dolphin/Source/Core/VideoCommon/RenderBase.cpp
2022-03-25 10:24:07 -07:00

1828 lines
60 KiB
C++

// Copyright 2010 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
// ---------------------------------------------------------------------------------------------
// GC graphics pipeline
// ---------------------------------------------------------------------------------------------
// 3d commands are issued through the fifo. The GPU draws to the 2MB EFB.
// The efb can be copied back into ram in two forms: as textures or as XFB.
// The XFB is the region in RAM that the VI chip scans out to the television.
// So, after all rendering to EFB is done, the image is copied into one of two XFBs in RAM.
// Next frame, that one is scanned out and the other one gets the copy. = double buffering.
// ---------------------------------------------------------------------------------------------
#include "VideoCommon/RenderBase.h"
#include <algorithm>
#include <cinttypes>
#include <cmath>
#include <memory>
#include <mutex>
#include <string>
#include <tuple>
#include <fmt/format.h>
#include <imgui.h>
#include "Common/Assert.h"
#include "Common/ChunkFile.h"
#include "Common/CommonTypes.h"
#include "Common/Config/Config.h"
#include "Common/FileUtil.h"
#include "Common/Flag.h"
#include "Common/Image.h"
#include "Common/Logging/Log.h"
#include "Common/MsgHandler.h"
#include "Common/Profiler.h"
#include "Common/StringUtil.h"
#include "Common/Thread.h"
#include "Common/Timer.h"
#include "Core/Config/GraphicsSettings.h"
#include "Core/Config/MainSettings.h"
#include "Core/Config/NetplaySettings.h"
#include "Core/Config/SYSCONFSettings.h"
#include "Core/ConfigManager.h"
#include "Core/Core.h"
#include "Core/DolphinAnalytics.h"
#include "Core/FifoPlayer/FifoRecorder.h"
#include "Core/FreeLookConfig.h"
#include "Core/HW/SystemTimers.h"
#include "Core/HW/VideoInterface.h"
#include "Core/Host.h"
#include "Core/Movie.h"
#include "InputCommon/ControllerInterface/ControllerInterface.h"
#include "VideoCommon/AbstractFramebuffer.h"
#include "VideoCommon/AbstractStagingTexture.h"
#include "VideoCommon/AbstractTexture.h"
#include "VideoCommon/BPFunctions.h"
#include "VideoCommon/BPMemory.h"
#include "VideoCommon/BoundingBox.h"
#include "VideoCommon/CPMemory.h"
#include "VideoCommon/CommandProcessor.h"
#include "VideoCommon/FPSCounter.h"
#include "VideoCommon/FrameDump.h"
#include "VideoCommon/FramebufferManager.h"
#include "VideoCommon/FramebufferShaderGen.h"
#include "VideoCommon/FreeLookCamera.h"
#include "VideoCommon/NetPlayChatUI.h"
#include "VideoCommon/NetPlayGolfUI.h"
#include "VideoCommon/OnScreenDisplay.h"
#include "VideoCommon/OpcodeDecoding.h"
#include "VideoCommon/PixelEngine.h"
#include "VideoCommon/PixelShaderManager.h"
#include "VideoCommon/PostProcessing.h"
#include "VideoCommon/ShaderCache.h"
#include "VideoCommon/ShaderGenCommon.h"
#include "VideoCommon/Statistics.h"
#include "VideoCommon/TextureCacheBase.h"
#include "VideoCommon/TextureDecoder.h"
#include "VideoCommon/VertexLoaderManager.h"
#include "VideoCommon/VertexManagerBase.h"
#include "VideoCommon/VertexShaderManager.h"
#include "VideoCommon/VideoBackendBase.h"
#include "VideoCommon/VideoCommon.h"
#include "VideoCommon/VideoConfig.h"
#include "VideoCommon/XFMemory.h"
std::unique_ptr<Renderer> g_renderer;
static float AspectToWidescreen(float aspect)
{
return aspect * ((16.0f / 9.0f) / (4.0f / 3.0f));
}
static bool DumpFrameToPNG(const FrameDump::FrameData& frame, const std::string& file_name)
{
return Common::ConvertRGBAToRGBAndSavePNG(file_name, frame.data, frame.width, frame.height,
frame.stride,
Config::Get(Config::GFX_PNG_COMPRESSION_LEVEL));
}
Renderer::Renderer(int backbuffer_width, int backbuffer_height, float backbuffer_scale,
AbstractTextureFormat backbuffer_format)
: m_backbuffer_width(backbuffer_width), m_backbuffer_height(backbuffer_height),
m_backbuffer_scale(backbuffer_scale),
m_backbuffer_format(backbuffer_format), m_last_xfb_width{MAX_XFB_WIDTH}, m_last_xfb_height{
MAX_XFB_HEIGHT}
{
UpdateActiveConfig();
FreeLook::UpdateActiveConfig();
UpdateDrawRectangle();
CalculateTargetSize();
m_is_game_widescreen = SConfig::GetInstance().bWii && Config::Get(Config::SYSCONF_WIDESCREEN);
g_freelook_camera.SetControlType(FreeLook::GetActiveConfig().camera_config.control_type);
}
Renderer::~Renderer() = default;
bool Renderer::Initialize()
{
if (!InitializeImGui())
return false;
m_post_processor = std::make_unique<VideoCommon::PostProcessing>();
if (!m_post_processor->Initialize(m_backbuffer_format))
return false;
m_bounding_box = CreateBoundingBox();
if (g_ActiveConfig.backend_info.bSupportsBBox && !m_bounding_box->Initialize())
{
PanicAlertFmt("Failed to initialize bounding box.");
return false;
}
return true;
}
void Renderer::Shutdown()
{
// Disable ControllerInterface's aspect ratio adjustments so mapping dialog behaves normally.
g_controller_interface.SetAspectRatioAdjustment(1);
// First stop any framedumping, which might need to dump the last xfb frame. This process
// can require additional graphics sub-systems so it needs to be done first
ShutdownFrameDumping();
ShutdownImGui();
m_post_processor.reset();
m_bounding_box.reset();
}
void Renderer::BeginUtilityDrawing()
{
g_vertex_manager->Flush();
}
void Renderer::EndUtilityDrawing()
{
// Reset framebuffer/scissor/viewport. Pipeline will be reset at next draw.
g_framebuffer_manager->BindEFBFramebuffer();
BPFunctions::SetScissor();
BPFunctions::SetViewport();
}
void Renderer::SetFramebuffer(AbstractFramebuffer* framebuffer)
{
m_current_framebuffer = framebuffer;
}
void Renderer::SetAndDiscardFramebuffer(AbstractFramebuffer* framebuffer)
{
m_current_framebuffer = framebuffer;
}
void Renderer::SetAndClearFramebuffer(AbstractFramebuffer* framebuffer,
const ClearColor& color_value, float depth_value)
{
m_current_framebuffer = framebuffer;
}
bool Renderer::EFBHasAlphaChannel() const
{
return m_prev_efb_format == PixelFormat::RGBA6_Z24;
}
void Renderer::ClearScreen(const MathUtil::Rectangle<int>& rc, bool colorEnable, bool alphaEnable,
bool zEnable, u32 color, u32 z)
{
g_framebuffer_manager->ClearEFB(rc, colorEnable, alphaEnable, zEnable, color, z);
}
void Renderer::ReinterpretPixelData(EFBReinterpretType convtype)
{
g_framebuffer_manager->ReinterpretPixelData(convtype);
}
bool Renderer::IsBBoxEnabled() const
{
return m_bounding_box->IsEnabled();
}
void Renderer::BBoxEnable()
{
m_bounding_box->Enable();
}
void Renderer::BBoxDisable()
{
m_bounding_box->Disable();
}
u16 Renderer::BBoxRead(u32 index)
{
if (!g_ActiveConfig.bBBoxEnable || !g_ActiveConfig.backend_info.bSupportsBBox)
return m_bounding_box_fallback[index];
return m_bounding_box->Get(index);
}
void Renderer::BBoxWrite(u32 index, u16 value)
{
if (!g_ActiveConfig.bBBoxEnable || !g_ActiveConfig.backend_info.bSupportsBBox)
{
m_bounding_box_fallback[index] = value;
return;
}
m_bounding_box->Set(index, value);
}
void Renderer::BBoxFlush()
{
if (!g_ActiveConfig.bBBoxEnable || !g_ActiveConfig.backend_info.bSupportsBBox)
return;
m_bounding_box->Flush();
}
u32 Renderer::AccessEFB(EFBAccessType type, u32 x, u32 y, u32 poke_data)
{
if (type == EFBAccessType::PeekColor)
{
u32 color = g_framebuffer_manager->PeekEFBColor(x, y);
// a little-endian value is expected to be returned
color = ((color & 0xFF00FF00) | ((color >> 16) & 0xFF) | ((color << 16) & 0xFF0000));
// check what to do with the alpha channel (GX_PokeAlphaRead)
PixelEngine::UPEAlphaReadReg alpha_read_mode = PixelEngine::GetAlphaReadMode();
if (bpmem.zcontrol.pixel_format == PixelFormat::RGBA6_Z24)
{
color = RGBA8ToRGBA6ToRGBA8(color);
}
else if (bpmem.zcontrol.pixel_format == PixelFormat::RGB565_Z16)
{
color = RGBA8ToRGB565ToRGBA8(color);
}
if (bpmem.zcontrol.pixel_format != PixelFormat::RGBA6_Z24)
{
color |= 0xFF000000;
}
if (alpha_read_mode.ReadMode == 2)
{
return color; // GX_READ_NONE
}
else if (alpha_read_mode.ReadMode == 1)
{
return color | 0xFF000000; // GX_READ_FF
}
else /*if(alpha_read_mode.ReadMode == 0)*/
{
return color & 0x00FFFFFF; // GX_READ_00
}
}
else // if (type == EFBAccessType::PeekZ)
{
// Depth buffer is inverted for improved precision near far plane
float depth = g_framebuffer_manager->PeekEFBDepth(x, y);
if (!g_ActiveConfig.backend_info.bSupportsReversedDepthRange)
depth = 1.0f - depth;
// Convert to 24bit depth
u32 z24depth = std::clamp<u32>(static_cast<u32>(depth * 16777216.0f), 0, 0xFFFFFF);
if (bpmem.zcontrol.pixel_format == PixelFormat::RGB565_Z16)
{
// When in RGB565_Z16 mode, EFB Z peeks return a 16bit value, which is presumably a
// resolved sample from the MSAA buffer.
// Dolphin doesn't currently emulate the 3 sample MSAA mode (and potentially never will)
// it just transparently upgrades the framebuffer to 24bit depth and color and whatever
// level of MSAA and higher Internal Resolution the user has configured.
// This is mostly transparent, unless the game does an EFB read.
// But we can simply convert the 24bit depth on the fly to the 16bit depth the game expects.
return CompressZ16(z24depth, bpmem.zcontrol.zformat);
}
return z24depth;
}
}
void Renderer::PokeEFB(EFBAccessType type, const EfbPokeData* points, size_t num_points)
{
if (type == EFBAccessType::PokeColor)
{
for (size_t i = 0; i < num_points; i++)
{
// Convert to expected format (BGRA->RGBA)
// TODO: Check alpha, depending on mode?
const EfbPokeData& point = points[i];
u32 color = ((point.data & 0xFF00FF00) | ((point.data >> 16) & 0xFF) |
((point.data << 16) & 0xFF0000));
g_framebuffer_manager->PokeEFBColor(point.x, point.y, color);
}
}
else // if (type == EFBAccessType::PokeZ)
{
for (size_t i = 0; i < num_points; i++)
{
// Convert to floating-point depth.
const EfbPokeData& point = points[i];
float depth = float(point.data & 0xFFFFFF) / 16777216.0f;
if (!g_ActiveConfig.backend_info.bSupportsReversedDepthRange)
depth = 1.0f - depth;
g_framebuffer_manager->PokeEFBDepth(point.x, point.y, depth);
}
}
}
void Renderer::RenderToXFB(u32 xfbAddr, const MathUtil::Rectangle<int>& sourceRc, u32 fbStride,
u32 fbHeight, float Gamma)
{
CheckFifoRecording();
if (!fbStride || !fbHeight)
return;
}
unsigned int Renderer::GetEFBScale() const
{
return m_efb_scale;
}
int Renderer::EFBToScaledX(int x) const
{
return x * static_cast<int>(m_efb_scale);
}
int Renderer::EFBToScaledY(int y) const
{
return y * static_cast<int>(m_efb_scale);
}
float Renderer::EFBToScaledXf(float x) const
{
return x * ((float)GetTargetWidth() / (float)EFB_WIDTH);
}
float Renderer::EFBToScaledYf(float y) const
{
return y * ((float)GetTargetHeight() / (float)EFB_HEIGHT);
}
std::tuple<int, int> Renderer::CalculateTargetScale(int x, int y) const
{
return std::make_tuple(x * static_cast<int>(m_efb_scale), y * static_cast<int>(m_efb_scale));
}
// return true if target size changed
bool Renderer::CalculateTargetSize()
{
if (g_ActiveConfig.iEFBScale == EFB_SCALE_AUTO_INTEGRAL)
{
// Set a scale based on the window size
int width = EFB_WIDTH * m_target_rectangle.GetWidth() / m_last_xfb_width;
int height = EFB_HEIGHT * m_target_rectangle.GetHeight() / m_last_xfb_height;
m_efb_scale = std::max((width - 1) / EFB_WIDTH + 1, (height - 1) / EFB_HEIGHT + 1);
}
else
{
m_efb_scale = g_ActiveConfig.iEFBScale;
}
const u32 max_size = g_ActiveConfig.backend_info.MaxTextureSize;
if (max_size < EFB_WIDTH * m_efb_scale)
m_efb_scale = max_size / EFB_WIDTH;
auto [new_efb_width, new_efb_height] = CalculateTargetScale(EFB_WIDTH, EFB_HEIGHT);
new_efb_width = std::max(new_efb_width, 1);
new_efb_height = std::max(new_efb_height, 1);
if (new_efb_width != m_target_width || new_efb_height != m_target_height)
{
m_target_width = new_efb_width;
m_target_height = new_efb_height;
PixelShaderManager::SetEfbScaleChanged(EFBToScaledXf(1), EFBToScaledYf(1));
return true;
}
return false;
}
std::tuple<MathUtil::Rectangle<int>, MathUtil::Rectangle<int>>
Renderer::ConvertStereoRectangle(const MathUtil::Rectangle<int>& rc) const
{
// Resize target to half its original size
auto draw_rc = rc;
if (g_ActiveConfig.stereo_mode == StereoMode::TAB)
{
// The height may be negative due to flipped rectangles
int height = rc.bottom - rc.top;
draw_rc.top += height / 4;
draw_rc.bottom -= height / 4;
}
else
{
int width = rc.right - rc.left;
draw_rc.left += width / 4;
draw_rc.right -= width / 4;
}
// Create two target rectangle offset to the sides of the backbuffer
auto left_rc = draw_rc;
auto right_rc = draw_rc;
if (g_ActiveConfig.stereo_mode == StereoMode::TAB)
{
left_rc.top -= m_backbuffer_height / 4;
left_rc.bottom -= m_backbuffer_height / 4;
right_rc.top += m_backbuffer_height / 4;
right_rc.bottom += m_backbuffer_height / 4;
}
else
{
left_rc.left -= m_backbuffer_width / 4;
left_rc.right -= m_backbuffer_width / 4;
right_rc.left += m_backbuffer_width / 4;
right_rc.right += m_backbuffer_width / 4;
}
return std::make_tuple(left_rc, right_rc);
}
void Renderer::SaveScreenshot(std::string filename)
{
std::lock_guard<std::mutex> lk(m_screenshot_lock);
m_screenshot_name = std::move(filename);
m_screenshot_request.Set();
}
void Renderer::CheckForConfigChanges()
{
const ShaderHostConfig old_shader_host_config = ShaderHostConfig::GetCurrent();
const StereoMode old_stereo = g_ActiveConfig.stereo_mode;
const u32 old_multisamples = g_ActiveConfig.iMultisamples;
const int old_anisotropy = g_ActiveConfig.iMaxAnisotropy;
const int old_efb_access_tile_size = g_ActiveConfig.iEFBAccessTileSize;
const bool old_force_filtering = g_ActiveConfig.bForceFiltering;
const bool old_vsync = g_ActiveConfig.bVSyncActive;
const bool old_bbox = g_ActiveConfig.bBBoxEnable;
UpdateActiveConfig();
FreeLook::UpdateActiveConfig();
g_freelook_camera.SetControlType(FreeLook::GetActiveConfig().camera_config.control_type);
// Update texture cache settings with any changed options.
g_texture_cache->OnConfigChanged(g_ActiveConfig);
// EFB tile cache doesn't need to notify the backend.
if (old_efb_access_tile_size != g_ActiveConfig.iEFBAccessTileSize)
g_framebuffer_manager->SetEFBCacheTileSize(std::max(g_ActiveConfig.iEFBAccessTileSize, 0));
// Check for post-processing shader changes. Done up here as it doesn't affect anything outside
// the post-processor. Note that options are applied every frame, so no need to check those.
if (m_post_processor->GetConfig()->GetShader() != g_ActiveConfig.sPostProcessingShader)
{
// The existing shader must not be in use when it's destroyed
WaitForGPUIdle();
m_post_processor->RecompileShader();
}
// Determine which (if any) settings have changed.
ShaderHostConfig new_host_config = ShaderHostConfig::GetCurrent();
u32 changed_bits = 0;
if (old_shader_host_config.bits != new_host_config.bits)
changed_bits |= CONFIG_CHANGE_BIT_HOST_CONFIG;
if (old_stereo != g_ActiveConfig.stereo_mode)
changed_bits |= CONFIG_CHANGE_BIT_STEREO_MODE;
if (old_multisamples != g_ActiveConfig.iMultisamples)
changed_bits |= CONFIG_CHANGE_BIT_MULTISAMPLES;
if (old_anisotropy != g_ActiveConfig.iMaxAnisotropy)
changed_bits |= CONFIG_CHANGE_BIT_ANISOTROPY;
if (old_force_filtering != g_ActiveConfig.bForceFiltering)
changed_bits |= CONFIG_CHANGE_BIT_FORCE_TEXTURE_FILTERING;
if (old_vsync != g_ActiveConfig.bVSyncActive)
changed_bits |= CONFIG_CHANGE_BIT_VSYNC;
if (old_bbox != g_ActiveConfig.bBBoxEnable)
changed_bits |= CONFIG_CHANGE_BIT_BBOX;
if (CalculateTargetSize())
changed_bits |= CONFIG_CHANGE_BIT_TARGET_SIZE;
// No changes?
if (changed_bits == 0)
return;
// Notify the backend of the changes, if any.
OnConfigChanged(changed_bits);
// If there's any shader changes, wait for the GPU to finish before destroying anything.
if (changed_bits & (CONFIG_CHANGE_BIT_HOST_CONFIG | CONFIG_CHANGE_BIT_MULTISAMPLES))
{
WaitForGPUIdle();
SetPipeline(nullptr);
}
// Framebuffer changed?
if (changed_bits & (CONFIG_CHANGE_BIT_MULTISAMPLES | CONFIG_CHANGE_BIT_STEREO_MODE |
CONFIG_CHANGE_BIT_TARGET_SIZE))
{
g_framebuffer_manager->RecreateEFBFramebuffer();
}
// Reload shaders if host config has changed.
if (changed_bits & (CONFIG_CHANGE_BIT_HOST_CONFIG | CONFIG_CHANGE_BIT_MULTISAMPLES))
{
OSD::AddMessage("Video config changed, reloading shaders.", OSD::Duration::NORMAL);
g_vertex_manager->InvalidatePipelineObject();
g_shader_cache->SetHostConfig(new_host_config);
g_shader_cache->Reload();
g_framebuffer_manager->RecompileShaders();
}
// Viewport and scissor rect have to be reset since they will be scaled differently.
if (changed_bits & CONFIG_CHANGE_BIT_TARGET_SIZE)
{
BPFunctions::SetViewport();
BPFunctions::SetScissor();
}
// Stereo mode change requires recompiling our post processing pipeline and imgui pipelines for
// rendering the UI.
if (changed_bits & CONFIG_CHANGE_BIT_STEREO_MODE)
{
RecompileImGuiPipeline();
m_post_processor->RecompilePipeline();
}
}
// Create On-Screen-Messages
void Renderer::DrawDebugText()
{
if (g_ActiveConfig.bShowFPS)
{
// Position in the top-right corner of the screen.
ImGui::SetNextWindowPos(ImVec2(ImGui::GetIO().DisplaySize.x - (10.0f * m_backbuffer_scale),
10.0f * m_backbuffer_scale),
ImGuiCond_Always, ImVec2(1.0f, 0.0f));
ImGui::SetNextWindowSize(ImVec2(100.0f * m_backbuffer_scale, 30.0f * m_backbuffer_scale));
if (ImGui::Begin("FPS", nullptr,
ImGuiWindowFlags_NoTitleBar | ImGuiWindowFlags_NoInputs |
ImGuiWindowFlags_NoMove | ImGuiWindowFlags_NoSavedSettings |
ImGuiWindowFlags_NoScrollbar | ImGuiWindowFlags_NoNav |
ImGuiWindowFlags_AlwaysAutoResize | ImGuiWindowFlags_NoFocusOnAppearing))
{
ImGui::TextColored(ImVec4(0.0f, 1.0f, 1.0f, 1.0f), "FPS: %.2f", m_fps_counter.GetFPS());
}
ImGui::End();
}
const bool show_movie_window =
Config::Get(Config::MAIN_SHOW_FRAME_COUNT) || Config::Get(Config::MAIN_SHOW_LAG) ||
Config::Get(Config::MAIN_MOVIE_SHOW_INPUT_DISPLAY) ||
Config::Get(Config::MAIN_MOVIE_SHOW_RTC) || Config::Get(Config::MAIN_MOVIE_SHOW_RERECORD);
if (show_movie_window)
{
// Position under the FPS display.
ImGui::SetNextWindowPos(ImVec2(ImGui::GetIO().DisplaySize.x - (10.0f * m_backbuffer_scale),
50.0f * m_backbuffer_scale),
ImGuiCond_FirstUseEver, ImVec2(1.0f, 0.0f));
ImGui::SetNextWindowSizeConstraints(
ImVec2(150.0f * m_backbuffer_scale, 20.0f * m_backbuffer_scale),
ImGui::GetIO().DisplaySize);
if (ImGui::Begin("Movie", nullptr, ImGuiWindowFlags_NoFocusOnAppearing))
{
if (Movie::IsPlayingInput())
{
ImGui::Text("Frame: %" PRIu64 " / %" PRIu64, Movie::GetCurrentFrame(),
Movie::GetTotalFrames());
ImGui::Text("Input: %" PRIu64 " / %" PRIu64, Movie::GetCurrentInputCount(),
Movie::GetTotalInputCount());
}
else if (Config::Get(Config::MAIN_SHOW_FRAME_COUNT))
{
ImGui::Text("Frame: %" PRIu64, Movie::GetCurrentFrame());
ImGui::Text("Input: %" PRIu64, Movie::GetCurrentInputCount());
}
if (Config::Get(Config::MAIN_SHOW_LAG))
ImGui::Text("Lag: %" PRIu64 "\n", Movie::GetCurrentLagCount());
if (Config::Get(Config::MAIN_MOVIE_SHOW_INPUT_DISPLAY))
ImGui::TextUnformatted(Movie::GetInputDisplay().c_str());
if (Config::Get(Config::MAIN_MOVIE_SHOW_RTC))
ImGui::TextUnformatted(Movie::GetRTCDisplay().c_str());
if (Config::Get(Config::MAIN_MOVIE_SHOW_RERECORD))
ImGui::TextUnformatted(Movie::GetRerecords().c_str());
}
ImGui::End();
}
if (g_ActiveConfig.bOverlayStats)
g_stats.Display();
if (g_ActiveConfig.bShowNetPlayMessages && g_netplay_chat_ui)
g_netplay_chat_ui->Display();
if (Config::Get(Config::NETPLAY_GOLF_MODE_OVERLAY) && g_netplay_golf_ui)
g_netplay_golf_ui->Display();
if (g_ActiveConfig.bOverlayProjStats)
g_stats.DisplayProj();
const std::string profile_output = Common::Profiler::ToString();
if (!profile_output.empty())
ImGui::TextUnformatted(profile_output.c_str());
}
float Renderer::CalculateDrawAspectRatio() const
{
const auto aspect_mode = g_ActiveConfig.aspect_mode;
// If stretch is enabled, we prefer the aspect ratio of the window.
if (aspect_mode == AspectMode::Stretch)
return (static_cast<float>(m_backbuffer_width) / static_cast<float>(m_backbuffer_height));
const float aspect_ratio = VideoInterface::GetAspectRatio();
if (aspect_mode == AspectMode::AnalogWide ||
(aspect_mode == AspectMode::Auto && m_is_game_widescreen))
{
return AspectToWidescreen(aspect_ratio);
}
return aspect_ratio;
}
void Renderer::AdjustRectanglesToFitBounds(MathUtil::Rectangle<int>* target_rect,
MathUtil::Rectangle<int>* source_rect, int fb_width,
int fb_height)
{
const int orig_target_width = target_rect->GetWidth();
const int orig_target_height = target_rect->GetHeight();
const int orig_source_width = source_rect->GetWidth();
const int orig_source_height = source_rect->GetHeight();
if (target_rect->left < 0)
{
const int offset = -target_rect->left;
target_rect->left = 0;
source_rect->left += offset * orig_source_width / orig_target_width;
}
if (target_rect->right > fb_width)
{
const int offset = target_rect->right - fb_width;
target_rect->right -= offset;
source_rect->right -= offset * orig_source_width / orig_target_width;
}
if (target_rect->top < 0)
{
const int offset = -target_rect->top;
target_rect->top = 0;
source_rect->top += offset * orig_source_height / orig_target_height;
}
if (target_rect->bottom > fb_height)
{
const int offset = target_rect->bottom - fb_height;
target_rect->bottom -= offset;
source_rect->bottom -= offset * orig_source_height / orig_target_height;
}
}
bool Renderer::IsHeadless() const
{
return true;
}
void Renderer::ChangeSurface(void* new_surface_handle)
{
std::lock_guard<std::mutex> lock(m_swap_mutex);
m_new_surface_handle = new_surface_handle;
m_surface_changed.Set();
}
void Renderer::ResizeSurface()
{
std::lock_guard<std::mutex> lock(m_swap_mutex);
m_surface_resized.Set();
}
void Renderer::SetViewportAndScissor(const MathUtil::Rectangle<int>& rect, float min_depth,
float max_depth)
{
SetViewport(static_cast<float>(rect.left), static_cast<float>(rect.top),
static_cast<float>(rect.GetWidth()), static_cast<float>(rect.GetHeight()), min_depth,
max_depth);
SetScissorRect(rect);
}
void Renderer::ScaleTexture(AbstractFramebuffer* dst_framebuffer,
const MathUtil::Rectangle<int>& dst_rect,
const AbstractTexture* src_texture,
const MathUtil::Rectangle<int>& src_rect)
{
ASSERT(dst_framebuffer->GetColorFormat() == AbstractTextureFormat::RGBA8);
BeginUtilityDrawing();
// The shader needs to know the source rectangle.
const auto converted_src_rect =
ConvertFramebufferRectangle(src_rect, src_texture->GetWidth(), src_texture->GetHeight());
const float rcp_src_width = 1.0f / src_texture->GetWidth();
const float rcp_src_height = 1.0f / src_texture->GetHeight();
const std::array<float, 4> uniforms = {{converted_src_rect.left * rcp_src_width,
converted_src_rect.top * rcp_src_height,
converted_src_rect.GetWidth() * rcp_src_width,
converted_src_rect.GetHeight() * rcp_src_height}};
g_vertex_manager->UploadUtilityUniforms(&uniforms, sizeof(uniforms));
// Discard if we're overwriting the whole thing.
if (static_cast<u32>(dst_rect.GetWidth()) == dst_framebuffer->GetWidth() &&
static_cast<u32>(dst_rect.GetHeight()) == dst_framebuffer->GetHeight())
{
SetAndDiscardFramebuffer(dst_framebuffer);
}
else
{
SetFramebuffer(dst_framebuffer);
}
SetViewportAndScissor(ConvertFramebufferRectangle(dst_rect, dst_framebuffer));
SetPipeline(dst_framebuffer->GetLayers() > 1 ? g_shader_cache->GetRGBA8StereoCopyPipeline() :
g_shader_cache->GetRGBA8CopyPipeline());
SetTexture(0, src_texture);
SetSamplerState(0, RenderState::GetLinearSamplerState());
Draw(0, 3);
EndUtilityDrawing();
if (dst_framebuffer->GetColorAttachment())
dst_framebuffer->GetColorAttachment()->FinishedRendering();
}
MathUtil::Rectangle<int>
Renderer::ConvertFramebufferRectangle(const MathUtil::Rectangle<int>& rect,
const AbstractFramebuffer* framebuffer) const
{
return ConvertFramebufferRectangle(rect, framebuffer->GetWidth(), framebuffer->GetHeight());
}
MathUtil::Rectangle<int> Renderer::ConvertFramebufferRectangle(const MathUtil::Rectangle<int>& rect,
u32 fb_width, u32 fb_height) const
{
MathUtil::Rectangle<int> ret = rect;
if (g_ActiveConfig.backend_info.bUsesLowerLeftOrigin)
{
ret.top = fb_height - rect.bottom;
ret.bottom = fb_height - rect.top;
}
return ret;
}
MathUtil::Rectangle<int> Renderer::ConvertEFBRectangle(const MathUtil::Rectangle<int>& rc) const
{
MathUtil::Rectangle<int> result;
result.left = EFBToScaledX(rc.left);
result.top = EFBToScaledY(rc.top);
result.right = EFBToScaledX(rc.right);
result.bottom = EFBToScaledY(rc.bottom);
return result;
}
std::tuple<float, float> Renderer::ScaleToDisplayAspectRatio(const int width,
const int height) const
{
// Scale either the width or height depending the content aspect ratio.
// This way we preserve as much resolution as possible when scaling.
float scaled_width = static_cast<float>(width);
float scaled_height = static_cast<float>(height);
const float draw_aspect = CalculateDrawAspectRatio();
if (scaled_width / scaled_height >= draw_aspect)
scaled_height = scaled_width / draw_aspect;
else
scaled_width = scaled_height * draw_aspect;
return std::make_tuple(scaled_width, scaled_height);
}
void Renderer::UpdateDrawRectangle()
{
const float draw_aspect_ratio = CalculateDrawAspectRatio();
// Update aspect ratio hack values
// Won't take effect until next frame
// Don't know if there is a better place for this code so there isn't a 1 frame delay
if (g_ActiveConfig.bWidescreenHack)
{
float source_aspect = VideoInterface::GetAspectRatio();
if (m_is_game_widescreen)
source_aspect = AspectToWidescreen(source_aspect);
const float adjust = source_aspect / draw_aspect_ratio;
if (adjust > 1)
{
// Vert+
g_Config.fAspectRatioHackW = 1;
g_Config.fAspectRatioHackH = 1 / adjust;
}
else
{
// Hor+
g_Config.fAspectRatioHackW = adjust;
g_Config.fAspectRatioHackH = 1;
}
}
else
{
// Hack is disabled.
g_Config.fAspectRatioHackW = 1;
g_Config.fAspectRatioHackH = 1;
}
// The rendering window size
const float win_width = static_cast<float>(m_backbuffer_width);
const float win_height = static_cast<float>(m_backbuffer_height);
// FIXME: this breaks at very low widget sizes
// Make ControllerInterface aware of the render window region actually being used
// to adjust mouse cursor inputs.
g_controller_interface.SetAspectRatioAdjustment(draw_aspect_ratio / (win_width / win_height));
float draw_width = draw_aspect_ratio;
float draw_height = 1;
// Crop the picture to a standard aspect ratio. (if enabled)
auto [crop_width, crop_height] = ApplyStandardAspectCrop(draw_width, draw_height);
// scale the picture to fit the rendering window
if (win_width / win_height >= crop_width / crop_height)
{
// the window is flatter than the picture
draw_width *= win_height / crop_height;
crop_width *= win_height / crop_height;
draw_height *= win_height / crop_height;
crop_height = win_height;
}
else
{
// the window is skinnier than the picture
draw_width *= win_width / crop_width;
draw_height *= win_width / crop_width;
crop_height *= win_width / crop_width;
crop_width = win_width;
}
// ensure divisibility by 4 to make it compatible with all the video encoders
draw_width = std::ceil(draw_width) - static_cast<int>(std::ceil(draw_width)) % 4;
draw_height = std::ceil(draw_height) - static_cast<int>(std::ceil(draw_height)) % 4;
m_target_rectangle.left = static_cast<int>(std::round(win_width / 2.0 - draw_width / 2.0));
m_target_rectangle.top = static_cast<int>(std::round(win_height / 2.0 - draw_height / 2.0));
m_target_rectangle.right = m_target_rectangle.left + static_cast<int>(draw_width);
m_target_rectangle.bottom = m_target_rectangle.top + static_cast<int>(draw_height);
}
void Renderer::SetWindowSize(int width, int height)
{
const auto [out_width, out_height] = CalculateOutputDimensions(width, height);
// Track the last values of width/height to avoid sending a window resize event every frame.
if (out_width == m_last_window_request_width && out_height == m_last_window_request_height)
return;
m_last_window_request_width = out_width;
m_last_window_request_height = out_height;
Host_RequestRenderWindowSize(out_width, out_height);
}
// Crop to exactly 16:9 or 4:3 if enabled and not AspectMode::Stretch.
std::tuple<float, float> Renderer::ApplyStandardAspectCrop(float width, float height) const
{
const auto aspect_mode = g_ActiveConfig.aspect_mode;
if (!g_ActiveConfig.bCrop || aspect_mode == AspectMode::Stretch)
return {width, height};
// Force 4:3 or 16:9 by cropping the image.
const float current_aspect = width / height;
const float expected_aspect = (aspect_mode == AspectMode::AnalogWide ||
(aspect_mode == AspectMode::Auto && m_is_game_widescreen)) ?
(16.0f / 9.0f) :
(4.0f / 3.0f);
if (current_aspect > expected_aspect)
{
// keep height, crop width
width = height * expected_aspect;
}
else
{
// keep width, crop height
height = width / expected_aspect;
}
return {width, height};
}
std::tuple<int, int> Renderer::CalculateOutputDimensions(int width, int height) const
{
width = std::max(width, 1);
height = std::max(height, 1);
auto [scaled_width, scaled_height] = ScaleToDisplayAspectRatio(width, height);
// Apply crop if enabled.
std::tie(scaled_width, scaled_height) = ApplyStandardAspectCrop(scaled_width, scaled_height);
width = static_cast<int>(std::ceil(scaled_width));
height = static_cast<int>(std::ceil(scaled_height));
// UpdateDrawRectangle() makes sure that the rendered image is divisible by four for video
// encoders, so do that here too to match it
width -= width % 4;
height -= height % 4;
return std::make_tuple(width, height);
}
void Renderer::CheckFifoRecording()
{
const bool was_recording = OpcodeDecoder::g_record_fifo_data;
OpcodeDecoder::g_record_fifo_data = FifoRecorder::GetInstance().IsRecording();
if (!OpcodeDecoder::g_record_fifo_data)
return;
if (!was_recording)
{
RecordVideoMemory();
}
FifoRecorder::GetInstance().EndFrame(
CommandProcessor::fifo.CPBase.load(std::memory_order_relaxed),
CommandProcessor::fifo.CPEnd.load(std::memory_order_relaxed));
}
void Renderer::RecordVideoMemory()
{
const u32* bpmem_ptr = reinterpret_cast<const u32*>(&bpmem);
u32 cpmem[256] = {};
// The FIFO recording format splits XF memory into xfmem and xfregs; follow
// that split here.
const u32* xfmem_ptr = reinterpret_cast<const u32*>(&xfmem);
const u32* xfregs_ptr = reinterpret_cast<const u32*>(&xfmem) + FifoDataFile::XF_MEM_SIZE;
u32 xfregs_size = sizeof(XFMemory) / 4 - FifoDataFile::XF_MEM_SIZE;
g_main_cp_state.FillCPMemoryArray(cpmem);
FifoRecorder::GetInstance().SetVideoMemory(bpmem_ptr, cpmem, xfmem_ptr, xfregs_ptr, xfregs_size,
texMem);
}
bool Renderer::InitializeImGui()
{
if (!IMGUI_CHECKVERSION())
{
PanicAlertFmt("ImGui version check failed");
return false;
}
if (!ImGui::CreateContext())
{
PanicAlertFmt("Creating ImGui context failed");
return false;
}
// Don't create an ini file. TODO: Do we want this in the future?
ImGui::GetIO().IniFilename = nullptr;
ImGui::GetIO().DisplayFramebufferScale.x = m_backbuffer_scale;
ImGui::GetIO().DisplayFramebufferScale.y = m_backbuffer_scale;
ImGui::GetIO().FontGlobalScale = m_backbuffer_scale;
ImGui::GetStyle().ScaleAllSizes(m_backbuffer_scale);
ImGui::GetStyle().WindowRounding = 7.0f;
PortableVertexDeclaration vdecl = {};
vdecl.position = {ComponentFormat::Float, 2, offsetof(ImDrawVert, pos), true, false};
vdecl.texcoords[0] = {ComponentFormat::Float, 2, offsetof(ImDrawVert, uv), true, false};
vdecl.colors[0] = {ComponentFormat::UByte, 4, offsetof(ImDrawVert, col), true, false};
vdecl.stride = sizeof(ImDrawVert);
m_imgui_vertex_format = CreateNativeVertexFormat(vdecl);
if (!m_imgui_vertex_format)
{
PanicAlertFmt("Failed to create ImGui vertex format");
return false;
}
// Font texture(s).
{
ImGuiIO& io = ImGui::GetIO();
u8* font_tex_pixels;
int font_tex_width, font_tex_height;
io.Fonts->GetTexDataAsRGBA32(&font_tex_pixels, &font_tex_width, &font_tex_height);
TextureConfig font_tex_config(font_tex_width, font_tex_height, 1, 1, 1,
AbstractTextureFormat::RGBA8, 0);
std::unique_ptr<AbstractTexture> font_tex =
CreateTexture(font_tex_config, "ImGui font texture");
if (!font_tex)
{
PanicAlertFmt("Failed to create ImGui texture");
return false;
}
font_tex->Load(0, font_tex_width, font_tex_height, font_tex_width, font_tex_pixels,
sizeof(u32) * font_tex_width * font_tex_height);
io.Fonts->TexID = font_tex.get();
m_imgui_textures.push_back(std::move(font_tex));
}
if (!RecompileImGuiPipeline())
return false;
m_imgui_last_frame_time = Common::Timer::GetTimeUs();
BeginImGuiFrame();
return true;
}
bool Renderer::RecompileImGuiPipeline()
{
std::unique_ptr<AbstractShader> vertex_shader =
CreateShaderFromSource(ShaderStage::Vertex, FramebufferShaderGen::GenerateImGuiVertexShader(),
"ImGui vertex shader");
std::unique_ptr<AbstractShader> pixel_shader = CreateShaderFromSource(
ShaderStage::Pixel, FramebufferShaderGen::GenerateImGuiPixelShader(), "ImGui pixel shader");
if (!vertex_shader || !pixel_shader)
{
PanicAlertFmt("Failed to compile ImGui shaders");
return false;
}
// GS is used to render the UI to both eyes in stereo modes.
std::unique_ptr<AbstractShader> geometry_shader;
if (UseGeometryShaderForUI())
{
geometry_shader = CreateShaderFromSource(
ShaderStage::Geometry, FramebufferShaderGen::GeneratePassthroughGeometryShader(1, 1),
"ImGui passthrough geometry shader");
if (!geometry_shader)
{
PanicAlertFmt("Failed to compile ImGui geometry shader");
return false;
}
}
AbstractPipelineConfig pconfig = {};
pconfig.vertex_format = m_imgui_vertex_format.get();
pconfig.vertex_shader = vertex_shader.get();
pconfig.geometry_shader = geometry_shader.get();
pconfig.pixel_shader = pixel_shader.get();
pconfig.rasterization_state = RenderState::GetNoCullRasterizationState(PrimitiveType::Triangles);
pconfig.depth_state = RenderState::GetNoDepthTestingDepthState();
pconfig.blending_state = RenderState::GetNoBlendingBlendState();
pconfig.blending_state.blendenable = true;
pconfig.blending_state.srcfactor = SrcBlendFactor::SrcAlpha;
pconfig.blending_state.dstfactor = DstBlendFactor::InvSrcAlpha;
pconfig.blending_state.srcfactoralpha = SrcBlendFactor::Zero;
pconfig.blending_state.dstfactoralpha = DstBlendFactor::One;
pconfig.framebuffer_state.color_texture_format = m_backbuffer_format;
pconfig.framebuffer_state.depth_texture_format = AbstractTextureFormat::Undefined;
pconfig.framebuffer_state.samples = 1;
pconfig.framebuffer_state.per_sample_shading = false;
pconfig.usage = AbstractPipelineUsage::Utility;
m_imgui_pipeline = CreatePipeline(pconfig);
if (!m_imgui_pipeline)
{
PanicAlertFmt("Failed to create imgui pipeline");
return false;
}
return true;
}
void Renderer::ShutdownImGui()
{
ImGui::EndFrame();
ImGui::DestroyContext();
m_imgui_pipeline.reset();
m_imgui_vertex_format.reset();
m_imgui_textures.clear();
}
void Renderer::BeginImGuiFrame()
{
std::unique_lock<std::mutex> imgui_lock(m_imgui_mutex);
const u64 current_time_us = Common::Timer::GetTimeUs();
const u64 time_diff_us = current_time_us - m_imgui_last_frame_time;
const float time_diff_secs = static_cast<float>(time_diff_us / 1000000.0);
m_imgui_last_frame_time = current_time_us;
// Update I/O with window dimensions.
ImGuiIO& io = ImGui::GetIO();
io.DisplaySize =
ImVec2(static_cast<float>(m_backbuffer_width), static_cast<float>(m_backbuffer_height));
io.DeltaTime = time_diff_secs;
ImGui::NewFrame();
}
void Renderer::DrawImGui()
{
ImDrawData* draw_data = ImGui::GetDrawData();
if (!draw_data)
return;
SetViewport(0.0f, 0.0f, static_cast<float>(m_backbuffer_width),
static_cast<float>(m_backbuffer_height), 0.0f, 1.0f);
// Uniform buffer for draws.
struct ImGuiUbo
{
float u_rcp_viewport_size_mul2[2];
float padding[2];
};
ImGuiUbo ubo = {{1.0f / m_backbuffer_width * 2.0f, 1.0f / m_backbuffer_height * 2.0f}};
// Set up common state for drawing.
SetPipeline(m_imgui_pipeline.get());
SetSamplerState(0, RenderState::GetPointSamplerState());
g_vertex_manager->UploadUtilityUniforms(&ubo, sizeof(ubo));
for (int i = 0; i < draw_data->CmdListsCount; i++)
{
const ImDrawList* cmdlist = draw_data->CmdLists[i];
if (cmdlist->VtxBuffer.empty() || cmdlist->IdxBuffer.empty())
return;
u32 base_vertex, base_index;
g_vertex_manager->UploadUtilityVertices(cmdlist->VtxBuffer.Data, sizeof(ImDrawVert),
cmdlist->VtxBuffer.Size, cmdlist->IdxBuffer.Data,
cmdlist->IdxBuffer.Size, &base_vertex, &base_index);
for (const ImDrawCmd& cmd : cmdlist->CmdBuffer)
{
if (cmd.UserCallback)
{
cmd.UserCallback(cmdlist, &cmd);
continue;
}
SetScissorRect(ConvertFramebufferRectangle(
MathUtil::Rectangle<int>(
static_cast<int>(cmd.ClipRect.x), static_cast<int>(cmd.ClipRect.y),
static_cast<int>(cmd.ClipRect.z), static_cast<int>(cmd.ClipRect.w)),
m_current_framebuffer));
SetTexture(0, reinterpret_cast<const AbstractTexture*>(cmd.TextureId));
DrawIndexed(base_index, cmd.ElemCount, base_vertex);
base_index += cmd.ElemCount;
}
}
// Some capture software (such as OBS) hooks SwapBuffers and uses glBlitFramebuffer to copy our
// back buffer just before swap. Because glBlitFramebuffer honors the scissor test, the capture
// itself will be clipped to whatever bounds were last set by ImGui, resulting in a rather useless
// capture whenever any ImGui windows are open. We'll reset the scissor rectangle to the entire
// viewport here to avoid this problem.
SetScissorRect(ConvertFramebufferRectangle(
MathUtil::Rectangle<int>(0, 0, m_backbuffer_width, m_backbuffer_height),
m_current_framebuffer));
}
bool Renderer::UseGeometryShaderForUI() const
{
// OpenGL doesn't render to a 2-layer backbuffer like D3D/Vulkan for quad-buffered stereo,
// instead drawing twice and the eye selected by glDrawBuffer() (see
// OGL::Renderer::RenderXFBToScreen).
return g_ActiveConfig.stereo_mode == StereoMode::QuadBuffer &&
g_ActiveConfig.backend_info.api_type != APIType::OpenGL;
}
std::unique_lock<std::mutex> Renderer::GetImGuiLock()
{
return std::unique_lock<std::mutex>(m_imgui_mutex);
}
void Renderer::BeginUIFrame()
{
if (IsHeadless())
return;
BeginUtilityDrawing();
BindBackbuffer({0.0f, 0.0f, 0.0f, 1.0f});
}
void Renderer::EndUIFrame()
{
{
auto lock = GetImGuiLock();
ImGui::Render();
}
if (!IsHeadless())
{
DrawImGui();
std::lock_guard<std::mutex> guard(m_swap_mutex);
PresentBackbuffer();
EndUtilityDrawing();
}
BeginImGuiFrame();
}
void Renderer::ForceReloadTextures()
{
m_force_reload_textures.Set();
}
// Heuristic to detect if a GameCube game is in 16:9 anamorphic widescreen mode.
void Renderer::UpdateWidescreenHeuristic()
{
// VertexManager maintains no statistics in Wii mode.
if (SConfig::GetInstance().bWii)
return;
const auto flush_statistics = g_vertex_manager->ResetFlushAspectRatioCount();
// If suggested_aspect_mode (GameINI) is configured don't use heuristic.
if (g_ActiveConfig.suggested_aspect_mode != AspectMode::Auto)
return;
// If widescreen hack isn't active and aspect_mode (UI) is 4:3 or 16:9 don't use heuristic.
if (!g_ActiveConfig.bWidescreenHack && (g_ActiveConfig.aspect_mode == AspectMode::Analog ||
g_ActiveConfig.aspect_mode == AspectMode::AnalogWide))
return;
// Modify the threshold based on which aspect ratio we're already using:
// If the game's in 4:3, it probably won't switch to anamorphic, and vice-versa.
static constexpr u32 TRANSITION_THRESHOLD = 3;
const auto looks_normal = [](auto& counts) {
return counts.normal_vertex_count > counts.anamorphic_vertex_count * TRANSITION_THRESHOLD;
};
const auto looks_anamorphic = [](auto& counts) {
return counts.anamorphic_vertex_count > counts.normal_vertex_count * TRANSITION_THRESHOLD;
};
const auto& persp = flush_statistics.perspective;
const auto& ortho = flush_statistics.orthographic;
const auto ortho_looks_anamorphic = looks_anamorphic(ortho);
if (looks_anamorphic(persp) || ortho_looks_anamorphic)
{
// If either perspective or orthographic projections look anamorphic, it's a safe bet.
m_is_game_widescreen = true;
}
else if (looks_normal(persp) || (m_was_orthographically_anamorphic && looks_normal(ortho)))
{
// Many widescreen games (or AR/GeckoCodes) use anamorphic perspective projections
// with NON-anamorphic orthographic projections.
// This can cause incorrect changes to 4:3 when perspective projections are temporarily not
// shown. e.g. Animal Crossing's inventory menu.
// Unless we were in a situation which was orthographically anamorphic
// we won't consider orthographic data for changes from 16:9 to 4:3.
m_is_game_widescreen = false;
}
m_was_orthographically_anamorphic = ortho_looks_anamorphic;
}
void Renderer::Swap(u32 xfb_addr, u32 fb_width, u32 fb_stride, u32 fb_height, u64 ticks)
{
if (SConfig::GetInstance().bWii)
m_is_game_widescreen = Config::Get(Config::SYSCONF_WIDESCREEN);
// suggested_aspect_mode overrides SYSCONF_WIDESCREEN
if (g_ActiveConfig.suggested_aspect_mode == AspectMode::Analog)
m_is_game_widescreen = false;
else if (g_ActiveConfig.suggested_aspect_mode == AspectMode::AnalogWide)
m_is_game_widescreen = true;
// If widescreen hack is disabled override game's AR if UI is set to 4:3 or 16:9.
if (!g_ActiveConfig.bWidescreenHack)
{
const auto aspect_mode = g_ActiveConfig.aspect_mode;
if (aspect_mode == AspectMode::Analog)
m_is_game_widescreen = false;
else if (aspect_mode == AspectMode::AnalogWide)
m_is_game_widescreen = true;
}
// Ensure the last frame was written to the dump.
// This is required even if frame dumping has stopped, since the frame dump is one frame
// behind the renderer.
FlushFrameDump();
if (xfb_addr && fb_width && fb_stride && fb_height)
{
// Get the current XFB from texture cache
MathUtil::Rectangle<int> xfb_rect;
const auto* xfb_entry =
g_texture_cache->GetXFBTexture(xfb_addr, fb_width, fb_height, fb_stride, &xfb_rect);
if (xfb_entry &&
(!g_ActiveConfig.bSkipPresentingDuplicateXFBs || xfb_entry->id != m_last_xfb_id))
{
const bool is_duplicate_frame = xfb_entry->id == m_last_xfb_id;
m_last_xfb_id = xfb_entry->id;
// Since we use the common pipelines here and draw vertices if a batch is currently being
// built by the vertex loader, we end up trampling over its pointer, as we share the buffer
// with the loader, and it has not been unmapped yet. Force a pipeline flush to avoid this.
g_vertex_manager->Flush();
// Render any UI elements to the draw list.
{
auto lock = GetImGuiLock();
DrawDebugText();
OSD::DrawMessages();
ImGui::Render();
}
// Render the XFB to the screen.
BeginUtilityDrawing();
if (!IsHeadless())
{
BindBackbuffer({{0.0f, 0.0f, 0.0f, 1.0f}});
if (!is_duplicate_frame)
UpdateWidescreenHeuristic();
UpdateDrawRectangle();
// Adjust the source rectangle instead of using an oversized viewport to render the XFB.
auto render_target_rc = GetTargetRectangle();
auto render_source_rc = xfb_rect;
AdjustRectanglesToFitBounds(&render_target_rc, &render_source_rc, m_backbuffer_width,
m_backbuffer_height);
RenderXFBToScreen(render_target_rc, xfb_entry->texture.get(), render_source_rc);
DrawImGui();
// Present to the window system.
{
std::lock_guard<std::mutex> guard(m_swap_mutex);
PresentBackbuffer();
}
// Update the window size based on the frame that was just rendered.
// Due to depending on guest state, we need to call this every frame.
SetWindowSize(xfb_rect.GetWidth(), xfb_rect.GetHeight());
}
if (!is_duplicate_frame)
{
m_fps_counter.Update();
DolphinAnalytics::PerformanceSample perf_sample;
perf_sample.speed_ratio = SystemTimers::GetEstimatedEmulationPerformance();
perf_sample.num_prims = g_stats.this_frame.num_prims + g_stats.this_frame.num_dl_prims;
perf_sample.num_draw_calls = g_stats.this_frame.num_draw_calls;
DolphinAnalytics::Instance().ReportPerformanceInfo(std::move(perf_sample));
if (IsFrameDumping())
DumpCurrentFrame(xfb_entry->texture.get(), xfb_rect, ticks, m_frame_count);
// Begin new frame
m_frame_count++;
g_stats.ResetFrame();
}
g_shader_cache->RetrieveAsyncShaders();
g_vertex_manager->OnEndFrame();
BeginImGuiFrame();
// We invalidate the pipeline object at the start of the frame.
// This is for the rare case where only a single pipeline configuration is used,
// and hybrid ubershaders have compiled the specialized shader, but without any
// state changes the specialized shader will not take over.
g_vertex_manager->InvalidatePipelineObject();
if (m_force_reload_textures.TestAndClear())
{
g_texture_cache->ForceReload();
}
else
{
// Flush any outstanding EFB copies to RAM, in case the game is running at an uncapped frame
// rate and not waiting for vblank. Otherwise, we'd end up with a huge list of pending
// copies.
g_texture_cache->FlushEFBCopies();
}
if (!is_duplicate_frame)
{
// Remove stale EFB/XFB copies.
g_texture_cache->Cleanup(m_frame_count);
const double last_speed_denominator =
m_fps_counter.GetDeltaTime() * VideoInterface::GetTargetRefreshRate();
// The denominator should always be > 0 but if it's not, just return 1
const double last_speed =
last_speed_denominator > 0.0 ? (1.0 / last_speed_denominator) : 1.0;
Core::Callback_FramePresented(last_speed);
}
// Handle any config changes, this gets propagated to the backend.
CheckForConfigChanges();
g_Config.iSaveTargetId = 0;
EndUtilityDrawing();
}
else
{
Flush();
}
// Update our last xfb values
m_last_xfb_addr = xfb_addr;
m_last_xfb_ticks = ticks;
m_last_xfb_width = fb_width;
m_last_xfb_stride = fb_stride;
m_last_xfb_height = fb_height;
}
else
{
Flush();
}
}
void Renderer::RenderXFBToScreen(const MathUtil::Rectangle<int>& target_rc,
const AbstractTexture* source_texture,
const MathUtil::Rectangle<int>& source_rc)
{
if (g_ActiveConfig.stereo_mode == StereoMode::SBS ||
g_ActiveConfig.stereo_mode == StereoMode::TAB)
{
const auto [left_rc, right_rc] = ConvertStereoRectangle(target_rc);
m_post_processor->BlitFromTexture(left_rc, source_rc, source_texture, 0);
m_post_processor->BlitFromTexture(right_rc, source_rc, source_texture, 1);
}
else
{
m_post_processor->BlitFromTexture(target_rc, source_rc, source_texture, 0);
}
}
bool Renderer::IsFrameDumping() const
{
if (m_screenshot_request.IsSet())
return true;
if (Config::Get(Config::MAIN_MOVIE_DUMP_FRAMES))
return true;
return false;
}
void Renderer::DumpCurrentFrame(const AbstractTexture* src_texture,
const MathUtil::Rectangle<int>& src_rect, u64 ticks,
int frame_number)
{
int source_width = src_rect.GetWidth();
int source_height = src_rect.GetHeight();
int target_width, target_height;
if (!g_ActiveConfig.bInternalResolutionFrameDumps && !IsHeadless())
{
auto target_rect = GetTargetRectangle();
target_width = target_rect.GetWidth();
target_height = target_rect.GetHeight();
}
else
{
std::tie(target_width, target_height) = CalculateOutputDimensions(source_width, source_height);
}
// We only need to render a copy if we need to stretch/scale the XFB copy.
MathUtil::Rectangle<int> copy_rect = src_rect;
if (source_width != target_width || source_height != target_height)
{
if (!CheckFrameDumpRenderTexture(target_width, target_height))
return;
ScaleTexture(m_frame_dump_render_framebuffer.get(), m_frame_dump_render_framebuffer->GetRect(),
src_texture, src_rect);
src_texture = m_frame_dump_render_texture.get();
copy_rect = src_texture->GetRect();
}
if (!CheckFrameDumpReadbackTexture(target_width, target_height))
return;
m_frame_dump_readback_texture->CopyFromTexture(src_texture, copy_rect, 0, 0,
m_frame_dump_readback_texture->GetRect());
m_last_frame_state = m_frame_dump.FetchState(ticks, frame_number);
m_frame_dump_needs_flush = true;
}
bool Renderer::CheckFrameDumpRenderTexture(u32 target_width, u32 target_height)
{
// Ensure framebuffer exists (we lazily allocate it in case frame dumping isn't used).
// Or, resize texture if it isn't large enough to accommodate the current frame.
if (m_frame_dump_render_texture && m_frame_dump_render_texture->GetWidth() == target_width &&
m_frame_dump_render_texture->GetHeight() == target_height)
{
return true;
}
// Recreate texture, but release before creating so we don't temporarily use twice the RAM.
m_frame_dump_render_framebuffer.reset();
m_frame_dump_render_texture.reset();
m_frame_dump_render_texture =
CreateTexture(TextureConfig(target_width, target_height, 1, 1, 1,
AbstractTextureFormat::RGBA8, AbstractTextureFlag_RenderTarget),
"Frame dump render texture");
if (!m_frame_dump_render_texture)
{
PanicAlertFmt("Failed to allocate frame dump render texture");
return false;
}
m_frame_dump_render_framebuffer = CreateFramebuffer(m_frame_dump_render_texture.get(), nullptr);
ASSERT(m_frame_dump_render_framebuffer);
return true;
}
bool Renderer::CheckFrameDumpReadbackTexture(u32 target_width, u32 target_height)
{
std::unique_ptr<AbstractStagingTexture>& rbtex = m_frame_dump_readback_texture;
if (rbtex && rbtex->GetWidth() == target_width && rbtex->GetHeight() == target_height)
return true;
rbtex.reset();
rbtex = CreateStagingTexture(
StagingTextureType::Readback,
TextureConfig(target_width, target_height, 1, 1, 1, AbstractTextureFormat::RGBA8, 0));
if (!rbtex)
return false;
return true;
}
void Renderer::FlushFrameDump()
{
if (!m_frame_dump_needs_flush)
return;
// Ensure dumping thread is done with output texture before swapping.
FinishFrameData();
std::swap(m_frame_dump_output_texture, m_frame_dump_readback_texture);
// Queue encoding of the last frame dumped.
auto& output = m_frame_dump_output_texture;
output->Flush();
if (output->Map())
{
DumpFrameData(reinterpret_cast<u8*>(output->GetMappedPointer()), output->GetConfig().width,
output->GetConfig().height, static_cast<int>(output->GetMappedStride()));
}
else
{
ERROR_LOG_FMT(VIDEO, "Failed to map texture for dumping.");
}
m_frame_dump_needs_flush = false;
// Shutdown frame dumping if it is no longer active.
if (!IsFrameDumping())
ShutdownFrameDumping();
}
void Renderer::ShutdownFrameDumping()
{
// Ensure the last queued readback has been sent to the encoder.
FlushFrameDump();
if (!m_frame_dump_thread_running.IsSet())
return;
// Ensure previous frame has been encoded.
FinishFrameData();
// Wake thread up, and wait for it to exit.
m_frame_dump_thread_running.Clear();
m_frame_dump_start.Set();
if (m_frame_dump_thread.joinable())
m_frame_dump_thread.join();
m_frame_dump_render_framebuffer.reset();
m_frame_dump_render_texture.reset();
m_frame_dump_readback_texture.reset();
m_frame_dump_output_texture.reset();
}
void Renderer::DumpFrameData(const u8* data, int w, int h, int stride)
{
m_frame_dump_data = FrameDump::FrameData{data, w, h, stride, m_last_frame_state};
if (!m_frame_dump_thread_running.IsSet())
{
if (m_frame_dump_thread.joinable())
m_frame_dump_thread.join();
m_frame_dump_thread_running.Set();
m_frame_dump_thread = std::thread(&Renderer::FrameDumpThreadFunc, this);
}
// Wake worker thread up.
m_frame_dump_start.Set();
m_frame_dump_frame_running = true;
}
void Renderer::FinishFrameData()
{
if (!m_frame_dump_frame_running)
return;
m_frame_dump_done.Wait();
m_frame_dump_frame_running = false;
m_frame_dump_output_texture->Unmap();
}
void Renderer::FrameDumpThreadFunc()
{
Common::SetCurrentThreadName("FrameDumping");
bool dump_to_ffmpeg = !g_ActiveConfig.bDumpFramesAsImages;
bool frame_dump_started = false;
// If Dolphin was compiled without ffmpeg, we only support dumping to images.
#if !defined(HAVE_FFMPEG)
if (dump_to_ffmpeg)
{
WARN_LOG_FMT(VIDEO, "FrameDump: Dolphin was not compiled with FFmpeg, using fallback option. "
"Frames will be saved as PNG images instead.");
dump_to_ffmpeg = false;
}
#endif
while (true)
{
m_frame_dump_start.Wait();
if (!m_frame_dump_thread_running.IsSet())
break;
auto frame = m_frame_dump_data;
// Save screenshot
if (m_screenshot_request.TestAndClear())
{
std::lock_guard<std::mutex> lk(m_screenshot_lock);
if (DumpFrameToPNG(frame, m_screenshot_name))
OSD::AddMessage("Screenshot saved to " + m_screenshot_name);
// Reset settings
m_screenshot_name.clear();
m_screenshot_completed.Set();
}
if (Config::Get(Config::MAIN_MOVIE_DUMP_FRAMES))
{
if (!frame_dump_started)
{
if (dump_to_ffmpeg)
frame_dump_started = StartFrameDumpToFFMPEG(frame);
else
frame_dump_started = StartFrameDumpToImage(frame);
// Stop frame dumping if we fail to start.
if (!frame_dump_started)
Config::SetCurrent(Config::MAIN_MOVIE_DUMP_FRAMES, false);
}
// If we failed to start frame dumping, don't write a frame.
if (frame_dump_started)
{
if (dump_to_ffmpeg)
DumpFrameToFFMPEG(frame);
else
DumpFrameToImage(frame);
}
}
m_frame_dump_done.Set();
}
if (frame_dump_started)
{
// No additional cleanup is needed when dumping to images.
if (dump_to_ffmpeg)
StopFrameDumpToFFMPEG();
}
}
#if defined(HAVE_FFMPEG)
bool Renderer::StartFrameDumpToFFMPEG(const FrameDump::FrameData& frame)
{
// If dumping started at boot, the start time must be set to the boot time to maintain audio sync.
// TODO: Perhaps we should care about this when starting dumping in the middle of emulation too,
// but it's less important there since the first frame to dump usually gets delivered quickly.
const u64 start_ticks = frame.state.frame_number == 0 ? 0 : frame.state.ticks;
return m_frame_dump.Start(frame.width, frame.height, start_ticks);
}
void Renderer::DumpFrameToFFMPEG(const FrameDump::FrameData& frame)
{
m_frame_dump.AddFrame(frame);
}
void Renderer::StopFrameDumpToFFMPEG()
{
m_frame_dump.Stop();
}
#else
bool Renderer::StartFrameDumpToFFMPEG(const FrameDump::FrameData&)
{
return false;
}
void Renderer::DumpFrameToFFMPEG(const FrameDump::FrameData&)
{
}
void Renderer::StopFrameDumpToFFMPEG()
{
}
#endif // defined(HAVE_FFMPEG)
std::string Renderer::GetFrameDumpNextImageFileName() const
{
return fmt::format("{}framedump_{}.png", File::GetUserPath(D_DUMPFRAMES_IDX),
m_frame_dump_image_counter);
}
bool Renderer::StartFrameDumpToImage(const FrameDump::FrameData&)
{
m_frame_dump_image_counter = 1;
if (!Config::Get(Config::MAIN_MOVIE_DUMP_FRAMES_SILENT))
{
// Only check for the presence of the first image to confirm overwriting.
// A previous run will always have at least one image, and it's safe to assume that if the user
// has allowed the first image to be overwritten, this will apply any remaining images as well.
std::string filename = GetFrameDumpNextImageFileName();
if (File::Exists(filename))
{
if (!AskYesNoFmtT("Frame dump image(s) '{0}' already exists. Overwrite?", filename))
return false;
}
}
return true;
}
void Renderer::DumpFrameToImage(const FrameDump::FrameData& frame)
{
DumpFrameToPNG(frame, GetFrameDumpNextImageFileName());
m_frame_dump_image_counter++;
}
bool Renderer::UseVertexDepthRange() const
{
// We can't compute the depth range in the vertex shader if we don't support depth clamp.
if (!g_ActiveConfig.backend_info.bSupportsDepthClamp)
return false;
// We need a full depth range if a ztexture is used.
if (bpmem.ztex2.op != ZTexOp::Disabled && !bpmem.zcontrol.early_ztest)
return true;
// If an inverted depth range is unsupported, we also need to check if the range is inverted.
if (!g_ActiveConfig.backend_info.bSupportsReversedDepthRange && xfmem.viewport.zRange < 0.0f)
return true;
// If an oversized depth range or a ztexture is used, we need to calculate the depth range
// in the vertex shader.
return fabs(xfmem.viewport.zRange) > 16777215.0f || fabs(xfmem.viewport.farZ) > 16777215.0f;
}
void Renderer::DoState(PointerWrap& p)
{
p.Do(m_is_game_widescreen);
p.Do(m_frame_count);
p.Do(m_prev_efb_format);
p.Do(m_last_xfb_ticks);
p.Do(m_last_xfb_addr);
p.Do(m_last_xfb_width);
p.Do(m_last_xfb_stride);
p.Do(m_last_xfb_height);
p.DoArray(m_bounding_box_fallback);
m_bounding_box->DoState(p);
if (p.GetMode() == PointerWrap::MODE_READ)
{
// Force the next xfb to be displayed.
m_last_xfb_id = std::numeric_limits<u64>::max();
m_was_orthographically_anamorphic = false;
// And actually display it.
Swap(m_last_xfb_addr, m_last_xfb_width, m_last_xfb_stride, m_last_xfb_height, m_last_xfb_ticks);
}
#if defined(HAVE_FFMPEG)
m_frame_dump.DoState(p);
#endif
}
std::unique_ptr<VideoCommon::AsyncShaderCompiler> Renderer::CreateAsyncShaderCompiler()
{
return std::make_unique<VideoCommon::AsyncShaderCompiler>();
}