dolphin/Source/Core/VideoBackends/Vulkan/VulkanContext.cpp
Lioncash 2b9389202e VideoCommon: Remove unused MathUtil.h include from VideoCommon.h
This header doesn't actually make use of MathUtil.h within itself, so
this can be removed. Many other source files used VideoCommon.h as an
indirect include to include MathUtil.h, so these includes can also be
adjusted.

While we're at it, we can also migrate valid inclusions of VideoCommon.h
into cpp files where it can feasibly be done to minimize propagating it
via other headers.
2019-07-16 20:54:34 -04:00

916 lines
35 KiB
C++

// Copyright 2016 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include <algorithm>
#include <array>
#include <cstring>
#include "Common/Assert.h"
#include "Common/CommonFuncs.h"
#include "Common/Logging/Log.h"
#include "Common/MsgHandler.h"
#include "Common/StringUtil.h"
#include "VideoBackends/Vulkan/VulkanContext.h"
#include "VideoCommon/DriverDetails.h"
#include "VideoCommon/VideoCommon.h"
namespace Vulkan
{
std::unique_ptr<VulkanContext> g_vulkan_context;
VulkanContext::VulkanContext(VkInstance instance, VkPhysicalDevice physical_device)
: m_instance(instance), m_physical_device(physical_device)
{
// Read device physical memory properties, we need it for allocating buffers
vkGetPhysicalDeviceProperties(physical_device, &m_device_properties);
vkGetPhysicalDeviceMemoryProperties(physical_device, &m_device_memory_properties);
// Would any drivers be this silly? I hope not...
m_device_properties.limits.minUniformBufferOffsetAlignment = std::max(
m_device_properties.limits.minUniformBufferOffsetAlignment, static_cast<VkDeviceSize>(1));
m_device_properties.limits.minTexelBufferOffsetAlignment = std::max(
m_device_properties.limits.minTexelBufferOffsetAlignment, static_cast<VkDeviceSize>(1));
m_device_properties.limits.optimalBufferCopyOffsetAlignment = std::max(
m_device_properties.limits.optimalBufferCopyOffsetAlignment, static_cast<VkDeviceSize>(1));
m_device_properties.limits.optimalBufferCopyRowPitchAlignment = std::max(
m_device_properties.limits.optimalBufferCopyRowPitchAlignment, static_cast<VkDeviceSize>(1));
}
VulkanContext::~VulkanContext()
{
if (m_device != VK_NULL_HANDLE)
vkDestroyDevice(m_device, nullptr);
if (m_debug_report_callback != VK_NULL_HANDLE)
DisableDebugReports();
vkDestroyInstance(m_instance, nullptr);
}
bool VulkanContext::CheckValidationLayerAvailablility()
{
u32 extension_count = 0;
VkResult res = vkEnumerateInstanceExtensionProperties(nullptr, &extension_count, nullptr);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkEnumerateInstanceExtensionProperties failed: ");
return false;
}
std::vector<VkExtensionProperties> extension_list(extension_count);
res = vkEnumerateInstanceExtensionProperties(nullptr, &extension_count, extension_list.data());
ASSERT(res == VK_SUCCESS);
u32 layer_count = 0;
res = vkEnumerateInstanceLayerProperties(&layer_count, nullptr);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkEnumerateInstanceExtensionProperties failed: ");
return false;
}
std::vector<VkLayerProperties> layer_list(layer_count);
res = vkEnumerateInstanceLayerProperties(&layer_count, layer_list.data());
ASSERT(res == VK_SUCCESS);
// Check for both VK_EXT_debug_report and VK_LAYER_LUNARG_standard_validation
return (std::find_if(extension_list.begin(), extension_list.end(),
[](const auto& it) {
return strcmp(it.extensionName, VK_EXT_DEBUG_REPORT_EXTENSION_NAME) == 0;
}) != extension_list.end() &&
std::find_if(layer_list.begin(), layer_list.end(), [](const auto& it) {
return strcmp(it.layerName, "VK_LAYER_LUNARG_standard_validation") == 0;
}) != layer_list.end());
}
VkInstance VulkanContext::CreateVulkanInstance(WindowSystemType wstype, bool enable_debug_report,
bool enable_validation_layer)
{
ExtensionList enabled_extensions;
if (!SelectInstanceExtensions(&enabled_extensions, wstype, enable_debug_report))
return VK_NULL_HANDLE;
VkApplicationInfo app_info = {};
app_info.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO;
app_info.pNext = nullptr;
app_info.pApplicationName = "Dolphin Emulator";
app_info.applicationVersion = VK_MAKE_VERSION(5, 0, 0);
app_info.pEngineName = "Dolphin Emulator";
app_info.engineVersion = VK_MAKE_VERSION(5, 0, 0);
app_info.apiVersion = VK_MAKE_VERSION(1, 0, 0);
// Try for Vulkan 1.1 if the loader supports it.
if (vkEnumerateInstanceVersion)
{
u32 supported_api_version = 0;
VkResult res = vkEnumerateInstanceVersion(&supported_api_version);
if (res == VK_SUCCESS && (VK_VERSION_MAJOR(supported_api_version) > 1 ||
VK_VERSION_MINOR(supported_api_version) >= 1))
{
// The device itself may not support 1.1, so we check that before using any 1.1 functionality.
app_info.apiVersion = VK_MAKE_VERSION(1, 1, 0);
}
}
VkInstanceCreateInfo instance_create_info = {};
instance_create_info.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
instance_create_info.pNext = nullptr;
instance_create_info.flags = 0;
instance_create_info.pApplicationInfo = &app_info;
instance_create_info.enabledExtensionCount = static_cast<uint32_t>(enabled_extensions.size());
instance_create_info.ppEnabledExtensionNames = enabled_extensions.data();
instance_create_info.enabledLayerCount = 0;
instance_create_info.ppEnabledLayerNames = nullptr;
// Enable debug layer on debug builds
if (enable_validation_layer)
{
static const char* layer_names[] = {"VK_LAYER_LUNARG_standard_validation"};
instance_create_info.enabledLayerCount = 1;
instance_create_info.ppEnabledLayerNames = layer_names;
}
VkInstance instance;
VkResult res = vkCreateInstance(&instance_create_info, nullptr, &instance);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkCreateInstance failed: ");
return nullptr;
}
return instance;
}
bool VulkanContext::SelectInstanceExtensions(ExtensionList* extension_list, WindowSystemType wstype,
bool enable_debug_report)
{
u32 extension_count = 0;
VkResult res = vkEnumerateInstanceExtensionProperties(nullptr, &extension_count, nullptr);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkEnumerateInstanceExtensionProperties failed: ");
return false;
}
if (extension_count == 0)
{
ERROR_LOG(VIDEO, "Vulkan: No extensions supported by instance.");
return false;
}
std::vector<VkExtensionProperties> available_extension_list(extension_count);
res = vkEnumerateInstanceExtensionProperties(nullptr, &extension_count,
available_extension_list.data());
ASSERT(res == VK_SUCCESS);
for (const auto& extension_properties : available_extension_list)
INFO_LOG(VIDEO, "Available extension: %s", extension_properties.extensionName);
auto SupportsExtension = [&](const char* name, bool required) {
if (std::find_if(available_extension_list.begin(), available_extension_list.end(),
[&](const VkExtensionProperties& properties) {
return !strcmp(name, properties.extensionName);
}) != available_extension_list.end())
{
INFO_LOG(VIDEO, "Enabling extension: %s", name);
extension_list->push_back(name);
return true;
}
if (required)
ERROR_LOG(VIDEO, "Vulkan: Missing required extension %s.", name);
return false;
};
// Common extensions
if (wstype != WindowSystemType::Headless &&
!SupportsExtension(VK_KHR_SURFACE_EXTENSION_NAME, true))
{
return false;
}
#if defined(VK_USE_PLATFORM_WIN32_KHR)
if (wstype == WindowSystemType::Windows &&
!SupportsExtension(VK_KHR_WIN32_SURFACE_EXTENSION_NAME, true))
{
return false;
}
#endif
#if defined(VK_USE_PLATFORM_XLIB_KHR)
if (wstype == WindowSystemType::X11 &&
!SupportsExtension(VK_KHR_XLIB_SURFACE_EXTENSION_NAME, true))
{
return false;
}
#endif
#if defined(VK_USE_PLATFORM_ANDROID_KHR)
if (wstype == WindowSystemType::Android &&
!SupportsExtension(VK_KHR_ANDROID_SURFACE_EXTENSION_NAME, true))
{
return false;
}
#endif
#if defined(VK_USE_PLATFORM_MACOS_MVK)
if (wstype == WindowSystemType::MacOS &&
!SupportsExtension(VK_MVK_MACOS_SURFACE_EXTENSION_NAME, true))
{
return false;
}
#endif
// VK_EXT_debug_report
if (enable_debug_report && !SupportsExtension(VK_EXT_DEBUG_REPORT_EXTENSION_NAME, false))
WARN_LOG(VIDEO, "Vulkan: Debug report requested, but extension is not available.");
return true;
}
VulkanContext::GPUList VulkanContext::EnumerateGPUs(VkInstance instance)
{
u32 gpu_count = 0;
VkResult res = vkEnumeratePhysicalDevices(instance, &gpu_count, nullptr);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkEnumeratePhysicalDevices failed: ");
return {};
}
GPUList gpus;
gpus.resize(gpu_count);
res = vkEnumeratePhysicalDevices(instance, &gpu_count, gpus.data());
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkEnumeratePhysicalDevices failed: ");
return {};
}
return gpus;
}
void VulkanContext::PopulateBackendInfo(VideoConfig* config)
{
config->backend_info.api_type = APIType::Vulkan;
config->backend_info.bSupportsExclusiveFullscreen = false; // Currently WSI does not allow this.
config->backend_info.bSupports3DVision = false; // D3D-exclusive.
config->backend_info.bSupportsOversizedViewports = true; // Assumed support.
config->backend_info.bSupportsEarlyZ = true; // Assumed support.
config->backend_info.bSupportsPrimitiveRestart = true; // Assumed support.
config->backend_info.bSupportsBindingLayout = false; // Assumed support.
config->backend_info.bSupportsPaletteConversion = true; // Assumed support.
config->backend_info.bSupportsClipControl = true; // Assumed support.
config->backend_info.bSupportsMultithreading = true; // Assumed support.
config->backend_info.bSupportsComputeShaders = true; // Assumed support.
config->backend_info.bSupportsGPUTextureDecoding = true; // Assumed support.
config->backend_info.bSupportsBitfield = true; // Assumed support.
config->backend_info.bSupportsPartialDepthCopies = true; // Assumed support.
config->backend_info.bSupportsShaderBinaries = true; // Assumed support.
config->backend_info.bSupportsPipelineCacheData = false; // Handled via pipeline caches.
config->backend_info.bSupportsDynamicSamplerIndexing = true; // Assumed support.
config->backend_info.bSupportsPostProcessing = true; // Assumed support.
config->backend_info.bSupportsBackgroundCompiling = true; // Assumed support.
config->backend_info.bSupportsCopyToVram = true; // Assumed support.
config->backend_info.bSupportsDualSourceBlend = false; // Dependent on features.
config->backend_info.bSupportsGeometryShaders = false; // Dependent on features.
config->backend_info.bSupportsGSInstancing = false; // Dependent on features.
config->backend_info.bSupportsBBox = false; // Dependent on features.
config->backend_info.bSupportsFragmentStoresAndAtomics = false; // Dependent on features.
config->backend_info.bSupportsSSAA = false; // Dependent on features.
config->backend_info.bSupportsDepthClamp = false; // Dependent on features.
config->backend_info.bSupportsST3CTextures = false; // Dependent on features.
config->backend_info.bSupportsBPTCTextures = false; // Dependent on features.
config->backend_info.bSupportsLogicOp = false; // Dependent on features.
config->backend_info.bSupportsLargePoints = false; // Dependent on features.
config->backend_info.bSupportsReversedDepthRange = false; // No support yet due to driver bugs.
config->backend_info.bSupportsFramebufferFetch = false; // No support.
}
void VulkanContext::PopulateBackendInfoAdapters(VideoConfig* config, const GPUList& gpu_list)
{
config->backend_info.Adapters.clear();
for (VkPhysicalDevice physical_device : gpu_list)
{
VkPhysicalDeviceProperties properties;
vkGetPhysicalDeviceProperties(physical_device, &properties);
config->backend_info.Adapters.push_back(properties.deviceName);
}
}
void VulkanContext::PopulateBackendInfoFeatures(VideoConfig* config, VkPhysicalDevice gpu,
const VkPhysicalDeviceProperties& properties,
const VkPhysicalDeviceFeatures& features)
{
config->backend_info.MaxTextureSize = properties.limits.maxImageDimension2D;
config->backend_info.bUsesLowerLeftOrigin = false;
config->backend_info.bSupportsDualSourceBlend = (features.dualSrcBlend == VK_TRUE);
config->backend_info.bSupportsGeometryShaders = (features.geometryShader == VK_TRUE);
config->backend_info.bSupportsGSInstancing = (features.geometryShader == VK_TRUE);
config->backend_info.bSupportsBBox = config->backend_info.bSupportsFragmentStoresAndAtomics =
(features.fragmentStoresAndAtomics == VK_TRUE);
config->backend_info.bSupportsSSAA = (features.sampleRateShading == VK_TRUE);
config->backend_info.bSupportsLogicOp = (features.logicOp == VK_TRUE);
// Disable geometry shader when shaderTessellationAndGeometryPointSize is not supported.
// Seems this is needed for gl_Layer.
if (!features.shaderTessellationAndGeometryPointSize)
{
config->backend_info.bSupportsGeometryShaders = VK_FALSE;
config->backend_info.bSupportsGSInstancing = VK_FALSE;
}
// Depth clamping implies shaderClipDistance and depthClamp
config->backend_info.bSupportsDepthClamp =
(features.depthClamp == VK_TRUE && features.shaderClipDistance == VK_TRUE);
// textureCompressionBC implies BC1 through BC7, which is a superset of DXT1/3/5, which we need.
const bool supports_bc = features.textureCompressionBC == VK_TRUE;
config->backend_info.bSupportsST3CTextures = supports_bc;
config->backend_info.bSupportsBPTCTextures = supports_bc;
// Some devices don't support point sizes >1 (e.g. Adreno).
// If we can't use a point size above our maximum IR, use triangles instead for EFB pokes.
// This means a 6x increase in the size of the vertices, though.
config->backend_info.bSupportsLargePoints = features.largePoints &&
properties.limits.pointSizeRange[0] <= 1.0f &&
properties.limits.pointSizeRange[1] >= 16;
// Our usage of primitive restart appears to be broken on AMD's binary drivers.
// Seems to be fine on GCN Gen 1-2, unconfirmed on GCN Gen 3, causes driver resets on GCN Gen 4.
if (DriverDetails::HasBug(DriverDetails::BUG_PRIMITIVE_RESTART))
config->backend_info.bSupportsPrimitiveRestart = false;
}
void VulkanContext::PopulateBackendInfoMultisampleModes(
VideoConfig* config, VkPhysicalDevice gpu, const VkPhysicalDeviceProperties& properties)
{
// Query image support for the EFB texture formats.
VkImageFormatProperties efb_color_properties = {};
vkGetPhysicalDeviceImageFormatProperties(
gpu, VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_TYPE_2D, VK_IMAGE_TILING_OPTIMAL,
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, 0, &efb_color_properties);
VkImageFormatProperties efb_depth_properties = {};
vkGetPhysicalDeviceImageFormatProperties(
gpu, VK_FORMAT_D32_SFLOAT, VK_IMAGE_TYPE_2D, VK_IMAGE_TILING_OPTIMAL,
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, 0, &efb_depth_properties);
// We can only support MSAA if it's supported on our render target formats.
VkSampleCountFlags supported_sample_counts = properties.limits.framebufferColorSampleCounts &
properties.limits.framebufferDepthSampleCounts &
efb_color_properties.sampleCounts &
efb_depth_properties.sampleCounts;
// No AA
config->backend_info.AAModes.clear();
config->backend_info.AAModes.emplace_back(1);
// 2xMSAA/SSAA
if (supported_sample_counts & VK_SAMPLE_COUNT_2_BIT)
config->backend_info.AAModes.emplace_back(2);
// 4xMSAA/SSAA
if (supported_sample_counts & VK_SAMPLE_COUNT_4_BIT)
config->backend_info.AAModes.emplace_back(4);
// 8xMSAA/SSAA
if (supported_sample_counts & VK_SAMPLE_COUNT_8_BIT)
config->backend_info.AAModes.emplace_back(8);
// 16xMSAA/SSAA
if (supported_sample_counts & VK_SAMPLE_COUNT_16_BIT)
config->backend_info.AAModes.emplace_back(16);
// 32xMSAA/SSAA
if (supported_sample_counts & VK_SAMPLE_COUNT_32_BIT)
config->backend_info.AAModes.emplace_back(32);
// 64xMSAA/SSAA
if (supported_sample_counts & VK_SAMPLE_COUNT_64_BIT)
config->backend_info.AAModes.emplace_back(64);
}
std::unique_ptr<VulkanContext> VulkanContext::Create(VkInstance instance, VkPhysicalDevice gpu,
VkSurfaceKHR surface,
bool enable_debug_reports,
bool enable_validation_layer)
{
std::unique_ptr<VulkanContext> context = std::make_unique<VulkanContext>(instance, gpu);
// Initialize DriverDetails so that we can check for bugs to disable features if needed.
context->InitDriverDetails();
context->PopulateShaderSubgroupSupport();
// Enable debug reports if the "Host GPU" log category is enabled.
if (enable_debug_reports)
context->EnableDebugReports();
// Attempt to create the device.
if (!context->CreateDevice(surface, enable_validation_layer))
{
// Since we are destroying the instance, we're also responsible for destroying the surface.
if (surface != VK_NULL_HANDLE)
vkDestroySurfaceKHR(instance, surface, nullptr);
return nullptr;
}
return context;
}
bool VulkanContext::SelectDeviceExtensions(ExtensionList* extension_list, bool enable_surface)
{
u32 extension_count = 0;
VkResult res =
vkEnumerateDeviceExtensionProperties(m_physical_device, nullptr, &extension_count, nullptr);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkEnumerateDeviceExtensionProperties failed: ");
return false;
}
if (extension_count == 0)
{
ERROR_LOG(VIDEO, "Vulkan: No extensions supported by device.");
return false;
}
std::vector<VkExtensionProperties> available_extension_list(extension_count);
res = vkEnumerateDeviceExtensionProperties(m_physical_device, nullptr, &extension_count,
available_extension_list.data());
ASSERT(res == VK_SUCCESS);
for (const auto& extension_properties : available_extension_list)
INFO_LOG(VIDEO, "Available extension: %s", extension_properties.extensionName);
auto SupportsExtension = [&](const char* name, bool required) {
if (std::find_if(available_extension_list.begin(), available_extension_list.end(),
[&](const VkExtensionProperties& properties) {
return !strcmp(name, properties.extensionName);
}) != available_extension_list.end())
{
INFO_LOG(VIDEO, "Enabling extension: %s", name);
extension_list->push_back(name);
return true;
}
if (required)
ERROR_LOG(VIDEO, "Vulkan: Missing required extension %s.", name);
return false;
};
if (enable_surface && !SupportsExtension(VK_KHR_SWAPCHAIN_EXTENSION_NAME, true))
return false;
return true;
}
bool VulkanContext::SelectDeviceFeatures()
{
VkPhysicalDeviceProperties properties;
vkGetPhysicalDeviceProperties(m_physical_device, &properties);
VkPhysicalDeviceFeatures available_features;
vkGetPhysicalDeviceFeatures(m_physical_device, &available_features);
// Not having geometry shaders or wide lines will cause issues with rendering.
if (!available_features.geometryShader && !available_features.wideLines)
WARN_LOG(VIDEO, "Vulkan: Missing both geometryShader and wideLines features.");
if (!available_features.largePoints)
WARN_LOG(VIDEO, "Vulkan: Missing large points feature. CPU EFB writes will be slower.");
if (!available_features.occlusionQueryPrecise)
WARN_LOG(VIDEO, "Vulkan: Missing precise occlusion queries. Perf queries will be inaccurate.");
// Enable the features we use.
m_device_features.dualSrcBlend = available_features.dualSrcBlend;
m_device_features.geometryShader = available_features.geometryShader;
m_device_features.samplerAnisotropy = available_features.samplerAnisotropy;
m_device_features.logicOp = available_features.logicOp;
m_device_features.fragmentStoresAndAtomics = available_features.fragmentStoresAndAtomics;
m_device_features.sampleRateShading = available_features.sampleRateShading;
m_device_features.largePoints = available_features.largePoints;
m_device_features.shaderStorageImageMultisample =
available_features.shaderStorageImageMultisample;
m_device_features.shaderTessellationAndGeometryPointSize =
available_features.shaderTessellationAndGeometryPointSize;
m_device_features.occlusionQueryPrecise = available_features.occlusionQueryPrecise;
m_device_features.shaderClipDistance = available_features.shaderClipDistance;
m_device_features.depthClamp = available_features.depthClamp;
m_device_features.textureCompressionBC = available_features.textureCompressionBC;
return true;
}
bool VulkanContext::CreateDevice(VkSurfaceKHR surface, bool enable_validation_layer)
{
u32 queue_family_count;
vkGetPhysicalDeviceQueueFamilyProperties(m_physical_device, &queue_family_count, nullptr);
if (queue_family_count == 0)
{
ERROR_LOG(VIDEO, "No queue families found on specified vulkan physical device.");
return false;
}
std::vector<VkQueueFamilyProperties> queue_family_properties(queue_family_count);
vkGetPhysicalDeviceQueueFamilyProperties(m_physical_device, &queue_family_count,
queue_family_properties.data());
INFO_LOG(VIDEO, "%u vulkan queue families", queue_family_count);
// Find graphics and present queues.
m_graphics_queue_family_index = queue_family_count;
m_present_queue_family_index = queue_family_count;
for (uint32_t i = 0; i < queue_family_count; i++)
{
VkBool32 graphics_supported = queue_family_properties[i].queueFlags & VK_QUEUE_GRAPHICS_BIT;
if (graphics_supported)
{
m_graphics_queue_family_index = i;
// Quit now, no need for a present queue.
if (!surface)
{
break;
}
}
if (surface)
{
VkBool32 present_supported;
VkResult res =
vkGetPhysicalDeviceSurfaceSupportKHR(m_physical_device, i, surface, &present_supported);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkGetPhysicalDeviceSurfaceSupportKHR failed: ");
return false;
}
if (present_supported)
{
m_present_queue_family_index = i;
}
// Prefer one queue family index that does both graphics and present.
if (graphics_supported && present_supported)
{
break;
}
}
}
if (m_graphics_queue_family_index == queue_family_count)
{
ERROR_LOG(VIDEO, "Vulkan: Failed to find an acceptable graphics queue.");
return false;
}
if (surface && m_present_queue_family_index == queue_family_count)
{
ERROR_LOG(VIDEO, "Vulkan: Failed to find an acceptable present queue.");
return false;
}
VkDeviceCreateInfo device_info = {};
device_info.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;
device_info.pNext = nullptr;
device_info.flags = 0;
static constexpr float queue_priorities[] = {1.0f};
VkDeviceQueueCreateInfo graphics_queue_info = {};
graphics_queue_info.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
graphics_queue_info.pNext = nullptr;
graphics_queue_info.flags = 0;
graphics_queue_info.queueFamilyIndex = m_graphics_queue_family_index;
graphics_queue_info.queueCount = 1;
graphics_queue_info.pQueuePriorities = queue_priorities;
VkDeviceQueueCreateInfo present_queue_info = {};
present_queue_info.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
present_queue_info.pNext = nullptr;
present_queue_info.flags = 0;
present_queue_info.queueFamilyIndex = m_present_queue_family_index;
present_queue_info.queueCount = 1;
present_queue_info.pQueuePriorities = queue_priorities;
std::array<VkDeviceQueueCreateInfo, 2> queue_infos = {{
graphics_queue_info,
present_queue_info,
}};
device_info.queueCreateInfoCount = 1;
if (m_graphics_queue_family_index != m_present_queue_family_index)
{
device_info.queueCreateInfoCount = 2;
}
device_info.pQueueCreateInfos = queue_infos.data();
ExtensionList enabled_extensions;
if (!SelectDeviceExtensions(&enabled_extensions, surface != VK_NULL_HANDLE))
return false;
device_info.enabledLayerCount = 0;
device_info.ppEnabledLayerNames = nullptr;
device_info.enabledExtensionCount = static_cast<uint32_t>(enabled_extensions.size());
device_info.ppEnabledExtensionNames = enabled_extensions.data();
// Check for required features before creating.
if (!SelectDeviceFeatures())
return false;
device_info.pEnabledFeatures = &m_device_features;
// Enable debug layer on debug builds
if (enable_validation_layer)
{
static const char* layer_names[] = {"VK_LAYER_LUNARG_standard_validation"};
device_info.enabledLayerCount = 1;
device_info.ppEnabledLayerNames = layer_names;
}
VkResult res = vkCreateDevice(m_physical_device, &device_info, nullptr, &m_device);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkCreateDevice failed: ");
return false;
}
// With the device created, we can fill the remaining entry points.
if (!LoadVulkanDeviceFunctions(m_device))
return false;
// Grab the graphics and present queues.
vkGetDeviceQueue(m_device, m_graphics_queue_family_index, 0, &m_graphics_queue);
if (surface)
{
vkGetDeviceQueue(m_device, m_present_queue_family_index, 0, &m_present_queue);
}
return true;
}
static VKAPI_ATTR VkBool32 VKAPI_CALL DebugReportCallback(VkDebugReportFlagsEXT flags,
VkDebugReportObjectTypeEXT objectType,
uint64_t object, size_t location,
int32_t messageCode,
const char* pLayerPrefix,
const char* pMessage, void* pUserData)
{
std::string log_message =
StringFromFormat("Vulkan debug report: (%s) %s", pLayerPrefix ? pLayerPrefix : "", pMessage);
if (flags & VK_DEBUG_REPORT_ERROR_BIT_EXT)
GENERIC_LOG(LogTypes::HOST_GPU, LogTypes::LERROR, "%s", log_message.c_str());
else if (flags & (VK_DEBUG_REPORT_WARNING_BIT_EXT | VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT))
GENERIC_LOG(LogTypes::HOST_GPU, LogTypes::LWARNING, "%s", log_message.c_str());
else if (flags & VK_DEBUG_REPORT_INFORMATION_BIT_EXT)
GENERIC_LOG(LogTypes::HOST_GPU, LogTypes::LINFO, "%s", log_message.c_str());
else
GENERIC_LOG(LogTypes::HOST_GPU, LogTypes::LDEBUG, "%s", log_message.c_str());
return VK_FALSE;
}
bool VulkanContext::EnableDebugReports()
{
// Already enabled?
if (m_debug_report_callback != VK_NULL_HANDLE)
return true;
// Check for presence of the functions before calling
if (!vkCreateDebugReportCallbackEXT || !vkDestroyDebugReportCallbackEXT ||
!vkDebugReportMessageEXT)
{
return false;
}
VkDebugReportCallbackCreateInfoEXT callback_info = {
VK_STRUCTURE_TYPE_DEBUG_REPORT_CALLBACK_CREATE_INFO_EXT, nullptr,
VK_DEBUG_REPORT_ERROR_BIT_EXT | VK_DEBUG_REPORT_WARNING_BIT_EXT |
VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT | VK_DEBUG_REPORT_INFORMATION_BIT_EXT |
VK_DEBUG_REPORT_DEBUG_BIT_EXT,
DebugReportCallback, nullptr};
VkResult res =
vkCreateDebugReportCallbackEXT(m_instance, &callback_info, nullptr, &m_debug_report_callback);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkCreateDebugReportCallbackEXT failed: ");
return false;
}
return true;
}
void VulkanContext::DisableDebugReports()
{
if (m_debug_report_callback != VK_NULL_HANDLE)
{
vkDestroyDebugReportCallbackEXT(m_instance, m_debug_report_callback, nullptr);
m_debug_report_callback = VK_NULL_HANDLE;
}
}
bool VulkanContext::GetMemoryType(u32 bits, VkMemoryPropertyFlags properties, u32* out_type_index)
{
for (u32 i = 0; i < VK_MAX_MEMORY_TYPES; i++)
{
if ((bits & (1 << i)) != 0)
{
u32 supported = m_device_memory_properties.memoryTypes[i].propertyFlags & properties;
if (supported == properties)
{
*out_type_index = i;
return true;
}
}
}
return false;
}
u32 VulkanContext::GetMemoryType(u32 bits, VkMemoryPropertyFlags properties)
{
u32 type_index = VK_MAX_MEMORY_TYPES;
if (!GetMemoryType(bits, properties, &type_index))
PanicAlert("Unable to find memory type for %x:%x", bits, properties);
return type_index;
}
u32 VulkanContext::GetUploadMemoryType(u32 bits, bool* is_coherent)
{
// Try for coherent memory first.
VkMemoryPropertyFlags flags =
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
u32 type_index;
if (!GetMemoryType(bits, flags, &type_index))
{
WARN_LOG(
VIDEO,
"Vulkan: Failed to find a coherent memory type for uploads, this will affect performance.");
// Try non-coherent memory.
flags &= ~VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
if (!GetMemoryType(bits, flags, &type_index))
{
// We shouldn't have any memory types that aren't host-visible.
PanicAlert("Unable to get memory type for upload.");
type_index = 0;
}
}
if (is_coherent)
*is_coherent = ((flags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT) != 0);
return type_index;
}
u32 VulkanContext::GetReadbackMemoryType(u32 bits, bool* is_coherent, bool* is_cached)
{
// Try for cached and coherent memory first.
VkMemoryPropertyFlags flags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_CACHED_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
u32 type_index;
if (!GetMemoryType(bits, flags, &type_index))
{
// For readbacks, caching is more important than coherency.
flags &= ~VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
if (!GetMemoryType(bits, flags, &type_index))
{
WARN_LOG(VIDEO, "Vulkan: Failed to find a cached memory type for readbacks, this will affect "
"performance.");
// Remove the cached bit as well.
flags &= ~VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
if (!GetMemoryType(bits, flags, &type_index))
{
// We shouldn't have any memory types that aren't host-visible.
PanicAlert("Unable to get memory type for upload.");
type_index = 0;
}
}
}
if (is_coherent)
*is_coherent = ((flags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT) != 0);
if (is_cached)
*is_cached = ((flags & VK_MEMORY_PROPERTY_HOST_CACHED_BIT) != 0);
return type_index;
}
void VulkanContext::InitDriverDetails()
{
DriverDetails::Vendor vendor;
DriverDetails::Driver driver;
// String comparisons aren't ideal, but there doesn't seem to be any other way to tell
// which vendor a driver is for. These names are based on the reports submitted to
// vulkan.gpuinfo.org, as of 19/09/2017.
std::string device_name = m_device_properties.deviceName;
u32 vendor_id = m_device_properties.vendorID;
if (vendor_id == 0x10DE)
{
// Currently, there is only the official NV binary driver.
// "NVIDIA" does not appear in the device name.
vendor = DriverDetails::VENDOR_NVIDIA;
driver = DriverDetails::DRIVER_NVIDIA;
}
else if (vendor_id == 0x1002 || vendor_id == 0x1022 ||
device_name.find("AMD") != std::string::npos)
{
// RADV always advertises its name in the device string.
// If not RADV, assume the AMD binary driver.
if (device_name.find("RADV") != std::string::npos)
{
vendor = DriverDetails::VENDOR_MESA;
driver = DriverDetails::DRIVER_R600;
}
else
{
vendor = DriverDetails::VENDOR_ATI;
driver = DriverDetails::DRIVER_ATI;
}
}
else if (vendor_id == 0x8086 || vendor_id == 0x8087 ||
device_name.find("Intel") != std::string::npos)
{
// Apart from the driver version, Intel does not appear to provide a way to
// differentiate between anv and the binary driver (Skylake+). Assume to be
// using anv if we not running on Windows.
#ifdef WIN32
vendor = DriverDetails::VENDOR_INTEL;
driver = DriverDetails::DRIVER_INTEL;
#else
vendor = DriverDetails::VENDOR_MESA;
driver = DriverDetails::DRIVER_I965;
#endif
}
else if (vendor_id == 0x5143 || device_name.find("Adreno") != std::string::npos)
{
// Currently only the Qualcomm binary driver exists for Adreno.
vendor = DriverDetails::VENDOR_QUALCOMM;
driver = DriverDetails::DRIVER_QUALCOMM;
}
else if (vendor_id == 0x13B6 || device_name.find("Mali") != std::string::npos)
{
// Currently only the ARM binary driver exists for Mali.
vendor = DriverDetails::VENDOR_ARM;
driver = DriverDetails::DRIVER_ARM;
}
else if (vendor_id == 0x1010 || device_name.find("PowerVR") != std::string::npos)
{
// Currently only the binary driver exists for PowerVR.
vendor = DriverDetails::VENDOR_IMGTEC;
driver = DriverDetails::DRIVER_IMGTEC;
}
else
{
WARN_LOG(VIDEO, "Unknown Vulkan driver vendor, please report it to us.");
WARN_LOG(VIDEO, "Vendor ID: 0x%X, Device Name: %s", vendor_id, device_name.c_str());
vendor = DriverDetails::VENDOR_UNKNOWN;
driver = DriverDetails::DRIVER_UNKNOWN;
}
#ifdef __APPLE__
// Vulkan on macOS goes through Metal, and is not susceptible to the same bugs
// as the vendor's native Vulkan drivers. We use a different driver fields to
// differentiate MoltenVK.
driver = DriverDetails::DRIVER_PORTABILITY;
#endif
DriverDetails::Init(DriverDetails::API_VULKAN, vendor, driver,
static_cast<double>(m_device_properties.driverVersion),
DriverDetails::Family::UNKNOWN);
}
void VulkanContext::PopulateShaderSubgroupSupport()
{
// Vulkan 1.1 support is required for vkGetPhysicalDeviceProperties2(), but we can't rely on the
// function pointer alone.
if (!vkGetPhysicalDeviceProperties2 || (VK_VERSION_MAJOR(m_device_properties.apiVersion) == 1 &&
VK_VERSION_MINOR(m_device_properties.apiVersion) < 1))
{
return;
}
VkPhysicalDeviceProperties2 device_properties_2 = {};
device_properties_2.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2;
VkPhysicalDeviceSubgroupProperties subgroup_properties = {};
subgroup_properties.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES;
device_properties_2.pNext = &subgroup_properties;
vkGetPhysicalDeviceProperties2(m_physical_device, &device_properties_2);
m_shader_subgroup_size = subgroup_properties.subgroupSize;
// We require basic ops (for gl_SubgroupInvocationID), ballot (for subgroupBallot,
// subgroupBallotFindLSB), and arithmetic (for subgroupMin/subgroupMax).
constexpr VkSubgroupFeatureFlags required_operations = VK_SUBGROUP_FEATURE_BASIC_BIT |
VK_SUBGROUP_FEATURE_ARITHMETIC_BIT |
VK_SUBGROUP_FEATURE_BALLOT_BIT;
m_supports_shader_subgroup_operations =
(subgroup_properties.supportedOperations & required_operations) == required_operations &&
subgroup_properties.supportedStages & VK_SHADER_STAGE_FRAGMENT_BIT;
}
} // namespace Vulkan