mirror of
https://github.com/dolphin-emu/dolphin.git
synced 2025-01-15 10:39:13 +01:00
076392a0f6
This increases accuracy, fixing the white rendering in Major Minor's Majestic March. However, the hardware backends can only have one viewport and scissor rectangle at a time, while sometimes multiple are needed to accurately emulate what is happening. If possible, this will need to be fixed later.
463 lines
15 KiB
C++
463 lines
15 KiB
C++
// Copyright 2009 Dolphin Emulator Project
|
|
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
|
|
#include "VideoCommon/BPFunctions.h"
|
|
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <string_view>
|
|
|
|
#include "Common/Assert.h"
|
|
#include "Common/CommonTypes.h"
|
|
#include "Common/Logging/Log.h"
|
|
|
|
#include "VideoCommon/AbstractFramebuffer.h"
|
|
#include "VideoCommon/BPMemory.h"
|
|
#include "VideoCommon/FramebufferManager.h"
|
|
#include "VideoCommon/RenderBase.h"
|
|
#include "VideoCommon/RenderState.h"
|
|
#include "VideoCommon/VertexManagerBase.h"
|
|
#include "VideoCommon/VideoCommon.h"
|
|
#include "VideoCommon/VideoConfig.h"
|
|
#include "VideoCommon/XFMemory.h"
|
|
|
|
namespace BPFunctions
|
|
{
|
|
// ----------------------------------------------
|
|
// State translation lookup tables
|
|
// Reference: Yet Another GameCube Documentation
|
|
// ----------------------------------------------
|
|
|
|
void FlushPipeline()
|
|
{
|
|
g_vertex_manager->Flush();
|
|
}
|
|
|
|
void SetGenerationMode()
|
|
{
|
|
g_vertex_manager->SetRasterizationStateChanged();
|
|
}
|
|
|
|
int ScissorRect::GetArea() const
|
|
{
|
|
return rect.GetWidth() * rect.GetHeight();
|
|
}
|
|
|
|
int ScissorResult::GetViewportArea(const ScissorRect& rect) const
|
|
{
|
|
int x0 = std::clamp<int>(rect.rect.left + rect.x_off, viewport_left, viewport_right);
|
|
int x1 = std::clamp<int>(rect.rect.right + rect.x_off, viewport_left, viewport_right);
|
|
|
|
int y0 = std::clamp<int>(rect.rect.top + rect.y_off, viewport_top, viewport_bottom);
|
|
int y1 = std::clamp<int>(rect.rect.bottom + rect.y_off, viewport_top, viewport_bottom);
|
|
|
|
return (x1 - x0) * (y1 - y0);
|
|
}
|
|
|
|
// Compare so that a sorted collection of rectangles has the best one last, so that if they're drawn
|
|
// in order, the best one is the one that is drawn last (and thus over the rest).
|
|
// The exact iteration order on hardware hasn't been tested, but silly things can happen where a
|
|
// polygon can intersect with itself; this only applies outside of the viewport region (in areas
|
|
// that would normally be affected by clipping). No game is known to care about this.
|
|
bool ScissorResult::IsWorse(const ScissorRect& lhs, const ScissorRect& rhs) const
|
|
{
|
|
// First, penalize any rect that is not in the viewport
|
|
int lhs_area = GetViewportArea(lhs);
|
|
int rhs_area = GetViewportArea(rhs);
|
|
|
|
if (lhs_area != rhs_area)
|
|
return lhs_area < rhs_area;
|
|
|
|
// Now compare on total areas, without regard for the viewport
|
|
return lhs.GetArea() < rhs.GetArea();
|
|
}
|
|
|
|
namespace
|
|
{
|
|
// Dynamically sized small array of ScissorRanges (used as an heap-less alternative to std::vector
|
|
// to reduce allocation overhead)
|
|
struct RangeList
|
|
{
|
|
static constexpr u32 MAX_RANGES = 9;
|
|
|
|
u32 m_num_ranges = 0;
|
|
std::array<ScissorRange, MAX_RANGES> m_ranges{};
|
|
|
|
void AddRange(int offset, int start, int end)
|
|
{
|
|
DEBUG_ASSERT(m_num_ranges < MAX_RANGES);
|
|
m_ranges[m_num_ranges] = ScissorRange(offset, start, end);
|
|
m_num_ranges++;
|
|
}
|
|
auto begin() const { return m_ranges.begin(); }
|
|
auto end() const { return m_ranges.begin() + m_num_ranges; }
|
|
|
|
u32 size() { return m_num_ranges; }
|
|
};
|
|
|
|
static RangeList ComputeScissorRanges(int start, int end, int offset, int efb_dim)
|
|
{
|
|
RangeList ranges;
|
|
|
|
for (int extra_off = -4096; extra_off <= 4096; extra_off += 1024)
|
|
{
|
|
int new_off = offset + extra_off;
|
|
int new_start = std::clamp(start - new_off, 0, efb_dim);
|
|
int new_end = std::clamp(end - new_off + 1, 0, efb_dim);
|
|
if (new_start < new_end)
|
|
{
|
|
ranges.AddRange(new_off, new_start, new_end);
|
|
}
|
|
}
|
|
|
|
return ranges;
|
|
}
|
|
} // namespace
|
|
|
|
ScissorResult::ScissorResult(const BPMemory& bpmemory, const XFMemory& xfmemory)
|
|
: ScissorResult(bpmemory,
|
|
std::minmax(xfmemory.viewport.xOrig - xfmemory.viewport.wd,
|
|
xfmemory.viewport.xOrig + xfmemory.viewport.wd),
|
|
std::minmax(xfmemory.viewport.yOrig - xfmemory.viewport.ht,
|
|
xfmemory.viewport.yOrig + xfmemory.viewport.ht))
|
|
{
|
|
}
|
|
ScissorResult::ScissorResult(const BPMemory& bpmemory, std::pair<float, float> viewport_x,
|
|
std::pair<float, float> viewport_y)
|
|
: scissor_tl{.hex = bpmemory.scissorTL.hex}, scissor_br{.hex = bpmemory.scissorBR.hex},
|
|
scissor_off{.hex = bpmemory.scissorOffset.hex}, viewport_left(viewport_x.first),
|
|
viewport_right(viewport_x.second), viewport_top(viewport_y.first),
|
|
viewport_bottom(viewport_y.second)
|
|
{
|
|
// Range is [left, right] and [top, bottom] (closed intervals)
|
|
const int left = scissor_tl.x;
|
|
const int right = scissor_br.x;
|
|
const int top = scissor_tl.y;
|
|
const int bottom = scissor_br.y;
|
|
// When left > right or top > bottom, nothing renders (even with wrapping from the offsets)
|
|
if (left > right || top > bottom)
|
|
return;
|
|
|
|
// Note that both the offsets and the coordinates have 342 added to them internally by GX
|
|
// functions (for the offsets, this is before they are divided by 2/right shifted). This code
|
|
// could undo both sets of offsets, but it doesn't need to since they cancel out when subtracting
|
|
// (and those offsets actually matter for the left > right and top > bottom checks).
|
|
const int x_off = scissor_off.x << 1;
|
|
const int y_off = scissor_off.y << 1;
|
|
|
|
RangeList x_ranges = ComputeScissorRanges(left, right, x_off, EFB_WIDTH);
|
|
RangeList y_ranges = ComputeScissorRanges(top, bottom, y_off, EFB_HEIGHT);
|
|
|
|
m_result.reserve(x_ranges.size() * y_ranges.size());
|
|
|
|
// Now we need to form actual rectangles from the x and y ranges,
|
|
// which is a simple Cartesian product of x_ranges_clamped and y_ranges_clamped.
|
|
// Each rectangle is also a Cartesian product of x_range and y_range, with
|
|
// the rectangles being half-open (of the form [x0, x1) X [y0, y1)).
|
|
for (const auto& x_range : x_ranges)
|
|
{
|
|
DEBUG_ASSERT(x_range.start < x_range.end);
|
|
DEBUG_ASSERT(x_range.end <= EFB_WIDTH);
|
|
for (const auto& y_range : y_ranges)
|
|
{
|
|
DEBUG_ASSERT(y_range.start < y_range.end);
|
|
DEBUG_ASSERT(y_range.end <= EFB_HEIGHT);
|
|
m_result.emplace_back(x_range, y_range);
|
|
}
|
|
}
|
|
|
|
auto cmp = [&](const ScissorRect& lhs, const ScissorRect& rhs) { return IsWorse(lhs, rhs); };
|
|
std::sort(m_result.begin(), m_result.end(), cmp);
|
|
}
|
|
|
|
ScissorRect ScissorResult::Best() const
|
|
{
|
|
// For now, simply choose the best rectangle (see ScissorResult::IsWorse).
|
|
// This does mean we calculate all rectangles and only choose one, which is not optimal, but this
|
|
// is called infrequently. Eventually, all backends will support multiple scissor rects.
|
|
if (!m_result.empty())
|
|
{
|
|
return m_result.back();
|
|
}
|
|
else
|
|
{
|
|
// But if we have no rectangles, use a bogus one that's out of bounds.
|
|
// Ideally, all backends will support multiple scissor rects, in which case this won't be
|
|
// needed.
|
|
return ScissorRect(ScissorRange{0, 1000, 1001}, ScissorRange{0, 1000, 1001});
|
|
}
|
|
}
|
|
|
|
ScissorResult ComputeScissorRects()
|
|
{
|
|
return ScissorResult{bpmem, xfmem};
|
|
}
|
|
|
|
void SetScissorAndViewport()
|
|
{
|
|
auto native_rc = ComputeScissorRects().Best();
|
|
|
|
auto target_rc = g_renderer->ConvertEFBRectangle(native_rc.rect);
|
|
auto converted_rc =
|
|
g_renderer->ConvertFramebufferRectangle(target_rc, g_renderer->GetCurrentFramebuffer());
|
|
g_renderer->SetScissorRect(converted_rc);
|
|
|
|
float raw_x = (xfmem.viewport.xOrig - native_rc.x_off) - xfmem.viewport.wd;
|
|
float raw_y = (xfmem.viewport.yOrig - native_rc.y_off) + xfmem.viewport.ht;
|
|
float raw_width = 2.0f * xfmem.viewport.wd;
|
|
float raw_height = -2.0f * xfmem.viewport.ht;
|
|
if (g_ActiveConfig.UseVertexRounding())
|
|
{
|
|
// Round the viewport to match full 1x IR pixels as well.
|
|
// This eliminates a line in the archery mode in Wii Sports Resort at 3x IR and higher.
|
|
raw_x = std::round(raw_x);
|
|
raw_y = std::round(raw_y);
|
|
raw_width = std::round(raw_width);
|
|
raw_height = std::round(raw_height);
|
|
}
|
|
|
|
float x = g_renderer->EFBToScaledXf(raw_x);
|
|
float y = g_renderer->EFBToScaledYf(raw_y);
|
|
float width = g_renderer->EFBToScaledXf(raw_width);
|
|
float height = g_renderer->EFBToScaledYf(raw_height);
|
|
float min_depth = (xfmem.viewport.farZ - xfmem.viewport.zRange) / 16777216.0f;
|
|
float max_depth = xfmem.viewport.farZ / 16777216.0f;
|
|
if (width < 0.f)
|
|
{
|
|
x += width;
|
|
width *= -1;
|
|
}
|
|
if (height < 0.f)
|
|
{
|
|
y += height;
|
|
height *= -1;
|
|
}
|
|
|
|
// The maximum depth that is written to the depth buffer should never exceed this value.
|
|
// This is necessary because we use a 2^24 divisor for all our depth values to prevent
|
|
// floating-point round-trip errors. However the console GPU doesn't ever write a value
|
|
// to the depth buffer that exceeds 2^24 - 1.
|
|
constexpr float GX_MAX_DEPTH = 16777215.0f / 16777216.0f;
|
|
if (!g_ActiveConfig.backend_info.bSupportsDepthClamp)
|
|
{
|
|
// There's no way to support oversized depth ranges in this situation. Let's just clamp the
|
|
// range to the maximum value supported by the console GPU and hope for the best.
|
|
min_depth = std::clamp(min_depth, 0.0f, GX_MAX_DEPTH);
|
|
max_depth = std::clamp(max_depth, 0.0f, GX_MAX_DEPTH);
|
|
}
|
|
|
|
if (g_renderer->UseVertexDepthRange())
|
|
{
|
|
// We need to ensure depth values are clamped the maximum value supported by the console GPU.
|
|
// Taking into account whether the depth range is inverted or not.
|
|
if (xfmem.viewport.zRange < 0.0f && g_ActiveConfig.backend_info.bSupportsReversedDepthRange)
|
|
{
|
|
min_depth = GX_MAX_DEPTH;
|
|
max_depth = 0.0f;
|
|
}
|
|
else
|
|
{
|
|
min_depth = 0.0f;
|
|
max_depth = GX_MAX_DEPTH;
|
|
}
|
|
}
|
|
|
|
float near_depth, far_depth;
|
|
if (g_ActiveConfig.backend_info.bSupportsReversedDepthRange)
|
|
{
|
|
// Set the reversed depth range.
|
|
near_depth = max_depth;
|
|
far_depth = min_depth;
|
|
}
|
|
else
|
|
{
|
|
// We use an inverted depth range here to apply the Reverse Z trick.
|
|
// This trick makes sure we match the precision provided by the 1:0
|
|
// clipping depth range on the hardware.
|
|
near_depth = 1.0f - max_depth;
|
|
far_depth = 1.0f - min_depth;
|
|
}
|
|
|
|
// Lower-left flip.
|
|
if (g_ActiveConfig.backend_info.bUsesLowerLeftOrigin)
|
|
y = static_cast<float>(g_renderer->GetCurrentFramebuffer()->GetHeight()) - y - height;
|
|
|
|
g_renderer->SetViewport(x, y, width, height, near_depth, far_depth);
|
|
}
|
|
|
|
void SetDepthMode()
|
|
{
|
|
g_vertex_manager->SetDepthStateChanged();
|
|
}
|
|
|
|
void SetBlendMode()
|
|
{
|
|
g_vertex_manager->SetBlendingStateChanged();
|
|
}
|
|
|
|
/* Explanation of the magic behind ClearScreen:
|
|
There's numerous possible formats for the pixel data in the EFB.
|
|
However, in the HW accelerated backends we're always using RGBA8
|
|
for the EFB format, which causes some problems:
|
|
- We're using an alpha channel although the game doesn't
|
|
- If the actual EFB format is RGBA6_Z24 or R5G6B5_Z16, we are using more bits per channel than the
|
|
native HW
|
|
|
|
To properly emulate the above points, we're doing the following:
|
|
(1)
|
|
- disable alpha channel writing of any kind of rendering if the actual EFB format doesn't use an
|
|
alpha channel
|
|
- NOTE: Always make sure that the EFB has been cleared to an alpha value of 0xFF in this case!
|
|
- Same for color channels, these need to be cleared to 0x00 though.
|
|
(2)
|
|
- convert the RGBA8 color to RGBA6/RGB8/RGB565 and convert it to RGBA8 again
|
|
- convert the Z24 depth value to Z16 and back to Z24
|
|
*/
|
|
void ClearScreen(const MathUtil::Rectangle<int>& rc)
|
|
{
|
|
bool colorEnable = (bpmem.blendmode.colorupdate != 0);
|
|
bool alphaEnable = (bpmem.blendmode.alphaupdate != 0);
|
|
bool zEnable = (bpmem.zmode.updateenable != 0);
|
|
auto pixel_format = bpmem.zcontrol.pixel_format;
|
|
|
|
// (1): Disable unused color channels
|
|
if (pixel_format == PixelFormat::RGB8_Z24 || pixel_format == PixelFormat::RGB565_Z16 ||
|
|
pixel_format == PixelFormat::Z24)
|
|
{
|
|
alphaEnable = false;
|
|
}
|
|
|
|
if (colorEnable || alphaEnable || zEnable)
|
|
{
|
|
u32 color = (bpmem.clearcolorAR << 16) | bpmem.clearcolorGB;
|
|
u32 z = bpmem.clearZValue;
|
|
|
|
// (2) drop additional accuracy
|
|
if (pixel_format == PixelFormat::RGBA6_Z24)
|
|
{
|
|
color = RGBA8ToRGBA6ToRGBA8(color);
|
|
}
|
|
else if (pixel_format == PixelFormat::RGB565_Z16)
|
|
{
|
|
color = RGBA8ToRGB565ToRGBA8(color);
|
|
z = Z24ToZ16ToZ24(z);
|
|
}
|
|
g_renderer->ClearScreen(rc, colorEnable, alphaEnable, zEnable, color, z);
|
|
}
|
|
}
|
|
|
|
void OnPixelFormatChange()
|
|
{
|
|
// TODO : Check for Z compression format change
|
|
// When using 16bit Z, the game may enable a special compression format which we might need to
|
|
// handle. Only a few games like RS2 and RS3 even use z compression but it looks like they
|
|
// always use ZFAR when using 16bit Z (on top of linear 24bit Z)
|
|
|
|
// Besides, we currently don't even emulate 16bit depth and force it to 24bit.
|
|
|
|
/*
|
|
* When changing the EFB format, the pixel data won't get converted to the new format but stays
|
|
* the same.
|
|
* Since we are always using an RGBA8 buffer though, this causes issues in some games.
|
|
* Thus, we reinterpret the old EFB data with the new format here.
|
|
*/
|
|
if (!g_ActiveConfig.bEFBEmulateFormatChanges)
|
|
return;
|
|
|
|
const auto old_format = g_renderer->GetPrevPixelFormat();
|
|
const auto new_format = bpmem.zcontrol.pixel_format;
|
|
g_renderer->StorePixelFormat(new_format);
|
|
|
|
DEBUG_LOG_FMT(VIDEO, "pixelfmt: pixel={}, zc={}", new_format, bpmem.zcontrol.zformat);
|
|
|
|
// no need to reinterpret pixel data in these cases
|
|
if (new_format == old_format || old_format == PixelFormat::INVALID_FMT)
|
|
return;
|
|
|
|
// Check for pixel format changes
|
|
switch (old_format)
|
|
{
|
|
case PixelFormat::RGB8_Z24:
|
|
case PixelFormat::Z24:
|
|
{
|
|
// Z24 and RGB8_Z24 are treated equal, so just return in this case
|
|
if (new_format == PixelFormat::RGB8_Z24 || new_format == PixelFormat::Z24)
|
|
return;
|
|
|
|
if (new_format == PixelFormat::RGBA6_Z24)
|
|
{
|
|
g_renderer->ReinterpretPixelData(EFBReinterpretType::RGB8ToRGBA6);
|
|
return;
|
|
}
|
|
else if (new_format == PixelFormat::RGB565_Z16)
|
|
{
|
|
g_renderer->ReinterpretPixelData(EFBReinterpretType::RGB8ToRGB565);
|
|
return;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case PixelFormat::RGBA6_Z24:
|
|
{
|
|
if (new_format == PixelFormat::RGB8_Z24 || new_format == PixelFormat::Z24)
|
|
{
|
|
g_renderer->ReinterpretPixelData(EFBReinterpretType::RGBA6ToRGB8);
|
|
return;
|
|
}
|
|
else if (new_format == PixelFormat::RGB565_Z16)
|
|
{
|
|
g_renderer->ReinterpretPixelData(EFBReinterpretType::RGBA6ToRGB565);
|
|
return;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case PixelFormat::RGB565_Z16:
|
|
{
|
|
if (new_format == PixelFormat::RGB8_Z24 || new_format == PixelFormat::Z24)
|
|
{
|
|
g_renderer->ReinterpretPixelData(EFBReinterpretType::RGB565ToRGB8);
|
|
return;
|
|
}
|
|
else if (new_format == PixelFormat::RGBA6_Z24)
|
|
{
|
|
g_renderer->ReinterpretPixelData(EFBReinterpretType::RGB565ToRGBA6);
|
|
return;
|
|
}
|
|
}
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
ERROR_LOG_FMT(VIDEO, "Unhandled EFB format change: {} to {}", old_format, new_format);
|
|
}
|
|
|
|
void SetInterlacingMode(const BPCmd& bp)
|
|
{
|
|
// TODO
|
|
switch (bp.address)
|
|
{
|
|
case BPMEM_FIELDMODE:
|
|
{
|
|
// SDK always sets bpmem.lineptwidth.lineaspect via BPMEM_LINEPTWIDTH
|
|
// just before this cmd
|
|
DEBUG_LOG_FMT(VIDEO, "BPMEM_FIELDMODE texLOD:{} lineaspect:{}", bpmem.fieldmode.texLOD,
|
|
bpmem.lineptwidth.adjust_for_aspect_ratio);
|
|
}
|
|
break;
|
|
case BPMEM_FIELDMASK:
|
|
{
|
|
// Determines if fields will be written to EFB (always computed)
|
|
DEBUG_LOG_FMT(VIDEO, "BPMEM_FIELDMASK even:{} odd:{}", bpmem.fieldmask.even,
|
|
bpmem.fieldmask.odd);
|
|
}
|
|
break;
|
|
default:
|
|
ERROR_LOG_FMT(VIDEO, "SetInterlacingMode default");
|
|
break;
|
|
}
|
|
}
|
|
}; // namespace BPFunctions
|