dolphin/Source/Core/Core/CoreTiming.cpp

559 lines
13 KiB
C++

// Copyright 2008 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include <cinttypes>
#include <mutex>
#include <string>
#include <vector>
#include "Common/ChunkFile.h"
#include "Common/FifoQueue.h"
#include "Common/StringUtil.h"
#include "Common/Thread.h"
#include "Core/ConfigManager.h"
#include "Core/Core.h"
#include "Core/CoreTiming.h"
#include "Core/PowerPC/PowerPC.h"
#include "VideoCommon/Fifo.h"
#include "VideoCommon/VideoBackendBase.h"
#define MAX_SLICE_LENGTH 20000
namespace CoreTiming
{
struct EventType
{
TimedCallback callback;
std::string name;
};
static std::vector<EventType> event_types;
struct BaseEvent
{
s64 time;
u64 userdata;
int type;
};
typedef LinkedListItem<BaseEvent> Event;
// STATE_TO_SAVE
static Event* first;
static std::mutex tsWriteLock;
static Common::FifoQueue<BaseEvent, false> tsQueue;
// event pools
static Event* eventPool = nullptr;
static float s_lastOCFactor;
float g_lastOCFactor_inverted;
int g_slicelength;
static int maxslicelength = MAX_SLICE_LENGTH;
static s64 idledCycles;
static u32 fakeDecStartValue;
static u64 fakeDecStartTicks;
// Are we in a function that has been called from Advance()
static bool globalTimerIsSane;
s64 g_globalTimer;
u64 g_fakeTBStartValue;
u64 g_fakeTBStartTicks;
static int ev_lost;
static Event* GetNewEvent()
{
if (!eventPool)
return new Event;
Event* ev = eventPool;
eventPool = ev->next;
return ev;
}
static void FreeEvent(Event* ev)
{
ev->next = eventPool;
eventPool = ev;
}
static void EmptyTimedCallback(u64 userdata, s64 cyclesLate)
{
}
// Changing the CPU speed in Dolphin isn't actually done by changing the physical clock rate,
// but by changing the amount of work done in a particular amount of time. This tends to be more
// compatible because it stops the games from actually knowing directly that the clock rate has
// changed, and ensures that anything based on waiting a specific number of cycles still works.
//
// Technically it might be more accurate to call this changing the IPC instead of the CPU speed,
// but the effect is largely the same.
static int DowncountToCycles(int downcount)
{
return (int)(downcount * g_lastOCFactor_inverted);
}
static int CyclesToDowncount(int cycles)
{
return (int)(cycles * s_lastOCFactor);
}
int RegisterEvent(const std::string& name, TimedCallback callback)
{
EventType type;
type.name = name;
type.callback = callback;
// check for existing type with same name.
// we want event type names to remain unique so that we can use them for serialization.
for (auto& event_type : event_types)
{
if (name == event_type.name)
{
WARN_LOG(
POWERPC,
"Discarded old event type \"%s\" because a new type with the same name was registered.",
name.c_str());
// we don't know if someone might be holding on to the type index,
// so we gut the old event type instead of actually removing it.
event_type.name = "_discarded_event";
event_type.callback = &EmptyTimedCallback;
}
}
event_types.push_back(type);
return (int)event_types.size() - 1;
}
void UnregisterAllEvents()
{
if (first)
PanicAlert("Cannot unregister events with events pending");
event_types.clear();
}
void Init()
{
s_lastOCFactor = SConfig::GetInstance().m_OCEnable ? SConfig::GetInstance().m_OCFactor : 1.0f;
g_lastOCFactor_inverted = 1.0f / s_lastOCFactor;
PowerPC::ppcState.downcount = CyclesToDowncount(maxslicelength);
g_slicelength = maxslicelength;
g_globalTimer = 0;
idledCycles = 0;
globalTimerIsSane = true;
ev_lost = RegisterEvent("_lost_event", &EmptyTimedCallback);
}
void Shutdown()
{
std::lock_guard<std::mutex> lk(tsWriteLock);
MoveEvents();
ClearPendingEvents();
UnregisterAllEvents();
while (eventPool)
{
Event* ev = eventPool;
eventPool = ev->next;
delete ev;
}
}
static void EventDoState(PointerWrap& p, BaseEvent* ev)
{
p.Do(ev->time);
// this is why we can't have (nice things) pointers as userdata
p.Do(ev->userdata);
// we can't savestate ev->type directly because events might not get registered in the same order
// (or at all) every time.
// so, we savestate the event's type's name, and derive ev->type from that when loading.
std::string name;
if (p.GetMode() != PointerWrap::MODE_READ)
name = event_types[ev->type].name;
p.Do(name);
if (p.GetMode() == PointerWrap::MODE_READ)
{
bool foundMatch = false;
for (unsigned int i = 0; i < event_types.size(); ++i)
{
if (name == event_types[i].name)
{
ev->type = i;
foundMatch = true;
break;
}
}
if (!foundMatch)
{
WARN_LOG(POWERPC,
"Lost event from savestate because its type, \"%s\", has not been registered.",
name.c_str());
ev->type = ev_lost;
}
}
}
void DoState(PointerWrap& p)
{
std::lock_guard<std::mutex> lk(tsWriteLock);
p.Do(g_slicelength);
p.Do(g_globalTimer);
p.Do(idledCycles);
p.Do(fakeDecStartValue);
p.Do(fakeDecStartTicks);
p.Do(g_fakeTBStartValue);
p.Do(g_fakeTBStartTicks);
p.Do(s_lastOCFactor);
if (p.GetMode() == PointerWrap::MODE_READ)
g_lastOCFactor_inverted = 1.0f / s_lastOCFactor;
p.DoMarker("CoreTimingData");
MoveEvents();
p.DoLinkedList<BaseEvent, GetNewEvent, FreeEvent, EventDoState>(first);
p.DoMarker("CoreTimingEvents");
}
// This should only be called from the CPU thread, if you are calling it any other thread, you are
// doing something evil
u64 GetTicks()
{
u64 ticks = (u64)g_globalTimer;
if (!globalTimerIsSane)
{
int downcount = DowncountToCycles(PowerPC::ppcState.downcount);
ticks += g_slicelength - downcount;
}
return ticks;
}
u64 GetIdleTicks()
{
return (u64)idledCycles;
}
// This is to be called when outside threads, such as the graphics thread, wants to
// schedule things to be executed on the main thread.
void ScheduleEvent_Threadsafe(s64 cyclesIntoFuture, int event_type, u64 userdata)
{
_assert_msg_(POWERPC, !Core::IsCPUThread(), "ScheduleEvent_Threadsafe from wrong thread");
if (Core::g_want_determinism)
{
ERROR_LOG(POWERPC,
"Someone scheduled an off-thread \"%s\" event while netplay or movie play/record "
"was active. This is likely to cause a desync.",
event_types[event_type].name.c_str());
}
std::lock_guard<std::mutex> lk(tsWriteLock);
Event ne;
ne.time = g_globalTimer + cyclesIntoFuture;
ne.type = event_type;
ne.userdata = userdata;
tsQueue.Push(ne);
}
// Executes an event immediately, then returns.
void ScheduleEvent_Immediate(int event_type, u64 userdata)
{
_assert_msg_(POWERPC, Core::IsCPUThread(), "ScheduleEvent_Immediate from wrong thread");
event_types[event_type].callback(userdata, 0);
}
// Same as ScheduleEvent_Threadsafe(0, ...) EXCEPT if we are already on the CPU thread
// in which case this is the same as ScheduleEvent_Immediate.
void ScheduleEvent_Threadsafe_Immediate(int event_type, u64 userdata)
{
if (Core::IsCPUThread())
{
event_types[event_type].callback(userdata, 0);
}
else
{
ScheduleEvent_Threadsafe(0, event_type, userdata);
}
}
// To be used from any thread, including the CPU thread
void ScheduleEvent_AnyThread(s64 cyclesIntoFuture, int event_type, u64 userdata)
{
if (Core::IsCPUThread())
ScheduleEvent(cyclesIntoFuture, event_type, userdata);
else
ScheduleEvent_Threadsafe(cyclesIntoFuture, event_type, userdata);
}
void ClearPendingEvents()
{
while (first)
{
Event* e = first->next;
FreeEvent(first);
first = e;
}
}
static void AddEventToQueue(Event* ne)
{
Event* prev = nullptr;
Event** pNext = &first;
for (;;)
{
Event*& next = *pNext;
if (!next || ne->time < next->time)
{
ne->next = next;
next = ne;
break;
}
prev = next;
pNext = &prev->next;
}
}
// This must be run ONLY from within the CPU thread
// cyclesIntoFuture may be VERY inaccurate if called from anything else
// than Advance
void ScheduleEvent(s64 cyclesIntoFuture, int event_type, u64 userdata)
{
_assert_msg_(POWERPC, Core::IsCPUThread() || Core::GetState() == Core::CORE_PAUSE,
"ScheduleEvent from wrong thread");
Event* ne = GetNewEvent();
ne->userdata = userdata;
ne->type = event_type;
ne->time = GetTicks() + cyclesIntoFuture;
// If this event needs to be scheduled before the next advance(), force one early
if (!globalTimerIsSane)
ForceExceptionCheck(cyclesIntoFuture);
AddEventToQueue(ne);
}
void RemoveEvent(int event_type)
{
while (first && first->type == event_type)
{
Event* next = first->next;
FreeEvent(first);
first = next;
}
if (!first)
return;
Event* prev = first;
Event* ptr = prev->next;
while (ptr)
{
if (ptr->type == event_type)
{
prev->next = ptr->next;
FreeEvent(ptr);
ptr = prev->next;
}
else
{
prev = ptr;
ptr = ptr->next;
}
}
}
void RemoveAllEvents(int event_type)
{
MoveEvents();
RemoveEvent(event_type);
}
void ForceExceptionCheck(s64 cycles)
{
if (s64(DowncountToCycles(PowerPC::ppcState.downcount)) > cycles)
{
// downcount is always (much) smaller than MAX_INT so we can safely cast cycles to an int here.
g_slicelength -=
(DowncountToCycles(PowerPC::ppcState.downcount) -
(int)cycles); // Account for cycles already executed by adjusting the g_slicelength
PowerPC::ppcState.downcount = CyclesToDowncount((int)cycles);
}
}
// This raise only the events required while the fifo is processing data
void ProcessFifoWaitEvents()
{
MoveEvents();
if (!first)
return;
while (first)
{
if (first->time <= g_globalTimer)
{
Event* evt = first;
first = first->next;
event_types[evt->type].callback(evt->userdata, (int)(g_globalTimer - evt->time));
FreeEvent(evt);
}
else
{
break;
}
}
}
void MoveEvents()
{
BaseEvent sevt;
while (tsQueue.Pop(sevt))
{
Event* evt = GetNewEvent();
evt->time = sevt.time;
evt->userdata = sevt.userdata;
evt->type = sevt.type;
AddEventToQueue(evt);
}
}
void Advance()
{
MoveEvents();
int cyclesExecuted = g_slicelength - DowncountToCycles(PowerPC::ppcState.downcount);
g_globalTimer += cyclesExecuted;
s_lastOCFactor = SConfig::GetInstance().m_OCEnable ? SConfig::GetInstance().m_OCFactor : 1.0f;
g_lastOCFactor_inverted = 1.0f / s_lastOCFactor;
g_slicelength = maxslicelength;
globalTimerIsSane = true;
while (first && first->time <= g_globalTimer)
{
// LOG(POWERPC, "[Scheduler] %s (%lld, %lld) ",
// event_types[first->type].name ? event_types[first->type].name : "?",
// (u64)g_globalTimer, (u64)first->time);
Event* evt = first;
first = first->next;
event_types[evt->type].callback(evt->userdata, (int)(g_globalTimer - evt->time));
FreeEvent(evt);
}
globalTimerIsSane = false;
if (first)
{
g_slicelength = (int)(first->time - g_globalTimer);
if (g_slicelength > maxslicelength)
g_slicelength = maxslicelength;
}
PowerPC::ppcState.downcount = CyclesToDowncount(g_slicelength);
// Check for any external exceptions.
// It's important to do this after processing events otherwise any exceptions will be delayed
// until the next slice:
// Pokemon Box refuses to boot if the first exception from the audio DMA is received late
PowerPC::CheckExternalExceptions();
}
void LogPendingEvents()
{
Event* ptr = first;
while (ptr)
{
INFO_LOG(POWERPC, "PENDING: Now: %" PRId64 " Pending: %" PRId64 " Type: %d", g_globalTimer,
ptr->time, ptr->type);
ptr = ptr->next;
}
}
void Idle()
{
// DEBUG_LOG(POWERPC, "Idle");
if (SConfig::GetInstance().bSyncGPUOnSkipIdleHack)
{
// When the FIFO is processing data we must not advance because in this way
// the VI will be desynchronized. So, We are waiting until the FIFO finish and
// while we process only the events required by the FIFO.
ProcessFifoWaitEvents();
Fifo::FlushGpu();
}
idledCycles += DowncountToCycles(PowerPC::ppcState.downcount);
PowerPC::ppcState.downcount = 0;
}
std::string GetScheduledEventsSummary()
{
Event* ptr = first;
std::string text = "Scheduled events\n";
text.reserve(1000);
while (ptr)
{
unsigned int t = ptr->type;
if (t >= event_types.size())
PanicAlertT("Invalid event type %i", t);
const std::string& name = event_types[ptr->type].name;
text += StringFromFormat("%s : %" PRIi64 " %016" PRIx64 "\n", name.c_str(), ptr->time,
ptr->userdata);
ptr = ptr->next;
}
return text;
}
u32 GetFakeDecStartValue()
{
return fakeDecStartValue;
}
void SetFakeDecStartValue(u32 val)
{
fakeDecStartValue = val;
}
u64 GetFakeDecStartTicks()
{
return fakeDecStartTicks;
}
void SetFakeDecStartTicks(u64 val)
{
fakeDecStartTicks = val;
}
u64 GetFakeTBStartValue()
{
return g_fakeTBStartValue;
}
void SetFakeTBStartValue(u64 val)
{
g_fakeTBStartValue = val;
}
u64 GetFakeTBStartTicks()
{
return g_fakeTBStartTicks;
}
void SetFakeTBStartTicks(u64 val)
{
g_fakeTBStartTicks = val;
}
} // namespace