" return float4(src.xyz, 1.0);\n"
"}}\n"
"float4 RGBA8ToRGBA6(float4 src)\n"
"{{\n"
" int4 val = int4(roundEven(src * 255.0)) >> 2;\n"
" return float4(val) / 63.0;\n"
"}}\n"
"float4 RGBA8ToRGB565(float4 src)\n"
"{{\n"
" int4 val = int4(roundEven(src * 255.0));\n"
" val = int4(val.r >> 3, val.g >> 2, val.b >> 3, 1);\n"
" return float4(val) / float4(31.0, 63.0, 31.0, 1.0);\n"
"}}\n");
}
static void WriteSampleFunction(ShaderCode& code, const EFBCopyParams& params, APIType api_type)
{
const auto WriteSampleOp = [api_type, &code, &params](int yoffset) {
if (!params.depth)
{
switch (params.efb_format)
{
case PixelFormat::RGB8_Z24:
code.Write("RGBA8ToRGB8(");
break;
case PixelFormat::RGBA6_Z24:
code.Write("RGBA8ToRGBA6(");
break;
case PixelFormat::RGB565_Z16:
code.Write("RGBA8ToRGB565(");
break;
default:
code.Write("(");
break;
}
}
else
{
// Handle D3D depth inversion.
if (!g_ActiveConfig.backend_info.bSupportsReversedDepthRange)
code.Write("1.0 - (");
else
code.Write("(");
}
code.Write("texture(samp0, float3(");
code.Write("uv.x + float(xoffset) * pixel_size.x, ");
// Reverse the direction for OpenGL, since positive numbers are distance from the bottom row.
if (yoffset != 0)
{
if (api_type == APIType::OpenGL)
code.Write("clamp(uv.y - float({}) * pixel_size.y, clamp_tb.x, clamp_tb.y)", yoffset);
else
code.Write("clamp(uv.y + float({}) * pixel_size.y, clamp_tb.x, clamp_tb.y)", yoffset);
}
else
{
code.Write("uv.y");
}
code.Write(", 0.0)))");
};
// The copy filter applies to both color and depth copies. This has been verified on hardware.
// The filter is only applied to the RGB channels, the alpha channel is left intact.
code.Write("float4 SampleEFB(float2 uv, float2 pixel_size, int xoffset)\n"
"{{\n");
if (params.copy_filter)
{
code.Write(" float4 prev_row = ");
WriteSampleOp(-1);
code.Write(";\n"
" float4 current_row = ");
WriteSampleOp(0);
code.Write(";\n"
" float4 next_row = ");
WriteSampleOp(1);
code.Write(";\n"
" return float4(min(prev_row.rgb * filter_coefficients[0] +\n"
" current_row.rgb * filter_coefficients[1] +\n"
" next_row.rgb * filter_coefficients[2], \n"
" float3(1, 1, 1)), current_row.a);\n");
}
else
{
code.Write(" float4 current_row = ");
WriteSampleOp(0);
code.Write(";\n"
"return float4(min(current_row.rgb * filter_coefficients[1], float3(1, 1, 1)),\n"
" current_row.a);\n");
}
code.Write("}}\n");
}
// Block dimensions : widthStride, heightStride
// Texture dimensions : width, height, x offset, y offset
static void WriteSwizzler(ShaderCode& code, const EFBCopyParams& params, EFBCopyFormat format,
APIType api_type)
{
WriteHeader(code, api_type);
WriteSampleFunction(code, params, api_type);
code.Write("void main()\n"
"{{\n"
" int2 sampleUv;\n"
" int2 uv1 = int2(gl_FragCoord.xy);\n");
const int blkW = TexDecoder_GetEFBCopyBlockWidthInTexels(format);
const int blkH = TexDecoder_GetEFBCopyBlockHeightInTexels(format);
int samples = GetEncodedSampleCount(format);
code.Write(" int x_block_position = (uv1.x >> {}) << {};\n", IntLog2(blkH * blkW / samples),
IntLog2(blkW));
code.Write(" int y_block_position = uv1.y << {};\n", IntLog2(blkH));
if (samples == 1)
{
// With samples == 1, we write out pairs of blocks; one A8R8, one G8B8.
code.Write(" bool first = (uv1.x & {}) == 0;\n", blkH * blkW / 2);
samples = 2;
}
code.Write(" int offset_in_block = uv1.x & {};\n", (blkH * blkW / samples) - 1);
code.Write(" int y_offset_in_block = offset_in_block >> {};\n", IntLog2(blkW / samples));
code.Write(" int x_offset_in_block = (offset_in_block & {}) << {};\n", (blkW / samples) - 1,
IntLog2(samples));
code.Write(" sampleUv.x = x_block_position + x_offset_in_block;\n"
" sampleUv.y = y_block_position + y_offset_in_block;\n");
// sampleUv is the sample position in (int)gx_coords
code.Write(" float2 uv0 = float2(sampleUv);\n");
// Move to center of pixel
code.Write(" uv0 += float2(0.5, 0.5);\n");
// Scale by two if needed (also move to pixel borders
// so that linear filtering will average adjacent
// pixel)
code.Write(" uv0 *= float(position.w);\n");
// Move to copied rect
code.Write(" uv0 += float2(position.xy);\n");
// Normalize to [0:1]
code.Write(" uv0 /= float2({}, {});\n", EFB_WIDTH, EFB_HEIGHT);
// Apply the y scaling
code.Write(" uv0 /= float2(1, y_scale);\n");
// OGL has to flip up and down
if (api_type == APIType::OpenGL)
{
code.Write(" uv0.y = 1.0-uv0.y;\n");
}
code.Write(" float2 pixel_size = float2(position.w, position.w) / float2({}, {});\n", EFB_WIDTH,
EFB_HEIGHT);
}
static void WriteSampleColor(ShaderCode& code, std::string_view color_comp, std::string_view dest,
int x_offset, APIType api_type, const EFBCopyParams& params)
{
code.Write(" {} = SampleEFB(uv0, pixel_size, {}).{};\n", dest, x_offset, color_comp);
}
static void WriteColorToIntensity(ShaderCode& code, std::string_view src, std::string_view dest)
{
if (!IntensityConstantAdded)
{
code.Write(" float4 IntensityConst = float4(0.257f,0.504f,0.098f,0.0625f);\n");
IntensityConstantAdded = true;
}
code.Write(" {} = dot(IntensityConst.rgb, {}.rgb);\n", dest, src);
// don't add IntensityConst.a yet, because doing it later is faster and uses less instructions,
// due to vectorization
}
static void WriteToBitDepth(ShaderCode& code, u8 depth, std::string_view src, std::string_view dest)
{
code.Write(" {} = floor({} * 255.0 / exp2(8.0 - {}.0));\n", dest, src, depth);
}
static void WriteEncoderEnd(ShaderCode& code)
{
code.Write("}}\n");
IntensityConstantAdded = false;
}
static void WriteI8Encoder(ShaderCode& code, APIType api_type, const EFBCopyParams& params)
{
WriteSwizzler(code, params, EFBCopyFormat::R8, api_type);
code.Write(" float3 texSample;\n");
WriteSampleColor(code, "rgb", "texSample", 0, api_type, params);
WriteColorToIntensity(code, "texSample", "ocol0.b");
WriteSampleColor(code, "rgb", "texSample", 1, api_type, params);
WriteColorToIntensity(code, "texSample", "ocol0.g");
WriteSampleColor(code, "rgb", "texSample", 2, api_type, params);
WriteColorToIntensity(code, "texSample", "ocol0.r");
WriteSampleColor(code, "rgb", "texSample", 3, api_type, params);
WriteColorToIntensity(code, "texSample", "ocol0.a");
// See WriteColorToIntensity
code.Write(" ocol0.rgba += IntensityConst.aaaa;\n");
WriteEncoderEnd(code);
}
static void WriteI4Encoder(ShaderCode& code, APIType api_type, const EFBCopyParams& params)
{
WriteSwizzler(code, params, EFBCopyFormat::R4, api_type);
code.Write(" float3 texSample;\n"
" float4 color0;\n"
" float4 color1;\n");
WriteSampleColor(code, "rgb", "texSample", 0, api_type, params);
WriteColorToIntensity(code, "texSample", "color0.b");
WriteSampleColor(code, "rgb", "texSample", 1, api_type, params);
WriteColorToIntensity(code, "texSample", "color1.b");
WriteSampleColor(code, "rgb", "texSample", 2, api_type, params);
WriteColorToIntensity(code, "texSample", "color0.g");
WriteSampleColor(code, "rgb", "texSample", 3, api_type, params);
WriteColorToIntensity(code, "texSample", "color1.g");
WriteSampleColor(code, "rgb", "texSample", 4, api_type, params);
WriteColorToIntensity(code, "texSample", "color0.r");
WriteSampleColor(code, "rgb", "texSample", 5, api_type, params);
WriteColorToIntensity(code, "texSample", "color1.r");
WriteSampleColor(code, "rgb", "texSample", 6, api_type, params);
WriteColorToIntensity(code, "texSample", "color0.a");
WriteSampleColor(code, "rgb", "texSample", 7, api_type, params);
WriteColorToIntensity(code, "texSample", "color1.a");
code.Write(" color0.rgba += IntensityConst.aaaa;\n"
" color1.rgba += IntensityConst.aaaa;\n");
WriteToBitDepth(code, 4, "color0", "color0");
WriteToBitDepth(code, 4, "color1", "color1");
code.Write(" ocol0 = (color0 * 16.0 + color1) / 255.0;\n");
WriteEncoderEnd(code);
}
static void WriteIA8Encoder(ShaderCode& code, APIType api_type, const EFBCopyParams& params)
{
WriteSwizzler(code, params, EFBCopyFormat::RA8, api_type);
code.Write(" float4 texSample;\n");
WriteSampleColor(code, "rgba", "texSample", 0, api_type, params);
code.Write(" ocol0.b = texSample.a;\n");
WriteColorToIntensity(code, "texSample", "ocol0.g");
WriteSampleColor(code, "rgba", "texSample", 1, api_type, params);
code.Write(" ocol0.r = texSample.a;\n");
WriteColorToIntensity(code, "texSample", "ocol0.a");
code.Write(" ocol0.ga += IntensityConst.aa;\n");
WriteEncoderEnd(code);
}
static void WriteIA4Encoder(ShaderCode& code, APIType api_type, const EFBCopyParams& params)
{
WriteSwizzler(code, params, EFBCopyFormat::RA4, api_type);
code.Write(" float4 texSample;\n"
" float4 color0;\n"
" float4 color1;\n");
WriteSampleColor(code, "rgba", "texSample", 0, api_type, params);
code.Write(" color0.b = texSample.a;\n");
WriteColorToIntensity(code, "texSample", "color1.b");
WriteSampleColor(code, "rgba", "texSample", 1, api_type, params);
code.Write(" color0.g = texSample.a;\n");
WriteColorToIntensity(code, "texSample", "color1.g");
WriteSampleColor(code, "rgba", "texSample", 2, api_type, params);
code.Write(" color0.r = texSample.a;\n");
WriteColorToIntensity(code, "texSample", "color1.r");
WriteSampleColor(code, "rgba", "texSample", 3, api_type, params);
code.Write(" color0.a = texSample.a;\n");
WriteColorToIntensity(code, "texSample", "color1.a");
code.Write(" color1.rgba += IntensityConst.aaaa;\n");
WriteToBitDepth(code, 4, "color0", "color0");
WriteToBitDepth(code, 4, "color1", "color1");
code.Write(" ocol0 = (color0 * 16.0 + color1) / 255.0;\n");
WriteEncoderEnd(code);
}
static void WriteRGB565Encoder(ShaderCode& code, APIType api_type, const EFBCopyParams& params)
{
WriteSwizzler(code, params, EFBCopyFormat::RGB565, api_type);
code.Write(" float3 texSample0;\n"
" float3 texSample1;\n");
WriteSampleColor(code, "rgb", "texSample0", 0, api_type, params);
WriteSampleColor(code, "rgb", "texSample1", 1, api_type, params);
code.Write(" float2 texRs = float2(texSample0.r, texSample1.r);\n"
" float2 texGs = float2(texSample0.g, texSample1.g);\n"
" float2 texBs = float2(texSample0.b, texSample1.b);\n");
WriteToBitDepth(code, 6, "texGs", "float2 gInt");
code.Write(" float2 gUpper = floor(gInt / 8.0);\n"
" float2 gLower = gInt - gUpper * 8.0;\n");
WriteToBitDepth(code, 5, "texRs", "ocol0.br");
code.Write(" ocol0.br = ocol0.br * 8.0 + gUpper;\n");
WriteToBitDepth(code, 5, "texBs", "ocol0.ga");
code.Write(" ocol0.ga = ocol0.ga + gLower * 32.0;\n");
code.Write(" ocol0 = ocol0 / 255.0;\n");
WriteEncoderEnd(code);
}
static void WriteRGB5A3Encoder(ShaderCode& code, APIType api_type, const EFBCopyParams& params)
{
WriteSwizzler(code, params, EFBCopyFormat::RGB5A3, api_type);
code.Write(" float4 texSample;\n"
" float color0;\n"
" float gUpper;\n"
" float gLower;\n");
WriteSampleColor(code, "rgba", "texSample", 0, api_type, params);
// 0.8784 = 224 / 255 which is the maximum alpha value that can be represented in 3 bits
code.Write("if(texSample.a > 0.878f) {{\n");
WriteToBitDepth(code, 5, "texSample.g", "color0");
code.Write(" gUpper = floor(color0 / 8.0);\n"
" gLower = color0 - gUpper * 8.0;\n");
WriteToBitDepth(code, 5, "texSample.r", "ocol0.b");
code.Write(" ocol0.b = ocol0.b * 4.0 + gUpper + 128.0;\n");
WriteToBitDepth(code, 5, "texSample.b", "ocol0.g");
code.Write(" ocol0.g = ocol0.g + gLower * 32.0;\n");
code.Write("}} else {{\n");
WriteToBitDepth(code, 4, "texSample.r", "ocol0.b");
WriteToBitDepth(code, 4, "texSample.b", "ocol0.g");
WriteToBitDepth(code, 3, "texSample.a", "color0");
code.Write("ocol0.b = ocol0.b + color0 * 16.0;\n");
WriteToBitDepth(code, 4, "texSample.g", "color0");
code.Write("ocol0.g = ocol0.g + color0 * 16.0;\n");
code.Write("}}\n");
WriteSampleColor(code, "rgba", "texSample", 1, api_type, params);
code.Write("if(texSample.a > 0.878f) {{\n");
WriteToBitDepth(code, 5, "texSample.g", "color0");
code.Write(" gUpper = floor(color0 / 8.0);\n"
" gLower = color0 - gUpper * 8.0;\n");
WriteToBitDepth(code, 5, "texSample.r", "ocol0.r");
code.Write(" ocol0.r = ocol0.r * 4.0 + gUpper + 128.0;\n");
WriteToBitDepth(code, 5, "texSample.b", "ocol0.a");
code.Write(" ocol0.a = ocol0.a + gLower * 32.0;\n");
code.Write("}} else {{\n");
WriteToBitDepth(code, 4, "texSample.r", "ocol0.r");
WriteToBitDepth(code, 4, "texSample.b", "ocol0.a");
WriteToBitDepth(code, 3, "texSample.a", "color0");
code.Write("ocol0.r = ocol0.r + color0 * 16.0;\n");
WriteToBitDepth(code, 4, "texSample.g", "color0");
code.Write("ocol0.a = ocol0.a + color0 * 16.0;\n");
code.Write("}}\n");
code.Write(" ocol0 = ocol0 / 255.0;\n");
WriteEncoderEnd(code);
}
static void WriteRGBA8Encoder(ShaderCode& code, APIType api_type, const EFBCopyParams& params)
{
WriteSwizzler(code, params, EFBCopyFormat::RGBA8, api_type);
code.Write(" float4 texSample;\n"
" float4 color0;\n"
" float4 color1;\n");
WriteSampleColor(code, "rgba", "texSample", 0, api_type, params);
code.Write(" color0.b = texSample.a;\n"
" color0.g = texSample.r;\n"
" color1.b = texSample.g;\n"
" color1.g = texSample.b;\n");
WriteSampleColor(code, "rgba", "texSample", 1, api_type, params);
code.Write(" color0.r = texSample.a;\n"
" color0.a = texSample.r;\n"
" color1.r = texSample.g;\n"
" color1.a = texSample.b;\n");
code.Write(" ocol0 = first ? color0 : color1;\n");
WriteEncoderEnd(code);
}
static void WriteC4Encoder(ShaderCode& code, std::string_view comp, APIType api_type,
const EFBCopyParams& params)
{
WriteSwizzler(code, params, EFBCopyFormat::R4, api_type);
code.Write(" float4 color0;\n"
" float4 color1;\n");
WriteSampleColor(code, comp, "color0.b", 0, api_type, params);
WriteSampleColor(code, comp, "color1.b", 1, api_type, params);
WriteSampleColor(code, comp, "color0.g", 2, api_type, params);
WriteSampleColor(code, comp, "color1.g", 3, api_type, params);
WriteSampleColor(code, comp, "color0.r", 4, api_type, params);
WriteSampleColor(code, comp, "color1.r", 5, api_type, params);
WriteSampleColor(code, comp, "color0.a", 6, api_type, params);
WriteSampleColor(code, comp, "color1.a", 7, api_type, params);
WriteToBitDepth(code, 4, "color0", "color0");
WriteToBitDepth(code, 4, "color1", "color1");
code.Write(" ocol0 = (color0 * 16.0 + color1) / 255.0;\n");
WriteEncoderEnd(code);
}
static void WriteC8Encoder(ShaderCode& code, std::string_view comp, APIType api_type,
const EFBCopyParams& params)
{
WriteSwizzler(code, params, EFBCopyFormat::R8, api_type);
WriteSampleColor(code, comp, "ocol0.b", 0, api_type, params);
WriteSampleColor(code, comp, "ocol0.g", 1, api_type, params);
WriteSampleColor(code, comp, "ocol0.r", 2, api_type, params);
WriteSampleColor(code, comp, "ocol0.a", 3, api_type, params);
WriteEncoderEnd(code);
}
static void WriteCC4Encoder(ShaderCode& code, std::string_view comp, APIType api_type,
const EFBCopyParams& params)
{
WriteSwizzler(code, params, EFBCopyFormat::RA4, api_type);
code.Write(" float2 texSample;\n"
" float4 color0;\n"
" float4 color1;\n");
WriteSampleColor(code, comp, "texSample", 0, api_type, params);
code.Write(" color0.b = texSample.x;\n"
" color1.b = texSample.y;\n");
WriteSampleColor(code, comp, "texSample", 1, api_type, params);
code.Write(" color0.g = texSample.x;\n"
" color1.g = texSample.y;\n");
WriteSampleColor(code, comp, "texSample", 2, api_type, params);
code.Write(" color0.r = texSample.x;\n"
" color1.r = texSample.y;\n");
WriteSampleColor(code, comp, "texSample", 3, api_type, params);
code.Write(" color0.a = texSample.x;\n"
" color1.a = texSample.y;\n");
WriteToBitDepth(code, 4, "color0", "color0");
WriteToBitDepth(code, 4, "color1", "color1");
code.Write(" ocol0 = (color0 * 16.0 + color1) / 255.0;\n");
WriteEncoderEnd(code);
}
static void WriteCC8Encoder(ShaderCode& code, std::string_view comp, APIType api_type,
const EFBCopyParams& params)
{
WriteSwizzler(code, params, EFBCopyFormat::RA8, api_type);
WriteSampleColor(code, comp, "ocol0.bg", 0, api_type, params);
WriteSampleColor(code, comp, "ocol0.ra", 1, api_type, params);
WriteEncoderEnd(code);
}
static void WriteZ8Encoder(ShaderCode& code, std::string_view multiplier, APIType api_type,
const EFBCopyParams& params)
{
WriteSwizzler(code, params, EFBCopyFormat::G8, api_type);
code.Write(" float depth;\n");
WriteSampleColor(code, "r", "depth", 0, api_type, params);
code.Write("ocol0.b = frac(depth * {});\n", multiplier);
WriteSampleColor(code, "r", "depth", 1, api_type, params);
code.Write("ocol0.g = frac(depth * {});\n", multiplier);
WriteSampleColor(code, "r", "depth", 2, api_type, params);
code.Write("ocol0.r = frac(depth * {});\n", multiplier);
WriteSampleColor(code, "r", "depth", 3, api_type, params);
code.Write("ocol0.a = frac(depth * {});\n", multiplier);
WriteEncoderEnd(code);
}
static void WriteZ16Encoder(ShaderCode& code, APIType api_type, const EFBCopyParams& params)
{
WriteSwizzler(code, params, EFBCopyFormat::RA8, api_type);
code.Write(" float depth;\n"
" float3 expanded;\n");
// Byte order is reversed
WriteSampleColor(code, "r", "depth", 0, api_type, params);
code.Write(" depth *= 16777216.0;\n"
" expanded.r = floor(depth / (256.0 * 256.0));\n"
" depth -= expanded.r * 256.0 * 256.0;\n"
" expanded.g = floor(depth / 256.0);\n");
code.Write(" ocol0.b = expanded.g / 255.0;\n"
" ocol0.g = expanded.r / 255.0;\n");
WriteSampleColor(code, "r", "depth", 1, api_type, params);
code.Write(" depth *= 16777216.0;\n"
" expanded.r = floor(depth / (256.0 * 256.0));\n"
" depth -= expanded.r * 256.0 * 256.0;\n"
" expanded.g = floor(depth / 256.0);\n");
code.Write(" ocol0.r = expanded.g / 255.0;\n"
" ocol0.a = expanded.r / 255.0;\n");
WriteEncoderEnd(code);
}
static void WriteZ16LEncoder(ShaderCode& code, APIType api_type, const EFBCopyParams& params)
{
WriteSwizzler(code, params, EFBCopyFormat::GB8, api_type);
code.Write(" float depth;\n"
" float3 expanded;\n");
// Byte order is reversed
WriteSampleColor(code, "r", "depth", 0, api_type, params);
code.Write(" depth *= 16777216.0;\n"
" expanded.r = floor(depth / (256.0 * 256.0));\n"
" depth -= expanded.r * 256.0 * 256.0;\n"
" expanded.g = floor(depth / 256.0);\n"
" depth -= expanded.g * 256.0;\n"
" expanded.b = depth;\n");
code.Write(" ocol0.b = expanded.b / 255.0;\n"
" ocol0.g = expanded.g / 255.0;\n");
WriteSampleColor(code, "r", "depth", 1, api_type, params);
code.Write(" depth *= 16777216.0;\n"
" expanded.r = floor(depth / (256.0 * 256.0));\n"
" depth -= expanded.r * 256.0 * 256.0;\n"
" expanded.g = floor(depth / 256.0);\n"
" depth -= expanded.g * 256.0;\n"
" expanded.b = depth;\n");
code.Write(" ocol0.r = expanded.b / 255.0;\n"
" ocol0.a = expanded.g / 255.0;\n");
WriteEncoderEnd(code);
}
static void WriteZ24Encoder(ShaderCode& code, APIType api_type, const EFBCopyParams& params)
{
WriteSwizzler(code, params, EFBCopyFormat::RGBA8, api_type);
code.Write(" float depth0;\n"
" float depth1;\n"
" float3 expanded0;\n"
" float3 expanded1;\n");
WriteSampleColor(code, "r", "depth0", 0, api_type, params);
WriteSampleColor(code, "r", "depth1", 1, api_type, params);
for (int i = 0; i < 2; i++)
{
code.Write(" depth{} *= 16777216.0;\n", i);
code.Write(" expanded{}.r = floor(depth{} / (256.0 * 256.0));\n", i, i);
code.Write(" depth{} -= expanded{}.r * 256.0 * 256.0;\n", i, i);
code.Write(" expanded{}.g = floor(depth{} / 256.0);\n", i, i);
code.Write(" depth{} -= expanded{}.g * 256.0;\n", i, i);
code.Write(" expanded{}.b = depth{};\n", i, i);
}
code.Write(" if (!first) {{\n");
// Upper 16
code.Write(" ocol0.b = expanded0.g / 255.0;\n"
" ocol0.g = expanded0.b / 255.0;\n"
" ocol0.r = expanded1.g / 255.0;\n"
" ocol0.a = expanded1.b / 255.0;\n"
" }} else {{\n");
// Lower 8
code.Write(" ocol0.b = 1.0;\n"
" ocol0.g = expanded0.r / 255.0;\n"
" ocol0.r = 1.0;\n"
" ocol0.a = expanded1.r / 255.0;\n"
" }}\n");
WriteEncoderEnd(code);
}
static void WriteXFBEncoder(ShaderCode& code, APIType api_type, const EFBCopyParams& params)
{
WriteSwizzler(code, params, EFBCopyFormat::XFB, api_type);
code.Write("float3 color0, color1;\n");
WriteSampleColor(code, "rgb", "color0", 0, api_type, params);
WriteSampleColor(code, "rgb", "color1", 1, api_type, params);
// Gamma is only applied to XFB copies.
code.Write(" color0 = pow(abs(color0), float3(gamma_rcp, gamma_rcp, gamma_rcp));\n"
" color1 = pow(abs(color1), float3(gamma_rcp, gamma_rcp, gamma_rcp));\n");
// Convert to YUV.
code.Write(" const float3 y_const = float3(0.257, 0.504, 0.098);\n"
" const float3 u_const = float3(-0.148, -0.291, 0.439);\n"
" const float3 v_const = float3(0.439, -0.368, -0.071);\n"
" float3 average = (color0 + color1) * 0.5;\n"
" ocol0.b = dot(color0, y_const) + 0.0625;\n"
" ocol0.g = dot(average, u_const) + 0.5;\n"
" ocol0.r = dot(color1, y_const) + 0.0625;\n"
" ocol0.a = dot(average, v_const) + 0.5;\n");
WriteEncoderEnd(code);
}
std::string GenerateEncodingShader(const EFBCopyParams& params, APIType api_type)
{
ShaderCode code;
switch (params.copy_format)
{
case EFBCopyFormat::R4:
if (params.yuv)
WriteI4Encoder(code, api_type, params);
else
WriteC4Encoder(code, "r", api_type, params);
break;
case EFBCopyFormat::RA4:
if (params.yuv)
WriteIA4Encoder(code, api_type, params);
else
WriteCC4Encoder(code, "ar", api_type, params);
break;
case EFBCopyFormat::RA8:
if (params.yuv)
WriteIA8Encoder(code, api_type, params);
else
WriteCC8Encoder(code, "ar", api_type, params);
break;
case EFBCopyFormat::RGB565:
WriteRGB565Encoder(code, api_type, params);
break;
case EFBCopyFormat::RGB5A3:
WriteRGB5A3Encoder(code, api_type, params);
break;
case EFBCopyFormat::RGBA8:
if (params.depth)
WriteZ24Encoder(code, api_type, params);
else
WriteRGBA8Encoder(code, api_type, params);
break;
case EFBCopyFormat::A8:
WriteC8Encoder(code, "a", api_type, params);
break;
case EFBCopyFormat::R8_0x1:
case EFBCopyFormat::R8:
if (params.yuv)
WriteI8Encoder(code, api_type, params);
else
WriteC8Encoder(code, "r", api_type, params);
break;
case EFBCopyFormat::G8:
if (params.depth)
WriteZ8Encoder(code, "256.0", api_type, params); // Z8M
else
WriteC8Encoder(code, "g", api_type, params);
break;
case EFBCopyFormat::B8:
if (params.depth)
WriteZ8Encoder(code, "65536.0", api_type, params); // Z8L
else
WriteC8Encoder(code, "b", api_type, params);
break;
case EFBCopyFormat::RG8:
if (params.depth)
WriteZ16Encoder(code, api_type, params); // Z16H
else
WriteCC8Encoder(code, "gr", api_type, params);
break;
case EFBCopyFormat::GB8:
if (params.depth)
WriteZ16LEncoder(code, api_type, params); // Z16L
else
WriteCC8Encoder(code, "bg", api_type, params);
break;
case EFBCopyFormat::XFB:
WriteXFBEncoder(code, api_type, params);
break;
default:
PanicAlertFmt("Invalid EFB Copy Format {}! (GenerateEncodingShader)", params.copy_format);
break;
}
return code.GetBuffer();
}
// NOTE: In these uniforms, a row refers to a row of blocks, not texels.
static const char decoding_shader_header[] = R"(
#if defined(PALETTE_FORMAT_IA8) || defined(PALETTE_FORMAT_RGB565) || defined(PALETTE_FORMAT_RGB5A3)
#define HAS_PALETTE 1
#endif
UBO_BINDING(std140, 1) uniform UBO {
uint2 u_dst_size;
uint2 u_src_size;
uint u_src_offset;
uint u_src_row_stride;
uint u_palette_offset;
};
TEXEL_BUFFER_BINDING(0) uniform usamplerBuffer s_input_buffer;
#ifdef HAS_PALETTE
TEXEL_BUFFER_BINDING(1) uniform usamplerBuffer s_palette_buffer;
#endif
IMAGE_BINDING(rgba8, 0) uniform writeonly image2DArray output_image;
#define GROUP_MEMORY_BARRIER_WITH_SYNC memoryBarrierShared(); barrier();
#define GROUP_SHARED shared
#define DEFINE_MAIN(lx, ly) \
layout(local_size_x = lx, local_size_y = ly) in; \
void main()
uint Swap16(uint v)
{
// Convert BE to LE.
return ((v >> 8) | (v << 8)) & 0xFFFFu;
}
uint Convert3To8(uint v)
{
// Swizzle bits: 00000123 -> 12312312
return (v << 5) | (v << 2) | (v >> 1);
}
uint Convert4To8(uint v)
{
// Swizzle bits: 00001234 -> 12341234
return (v << 4) | v;
}
uint Convert5To8(uint v)
{
// Swizzle bits: 00012345 -> 12345123
return (v << 3) | (v >> 2);
}
uint Convert6To8(uint v)
{
// Swizzle bits: 00123456 -> 12345612
return (v << 2) | (v >> 4);
}
uint GetTiledTexelOffset(uint2 block_size, uint2 coords)
{
uint2 block = coords / block_size;
uint2 offset = coords % block_size;
uint buffer_pos = u_src_offset;
buffer_pos += block.y * u_src_row_stride;
buffer_pos += block.x * (block_size.x * block_size.y);
buffer_pos += offset.y * block_size.x;
buffer_pos += offset.x;
return buffer_pos;
}
#if defined(HAS_PALETTE)
uint4 GetPaletteColor(uint index)
{
// Fetch and swap BE to LE.
uint val = Swap16(texelFetch(s_palette_buffer, int(u_palette_offset + index)).x);
uint4 color;
#if defined(PALETTE_FORMAT_IA8)
uint a = bitfieldExtract(val, 8, 8);
uint i = bitfieldExtract(val, 0, 8);
color = uint4(i, i, i, a);
#elif defined(PALETTE_FORMAT_RGB565)
color.x = Convert5To8(bitfieldExtract(val, 11, 5));
color.y = Convert6To8(bitfieldExtract(val, 5, 6));
color.z = Convert5To8(bitfieldExtract(val, 0, 5));
color.a = 255u;
#elif defined(PALETTE_FORMAT_RGB5A3)
if ((val & 0x8000u) != 0u)
{
color.x = Convert5To8(bitfieldExtract(val, 10, 5));
color.y = Convert5To8(bitfieldExtract(val, 5, 5));
color.z = Convert5To8(bitfieldExtract(val, 0, 5));
color.a = 255u;
}
else
{
color.a = Convert3To8(bitfieldExtract(val, 12, 3));
color.r = Convert4To8(bitfieldExtract(val, 8, 4));
color.g = Convert4To8(bitfieldExtract(val, 4, 4));
color.b = Convert4To8(bitfieldExtract(val, 0, 4));
}
#else
// Not used.
color = uint4(0, 0, 0, 0);
#endif
return color;
}
float4 GetPaletteColorNormalized(uint index)
{
uint4 color = GetPaletteColor(index);
return float4(color) / 255.0;
}
#endif // defined(HAS_PALETTE)
)";
static const std::map<TextureFormat, DecodingShaderInfo> s_decoding_shader_info{
{TextureFormat::I4,
{TEXEL_BUFFER_FORMAT_R8_UINT, 0, 8, 8, false,
R"(
DEFINE_MAIN(8, 8)
{
uint2 coords = gl_GlobalInvocationID.xy;
// Tiled in 8x8 blocks, 4 bits per pixel
// We need to do the tiling manually here because the texel size is smaller than
// the size of the buffer elements.
uint2 block = coords.xy / 8u;
uint2 offset = coords.xy % 8u;
uint buffer_pos = u_src_offset;
buffer_pos += block.y * u_src_row_stride;
buffer_pos += block.x * 32u;
buffer_pos += offset.y * 4u;
buffer_pos += offset.x / 2u;
// Select high nibble for odd texels, low for even.
uint val = texelFetch(s_input_buffer, int(buffer_pos)).x;
uint i;
if ((coords.x & 1u) == 0u)
i = Convert4To8((val >> 4));
else
i = Convert4To8((val & 0x0Fu));
uint4 color = uint4(i, i, i, i);
float4 norm_color = float4(color) / 255.0;
imageStore(output_image, int3(int2(coords), 0), norm_color);
}
)"}},
{TextureFormat::IA4,
{TEXEL_BUFFER_FORMAT_R8_UINT, 0, 8, 8, false,
R"(
DEFINE_MAIN(8, 8)
{
uint2 coords = gl_GlobalInvocationID.xy;
// Tiled in 8x4 blocks, 8 bits per pixel
uint buffer_pos = GetTiledTexelOffset(uint2(8u, 4u), coords);
uint val = texelFetch(s_input_buffer, int(buffer_pos)).x;
uint i = Convert4To8((val & 0x0Fu));
uint a = Convert4To8((val >> 4));
uint4 color = uint4(i, i, i, a);
float4 norm_color = float4(color) / 255.0;
imageStore(output_image, int3(int2(coords), 0), norm_color);
}
)"}},
{TextureFormat::I8,
{TEXEL_BUFFER_FORMAT_R8_UINT, 0, 8, 8, false,
R"(
DEFINE_MAIN(8, 8)
{
uint2 coords = gl_GlobalInvocationID.xy;
// Tiled in 8x4 blocks, 8 bits per pixel
uint buffer_pos = GetTiledTexelOffset(uint2(8u, 4u), coords);
uint i = texelFetch(s_input_buffer, int(buffer_pos)).x;
uint4 color = uint4(i, i, i, i);
float4 norm_color = float4(color) / 255.0;
imageStore(output_image, int3(int2(coords), 0), norm_color);
}
)"}},
{TextureFormat::IA8,
{TEXEL_BUFFER_FORMAT_R16_UINT, 0, 8, 8, false,
R"(
DEFINE_MAIN(8, 8)
{
uint2 coords = gl_GlobalInvocationID.xy;
// Tiled in 4x4 blocks, 16 bits per pixel
uint buffer_pos = GetTiledTexelOffset(uint2(4u, 4u), coords);
uint val = texelFetch(s_input_buffer, int(buffer_pos)).x;
uint a = (val & 0xFFu);
uint i = (val >> 8);
uint4 color = uint4(i, i, i, a);
float4 norm_color = float4(color) / 255.0;
imageStore(output_image, int3(int2(coords), 0), norm_color);
}
)"}},
{TextureFormat::RGB565,
{TEXEL_BUFFER_FORMAT_R16_UINT, 0, 8, 8, false,
R"(
DEFINE_MAIN(8, 8)
{
uint2 coords = gl_GlobalInvocationID.xy;
// Tiled in 4x4 blocks
uint buffer_pos = GetTiledTexelOffset(uint2(4u, 4u), coords);
uint val = Swap16(texelFetch(s_input_buffer, int(buffer_pos)).x);
uint4 color;
color.x = Convert5To8(bitfieldExtract(val, 11, 5));
color.y = Convert6To8(bitfieldExtract(val, 5, 6));
color.z = Convert5To8(bitfieldExtract(val, 0, 5));
color.a = 255u;
float4 norm_color = float4(color) / 255.0;
imageStore(output_image, int3(int2(coords), 0), norm_color);
}
)"}},
{TextureFormat::RGB5A3,
{TEXEL_BUFFER_FORMAT_R16_UINT, 0, 8, 8, false,
R"(
DEFINE_MAIN(8, 8)
{
uint2 coords = gl_GlobalInvocationID.xy;
// Tiled in 4x4 blocks
uint buffer_pos = GetTiledTexelOffset(uint2(4u, 4u), coords);
uint val = Swap16(texelFetch(s_input_buffer, int(buffer_pos)).x);
uint4 color;
if ((val & 0x8000u) != 0u)
{
color.x = Convert5To8(bitfieldExtract(val, 10, 5));
color.y = Convert5To8(bitfieldExtract(val, 5, 5));
color.z = Convert5To8(bitfieldExtract(val, 0, 5));
color.a = 255u;
}
else
{
color.a = Convert3To8(bitfieldExtract(val, 12, 3));
color.r = Convert4To8(bitfieldExtract(val, 8, 4));
color.g = Convert4To8(bitfieldExtract(val, 4, 4));
color.b = Convert4To8(bitfieldExtract(val, 0, 4));
}
float4 norm_color = float4(color) / 255.0;
imageStore(output_image, int3(int2(coords), 0), norm_color);
}
)"}},
{TextureFormat::RGBA8,
{TEXEL_BUFFER_FORMAT_R16_UINT, 0, 8, 8, false,
R"(
DEFINE_MAIN(8, 8)
{
uint2 coords = gl_GlobalInvocationID.xy;
// Tiled in 4x4 blocks
// We can't use the normal calculation function, as these are packed as the AR channels
// for the entire block, then the GB channels afterwards.
uint2 block = coords.xy / 4u;
uint2 offset = coords.xy % 4u;
uint buffer_pos = u_src_offset;
// Our buffer has 16-bit elements, so the offsets here are half what they would be in bytes.
buffer_pos += block.y * u_src_row_stride;
buffer_pos += block.x * 32u;
buffer_pos += offset.y * 4u;
buffer_pos += offset.x;
// The two GB channels follow after the block's AR channels.
uint val1 = texelFetch(s_input_buffer, int(buffer_pos + 0u)).x;
uint val2 = texelFetch(s_input_buffer, int(buffer_pos + 16u)).x;
uint4 color;
color.a = (val1 & 0xFFu);
color.r = (val1 >> 8);
color.g = (val2 & 0xFFu);
color.b = (val2 >> 8);
float4 norm_color = float4(color) / 255.0;
imageStore(output_image, int3(int2(coords), 0), norm_color);
}
)"}},
{TextureFormat::CMPR,
{TEXEL_BUFFER_FORMAT_R32G32_UINT, 0, 64, 1, true,
R"(
// In the compute version of this decoder, we flatten the blocks to a one-dimension array.
// Each group is subdivided into 16, and the first thread in each group fetches the DXT data.
// All threads then calculate the possible colors for the block and write to the output image.
#define GROUP_SIZE 64u
#define BLOCK_SIZE_X 4u
#define BLOCK_SIZE_Y 4u
#define BLOCK_SIZE (BLOCK_SIZE_X * BLOCK_SIZE_Y)
#define BLOCKS_PER_GROUP (GROUP_SIZE / BLOCK_SIZE)
uint DXTBlend(uint v1, uint v2)
{
// 3/8 blend, which is close to 1/3
return ((v1 * 3u + v2 * 5u) >> 3);
}
GROUP_SHARED uint2 shared_temp[BLOCKS_PER_GROUP];
DEFINE_MAIN(GROUP_SIZE, 8)
{
uint local_thread_id = gl_LocalInvocationID.x;
uint block_in_group = local_thread_id / BLOCK_SIZE;
uint thread_in_block = local_thread_id % BLOCK_SIZE;
uint block_index = gl_WorkGroupID.x * BLOCKS_PER_GROUP + block_in_group;
// Annoyingly, we can't precalculate this as a uniform because the DXT block size differs
// from the block size of the overall texture (4 vs 8). We can however use a multiply and
// subtraction to avoid the modulo for calculating the block's X coordinate.
uint blocks_wide = u_src_size.x / BLOCK_SIZE_X;
uint2 block_coords;
block_coords.y = block_index / blocks_wide;
block_coords.x = block_index - (block_coords.y * blocks_wide);
// Only the first thread for each block reads from the texel buffer.
if (thread_in_block == 0u)
{
// Calculate tiled block coordinates.
uint2 tile_block_coords = block_coords / 2u;
uint2 subtile_block_coords = block_coords % 2u;
uint buffer_pos = u_src_offset;
buffer_pos += tile_block_coords.y * u_src_row_stride;
buffer_pos += tile_block_coords.x * 4u;
buffer_pos += subtile_block_coords.y * 2u;
buffer_pos += subtile_block_coords.x;
// Read the entire DXT block to shared memory.
uint2 raw_data = texelFetch(s_input_buffer, int(buffer_pos)).xy;
shared_temp[block_in_group] = raw_data;
}
// Ensure store is completed before the remaining threads in the block continue.
GROUP_MEMORY_BARRIER_WITH_SYNC;
// Unpack colors and swap BE to LE.
uint2 raw_data = shared_temp[block_in_group];
uint swapped = ((raw_data.x & 0xFF00FF00u) >> 8) | ((raw_data.x & 0x00FF00FFu) << 8);
uint c1 = swapped & 0xFFFFu;
uint c2 = swapped >> 16;
// Expand 5/6 bit channels to 8-bits per channel.
uint blue1 = Convert5To8(bitfieldExtract(c1, 0, 5));
uint blue2 = Convert5To8(bitfieldExtract(c2, 0, 5));
uint green1 = Convert6To8(bitfieldExtract(c1, 5, 6));
uint green2 = Convert6To8(bitfieldExtract(c2, 5, 6));
uint red1 = Convert5To8(bitfieldExtract(c1, 11, 5));
uint red2 = Convert5To8(bitfieldExtract(c2, 11, 5));
// Determine the four colors the block can use.
// It's quicker to just precalculate all four colors rather than branching on the index.
// NOTE: These must be masked with 0xFF. This is done at the normalization stage below.
uint4 color0, color1, color2, color3;
color0 = uint4(red1, green1, blue1, 255u);
color1 = uint4(red2, green2, blue2, 255u);
if (c1 > c2)
{
color2 = uint4(DXTBlend(red2, red1), DXTBlend(green2, green1), DXTBlend(blue2, blue1), 255u);
color3 = uint4(DXTBlend(red1, red2), DXTBlend(green1, green2), DXTBlend(blue1, blue2), 255u);
}
else
{
color2 = uint4((red1 + red2) / 2u, (green1 + green2) / 2u, (blue1 + blue2) / 2u, 255u);
color3 = uint4((red1 + red2) / 2u, (green1 + green2) / 2u, (blue1 + blue2) / 2u, 0u);
}
// Calculate the texel coordinates that we will write to.
// The divides/modulo here should be turned into a shift/binary AND.
uint local_y = thread_in_block / BLOCK_SIZE_X;
uint local_x = thread_in_block % BLOCK_SIZE_X;
uint global_x = block_coords.x * BLOCK_SIZE_X + local_x;
uint global_y = block_coords.y * BLOCK_SIZE_Y + local_y;
// Use the coordinates within the block to shift the 32-bit value containing
// all 16 indices to a single 2-bit index.
uint index = bitfieldExtract(raw_data.y, int((local_y * 8u) + (6u - local_x * 2u)), 2);
// Select the un-normalized color from the precalculated color array.
// Using a switch statement here removes the need for dynamic indexing of an array.
uint4 color;
switch (index)
{
case 0u: color = color0; break;
case 1u: color = color1; break;
case 2u: color = color2; break;
case 3u: color = color3; break;
default: color = color0; break;
}
// Normalize and write to the output image.
float4 norm_color = float4(color & 0xFFu) / 255.0;
imageStore(output_image, int3(int2(uint2(global_x, global_y)), 0), norm_color);
}
)"}},
{TextureFormat::C4,
{TEXEL_BUFFER_FORMAT_R8_UINT, static_cast<u32>(TexDecoder_GetPaletteSize(TextureFormat::C4)),
8, 8, false,
R"(
DEFINE_MAIN(8, 8)
{
uint2 coords = gl_GlobalInvocationID.xy;
// Tiled in 8x8 blocks, 4 bits per pixel
// We need to do the tiling manually here because the texel size is smaller than
// the size of the buffer elements.
uint2 block = coords.xy / 8u;
uint2 offset = coords.xy % 8u;
uint buffer_pos = u_src_offset;
buffer_pos += block.y * u_src_row_stride;
buffer_pos += block.x * 32u;
buffer_pos += offset.y * 4u;
buffer_pos += offset.x / 2u;
// Select high nibble for odd texels, low for even.
uint val = texelFetch(s_input_buffer, int(buffer_pos)).x;
uint index = ((coords.x & 1u) == 0u) ? (val >> 4) : (val & 0x0Fu);
float4 norm_color = GetPaletteColorNormalized(index);
imageStore(output_image, int3(int2(coords), 0), norm_color);
}
)"}},
{TextureFormat::C8,
{TEXEL_BUFFER_FORMAT_R8_UINT, static_cast<u32>(TexDecoder_GetPaletteSize(TextureFormat::C8)),
8, 8, false,
R"(
DEFINE_MAIN(8, 8)
{
uint2 coords = gl_GlobalInvocationID.xy;
// Tiled in 8x4 blocks, 8 bits per pixel
uint buffer_pos = GetTiledTexelOffset(uint2(8u, 4u), coords);
uint index = texelFetch(s_input_buffer, int(buffer_pos)).x;
float4 norm_color = GetPaletteColorNormalized(index);
imageStore(output_image, int3(int2(coords), 0), norm_color);
}
)"}},
{TextureFormat::C14X2,
{TEXEL_BUFFER_FORMAT_R16_UINT,
static_cast<u32>(TexDecoder_GetPaletteSize(TextureFormat::C14X2)), 8, 8, false,
R"(
DEFINE_MAIN(8, 8)
{
uint2 coords = gl_GlobalInvocationID.xy;
// Tiled in 4x4 blocks, 16 bits per pixel
uint buffer_pos = GetTiledTexelOffset(uint2(4u, 4u), coords);
uint index = Swap16(texelFetch(s_input_buffer, int(buffer_pos)).x) & 0x3FFFu;
float4 norm_color = GetPaletteColorNormalized(index);
imageStore(output_image, int3(int2(coords), 0), norm_color);
}
)"}},
// We do the inverse BT.601 conversion for YCbCr to RGB
// http://www.equasys.de/colorconversion.html#YCbCr-RGBColorFormatConversion
{TextureFormat::XFB,
{TEXEL_BUFFER_FORMAT_RGBA8_UINT, 0, 8, 8, false,
R"(
DEFINE_MAIN(8, 8)
{
uint2 uv = gl_GlobalInvocationID.xy;
int buffer_pos = int(u_src_offset + (uv.y * u_src_row_stride) + (uv.x / 2u));
float4 yuyv = float4(texelFetch(s_input_buffer, buffer_pos));
float y = (uv.x & 1u) != 0u ? yuyv.b : yuyv.r;
float yComp = 1.164 * (y - 16.0);
float uComp = yuyv.g - 128.0;
float vComp = yuyv.a - 128.0;
float4 rgb = float4(yComp + (1.596 * vComp),
yComp - (0.813 * vComp) - (0.391 * uComp),
yComp + (2.018 * uComp),
255.0);
float4 rgba_norm = rgb / 255.0;
imageStore(output_image, int3(int2(uv), 0), rgba_norm);
}
)"}}};
const DecodingShaderInfo* GetDecodingShaderInfo(TextureFormat format)
{
auto iter = s_decoding_shader_info.find(format);
return iter != s_decoding_shader_info.end() ? &iter->second : nullptr;
}
std::pair<u32, u32> GetDispatchCount(const DecodingShaderInfo* info, u32 width, u32 height)
{
// Flatten to a single dimension?
if (info->group_flatten)
return {(width * height + (info->group_size_x - 1)) / info->group_size_x, 1};
return {(width + (info->group_size_x - 1)) / info->group_size_x,
(height + (info->group_size_y - 1)) / info->group_size_y};
}
std::string GenerateDecodingShader(TextureFormat format, std::optional<TLUTFormat> palette_format,
APIType api_type)
{
const DecodingShaderInfo* info = GetDecodingShaderInfo(format);
if (!info)
return "";
std::ostringstream ss;
if (palette_format.has_value())
{
switch (*palette_format)
{
case TLUTFormat::IA8:
ss << "#define PALETTE_FORMAT_IA8 1\n";
break;
case TLUTFormat::RGB565:
ss << "#define PALETTE_FORMAT_RGB565 1\n";
break;
case TLUTFormat::RGB5A3:
ss << "#define PALETTE_FORMAT_RGB5A3 1\n";
break;
}
}
ss << decoding_shader_header;
ss << info->shader_body;
return ss.str();
}
std::string GeneratePaletteConversionShader(TLUTFormat palette_format, APIType api_type)
{
std::ostringstream ss;
ss << R"(
int Convert3To8(int v)
{
// Swizzle bits: 00000123 -> 12312312
return (v << 5) | (v << 2) | (v >> 1);
}
int Convert4To8(int v)
{
// Swizzle bits: 00001234 -> 12341234
return (v << 4) | v;
}
int Convert5To8(int v)
{
// Swizzle bits: 00012345 -> 12345123
return (v << 3) | (v >> 2);
}
int Convert6To8(int v)
{
// Swizzle bits: 00123456 -> 12345612
return (v << 2) | (v >> 4);
})";
switch (palette_format)
{
case TLUTFormat::IA8:
ss << R"(
float4 DecodePixel(int val)
{
int i = val & 0xFF;
int a = val >> 8;
return float4(i, i, i, a) / 255.0;
})";
break;
case TLUTFormat::RGB565:
ss << R"(
float4 DecodePixel(int val)
{
int r, g, b, a;
r = Convert5To8((val >> 11) & 0x1f);
g = Convert6To8((val >> 5) & 0x3f);
b = Convert5To8((val) & 0x1f);
a = 0xFF;
return float4(r, g, b, a) / 255.0;
})";
break;
case TLUTFormat::RGB5A3:
ss << R"(
float4 DecodePixel(int val)
{
int r,g,b,a;
if ((val&0x8000) > 0)
{
r=Convert5To8((val>>10) & 0x1f);
g=Convert5To8((val>>5 ) & 0x1f);
b=Convert5To8((val ) & 0x1f);
a=0xFF;
}
else
{
a=Convert3To8((val>>12) & 0x7);
r=Convert4To8((val>>8 ) & 0xf);
g=Convert4To8((val>>4 ) & 0xf);
b=Convert4To8((val ) & 0xf);
}
return float4(r, g, b, a) / 255.0;
})";
break;
default:
PanicAlertFmt("Unknown format");
break;
}
ss << "\n";
ss << "TEXEL_BUFFER_BINDING(0) uniform usamplerBuffer samp0;\n";
ss << "SAMPLER_BINDING(1) uniform sampler2DArray samp1;\n";
ss << "UBO_BINDING(std140, 1) uniform PSBlock {\n";
ss << " float multiplier;\n";
ss << " int texel_buffer_offset;\n";
ss << "};\n";
if (g_ActiveConfig.backend_info.bSupportsGeometryShaders)
{
ss << "VARYING_LOCATION(0) in VertexData {\n";
ss << " float3 v_tex0;\n";
ss << "};\n";
}
else
{
ss << "VARYING_LOCATION(0) in float3 v_tex0;\n";
}
ss << "FRAGMENT_OUTPUT_LOCATION(0) out float4 ocol0;\n";
ss << "void main() {\n";
ss << " float3 coords = v_tex0;\n";
ss << " int src = int(round(texture(samp1, coords).r * multiplier));\n";
ss << " src = int(texelFetch(samp0, src + texel_buffer_offset).r);\n";
ss << " src = ((src << 8) & 0xFF00) | (src >> 8);\n";
ss << " ocol0 = DecodePixel(src);\n";
ss << "}\n";
return ss.str();
}
} // namespace TextureConversionShaderTiled