dolphin/Source/Core/VideoCommon/TextureCacheBase.h
Lioncash 2b9389202e VideoCommon: Remove unused MathUtil.h include from VideoCommon.h
This header doesn't actually make use of MathUtil.h within itself, so
this can be removed. Many other source files used VideoCommon.h as an
indirect include to include MathUtil.h, so these includes can also be
adjusted.

While we're at it, we can also migrate valid inclusions of VideoCommon.h
into cpp files where it can feasibly be done to minimize propagating it
via other headers.
2019-07-16 20:54:34 -04:00

360 lines
13 KiB
C++

// Copyright 2010 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#pragma once
#include <array>
#include <bitset>
#include <map>
#include <memory>
#include <optional>
#include <string>
#include <tuple>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include "Common/CommonTypes.h"
#include "Common/MathUtil.h"
#include "VideoCommon/AbstractTexture.h"
#include "VideoCommon/BPMemory.h"
#include "VideoCommon/TextureConfig.h"
#include "VideoCommon/TextureDecoder.h"
class AbstractFramebuffer;
class AbstractStagingTexture;
struct VideoConfig;
struct TextureAndTLUTFormat
{
TextureAndTLUTFormat(TextureFormat texfmt_ = TextureFormat::I4,
TLUTFormat tlutfmt_ = TLUTFormat::IA8)
: texfmt(texfmt_), tlutfmt(tlutfmt_)
{
}
bool operator==(const TextureAndTLUTFormat& other) const
{
if (IsColorIndexed(texfmt))
return texfmt == other.texfmt && tlutfmt == other.tlutfmt;
return texfmt == other.texfmt;
}
bool operator!=(const TextureAndTLUTFormat& other) const { return !operator==(other); }
TextureFormat texfmt;
TLUTFormat tlutfmt;
};
struct EFBCopyParams
{
EFBCopyParams(PEControl::PixelFormat efb_format_, EFBCopyFormat copy_format_, bool depth_,
bool yuv_, bool copy_filter_)
: efb_format(efb_format_), copy_format(copy_format_), depth(depth_), yuv(yuv_),
copy_filter(copy_filter_)
{
}
bool operator<(const EFBCopyParams& rhs) const
{
return std::tie(efb_format, copy_format, depth, yuv, copy_filter) <
std::tie(rhs.efb_format, rhs.copy_format, rhs.depth, rhs.yuv, rhs.copy_filter);
}
PEControl::PixelFormat efb_format;
EFBCopyFormat copy_format;
bool depth;
bool yuv;
bool copy_filter;
};
// Reduced version of the full coefficient array, with a single value for each row.
struct EFBCopyFilterCoefficients
{
float upper;
float middle;
float lower;
};
class TextureCacheBase
{
private:
static const int FRAMECOUNT_INVALID = 0;
public:
struct TCacheEntry
{
// common members
std::unique_ptr<AbstractTexture> texture;
std::unique_ptr<AbstractFramebuffer> framebuffer;
u32 addr;
u32 size_in_bytes;
u64 base_hash;
u64 hash; // for paletted textures, hash = base_hash ^ palette_hash
TextureAndTLUTFormat format;
u32 memory_stride;
bool is_efb_copy;
bool is_custom_tex;
bool may_have_overlapping_textures = true;
bool tmem_only = false; // indicates that this texture only exists in the tmem cache
bool has_arbitrary_mips = false; // indicates that the mips in this texture are arbitrary
// content, aren't just downscaled
bool should_force_safe_hashing = false; // for XFB
bool is_xfb_copy = false;
bool is_xfb_container = false;
u64 id;
bool reference_changed = false; // used by xfb to determine when a reference xfb changed
unsigned int native_width,
native_height; // Texture dimensions from the GameCube's point of view
unsigned int native_levels;
// used to delete textures which haven't been used for TEXTURE_KILL_THRESHOLD frames
int frameCount = FRAMECOUNT_INVALID;
// Keep an iterator to the entry in textures_by_hash, so it does not need to be searched when
// removing the cache entry
std::multimap<u64, TCacheEntry*>::iterator textures_by_hash_iter;
// This is used to keep track of both:
// * efb copies used by this partially updated texture
// * partially updated textures which refer to this efb copy
std::unordered_set<TCacheEntry*> references;
// Pending EFB copy
std::unique_ptr<AbstractStagingTexture> pending_efb_copy;
u32 pending_efb_copy_width = 0;
u32 pending_efb_copy_height = 0;
bool pending_efb_copy_invalidated = false;
explicit TCacheEntry(std::unique_ptr<AbstractTexture> tex,
std::unique_ptr<AbstractFramebuffer> fb);
~TCacheEntry();
void SetGeneralParameters(u32 _addr, u32 _size, TextureAndTLUTFormat _format,
bool force_safe_hashing)
{
addr = _addr;
size_in_bytes = _size;
format = _format;
should_force_safe_hashing = force_safe_hashing;
}
void SetDimensions(unsigned int _native_width, unsigned int _native_height,
unsigned int _native_levels)
{
native_width = _native_width;
native_height = _native_height;
native_levels = _native_levels;
memory_stride = _native_width;
}
void SetHashes(u64 _base_hash, u64 _hash)
{
base_hash = _base_hash;
hash = _hash;
}
// This texture entry is used by the other entry as a sub-texture
void CreateReference(TCacheEntry* other_entry)
{
// References are two-way, so they can easily be destroyed later
this->references.emplace(other_entry);
other_entry->references.emplace(this);
}
void SetXfbCopy(u32 stride);
void SetEfbCopy(u32 stride);
void SetNotCopy();
bool OverlapsMemoryRange(u32 range_address, u32 range_size) const;
bool IsEfbCopy() const { return is_efb_copy; }
bool IsCopy() const { return is_xfb_copy || is_efb_copy; }
u32 NumBlocksY() const;
u32 BytesPerRow() const;
u64 CalculateHash() const;
int HashSampleSize() const;
u32 GetWidth() const { return texture->GetConfig().width; }
u32 GetHeight() const { return texture->GetConfig().height; }
u32 GetNumLevels() const { return texture->GetConfig().levels; }
u32 GetNumLayers() const { return texture->GetConfig().layers; }
AbstractTextureFormat GetFormat() const { return texture->GetConfig().format; }
};
TextureCacheBase();
virtual ~TextureCacheBase();
bool Initialize();
void OnConfigChanged(VideoConfig& config);
// Removes textures which aren't used for more than TEXTURE_KILL_THRESHOLD frames,
// frameCount is the current frame number.
void Cleanup(int _frameCount);
void Invalidate();
TCacheEntry* Load(const u32 stage);
static void InvalidateAllBindPoints() { valid_bind_points.reset(); }
static bool IsValidBindPoint(u32 i) { return valid_bind_points.test(i); }
TCacheEntry* GetTexture(u32 address, u32 width, u32 height, const TextureFormat texformat,
const int textureCacheSafetyColorSampleSize, u32 tlutaddr = 0,
TLUTFormat tlutfmt = TLUTFormat::IA8, bool use_mipmaps = false,
u32 tex_levels = 1, bool from_tmem = false, u32 tmem_address_even = 0,
u32 tmem_address_odd = 0);
TCacheEntry* GetXFBTexture(u32 address, u32 width, u32 height, u32 stride,
MathUtil::Rectangle<int>* display_rect);
virtual void BindTextures();
void CopyRenderTargetToTexture(u32 dstAddr, EFBCopyFormat dstFormat, u32 width, u32 height,
u32 dstStride, bool is_depth_copy,
const MathUtil::Rectangle<int>& srcRect, bool isIntensity,
bool scaleByHalf, float y_scale, float gamma, bool clamp_top,
bool clamp_bottom,
const CopyFilterCoefficients::Values& filter_coefficients);
void ScaleTextureCacheEntryTo(TCacheEntry* entry, u32 new_width, u32 new_height);
// Flushes all pending EFB copies to emulated RAM.
void FlushEFBCopies();
// Returns false if the top/bottom row coefficients are zero.
static bool NeedsCopyFilterInShader(const EFBCopyFilterCoefficients& coefficients);
protected:
// Decodes the specified data to the GPU texture specified by entry.
// Returns false if the configuration is not supported.
// width, height are the size of the image in pixels.
// aligned_width, aligned_height are the size of the image in pixels, aligned to the block size.
// row_stride is the number of bytes for a row of blocks, not pixels.
bool DecodeTextureOnGPU(TCacheEntry* entry, u32 dst_level, const u8* data, u32 data_size,
TextureFormat format, u32 width, u32 height, u32 aligned_width,
u32 aligned_height, u32 row_stride, const u8* palette,
TLUTFormat palette_format);
virtual void CopyEFB(AbstractStagingTexture* dst, const EFBCopyParams& params, u32 native_width,
u32 bytes_per_row, u32 num_blocks_y, u32 memory_stride,
const MathUtil::Rectangle<int>& src_rect, bool scale_by_half,
bool linear_filter, float y_scale, float gamma, bool clamp_top,
bool clamp_bottom, const EFBCopyFilterCoefficients& filter_coefficients);
virtual void CopyEFBToCacheEntry(TCacheEntry* entry, bool is_depth_copy,
const MathUtil::Rectangle<int>& src_rect, bool scale_by_half,
bool linear_filter, EFBCopyFormat dst_format, bool is_intensity,
float gamma, bool clamp_top, bool clamp_bottom,
const EFBCopyFilterCoefficients& filter_coefficients);
alignas(16) u8* temp = nullptr;
size_t temp_size = 0;
std::array<TCacheEntry*, 8> bound_textures{};
static std::bitset<8> valid_bind_points;
private:
// Minimal version of TCacheEntry just for TexPool
struct TexPoolEntry
{
std::unique_ptr<AbstractTexture> texture;
std::unique_ptr<AbstractFramebuffer> framebuffer;
int frameCount = FRAMECOUNT_INVALID;
TexPoolEntry(std::unique_ptr<AbstractTexture> tex, std::unique_ptr<AbstractFramebuffer> fb);
};
using TexAddrCache = std::multimap<u32, TCacheEntry*>;
using TexHashCache = std::multimap<u64, TCacheEntry*>;
using TexPool = std::unordered_multimap<TextureConfig, TexPoolEntry>;
bool CreateUtilityTextures();
void SetBackupConfig(const VideoConfig& config);
TCacheEntry* GetXFBFromCache(u32 address, u32 width, u32 height, u32 stride, u64 hash);
TCacheEntry* ApplyPaletteToEntry(TCacheEntry* entry, u8* palette, TLUTFormat tlutfmt);
TCacheEntry* ReinterpretEntry(const TCacheEntry* existing_entry, TextureFormat new_format);
TCacheEntry* DoPartialTextureUpdates(TCacheEntry* entry_to_update, u8* palette,
TLUTFormat tlutfmt);
void StitchXFBCopy(TCacheEntry* entry_to_update);
void DumpTexture(TCacheEntry* entry, std::string basename, unsigned int level, bool is_arbitrary);
void CheckTempSize(size_t required_size);
TCacheEntry* AllocateCacheEntry(const TextureConfig& config);
std::optional<TexPoolEntry> AllocateTexture(const TextureConfig& config);
TexPool::iterator FindMatchingTextureFromPool(const TextureConfig& config);
TexAddrCache::iterator GetTexCacheIter(TCacheEntry* entry);
// Return all possible overlapping textures. As addr+size of the textures is not
// indexed, this may return false positives.
std::pair<TexAddrCache::iterator, TexAddrCache::iterator>
FindOverlappingTextures(u32 addr, u32 size_in_bytes);
// Removes and unlinks texture from texture cache and returns it to the pool
TexAddrCache::iterator InvalidateTexture(TexAddrCache::iterator t_iter,
bool discard_pending_efb_copy = false);
void UninitializeXFBMemory(u8* dst, u32 stride, u32 bytes_per_row, u32 num_blocks_y);
// Precomputing the coefficients for the previous, current, and next lines for the copy filter.
static EFBCopyFilterCoefficients
GetRAMCopyFilterCoefficients(const CopyFilterCoefficients::Values& coefficients);
static EFBCopyFilterCoefficients
GetVRAMCopyFilterCoefficients(const CopyFilterCoefficients::Values& coefficients);
// Flushes a pending EFB copy to RAM from the host to the guest RAM.
void WriteEFBCopyToRAM(u8* dst_ptr, u32 width, u32 height, u32 stride,
std::unique_ptr<AbstractStagingTexture> staging_texture);
void FlushEFBCopy(TCacheEntry* entry);
// Returns a staging texture of the maximum EFB copy size.
std::unique_ptr<AbstractStagingTexture> GetEFBCopyStagingTexture();
// Returns an EFB copy staging texture to the pool, so it can be re-used.
void ReleaseEFBCopyStagingTexture(std::unique_ptr<AbstractStagingTexture> tex);
TexAddrCache textures_by_address;
TexHashCache textures_by_hash;
TexPool texture_pool;
u64 last_entry_id = 0;
// Backup configuration values
struct BackupConfig
{
int color_samples;
bool texfmt_overlay;
bool texfmt_overlay_center;
bool hires_textures;
bool cache_hires_textures;
bool copy_cache_enable;
bool stereo_3d;
bool efb_mono_depth;
bool gpu_texture_decoding;
bool disable_vram_copies;
bool arbitrary_mipmap_detection;
};
BackupConfig backup_config = {};
// Encoding texture used for EFB copies to RAM.
std::unique_ptr<AbstractTexture> m_efb_encoding_texture;
std::unique_ptr<AbstractFramebuffer> m_efb_encoding_framebuffer;
// Decoding texture used for GPU texture decoding.
std::unique_ptr<AbstractTexture> m_decoding_texture;
// Pool of readback textures used for deferred EFB copies.
std::vector<std::unique_ptr<AbstractStagingTexture>> m_efb_copy_staging_texture_pool;
// List of pending EFB copies. It is important that the order is preserved for these,
// so that overlapping textures are written to guest RAM in the order they are issued.
std::vector<TCacheEntry*> m_pending_efb_copies;
};
extern std::unique_ptr<TextureCacheBase> g_texture_cache;