dolphin/Source/Core/Core/ActionReplay.cpp
2014-09-08 15:39:58 -04:00

938 lines
23 KiB
C++

// Copyright 2013 Dolphin Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.
// -----------------------------------------------------------------------------------------
// Partial Action Replay code system implementation.
// Will never be able to support some AR codes - specifically those that patch the running
// Action Replay engine itself - yes they do exist!!!
// Action Replay actually is a small virtual machine with a limited number of commands.
// It probably is Turing complete - but what does that matter when AR codes can write
// actual PowerPC code...
// -----------------------------------------------------------------------------------------
// -------------------------------------------------------------------------------------------------------------
// Code Types:
// (Unconditional) Normal Codes (0): this one has subtypes inside
// (Conditional) Normal Codes (1 - 7): these just compare values and set the line skip info
// Zero Codes: any code with no address. These codes are used to do special operations like memory copy, etc
// -------------------------------------------------------------------------------------------------------------
#include <string>
#include <vector>
#include "Common/CommonTypes.h"
#include "Common/StringUtil.h"
#include "Common/Logging/LogManager.h"
#include "Core/ActionReplay.h"
#include "Core/ARDecrypt.h"
#include "Core/ConfigManager.h"
#include "Core/Core.h"
#include "Core/HW/Memmap.h"
namespace ActionReplay
{
enum
{
// Zero Code Types
ZCODE_END = 0x00,
ZCODE_NORM = 0x02,
ZCODE_ROW = 0x03,
ZCODE_04 = 0x04,
// Conditional Codes
CONDTIONAL_EQUAL = 0x01,
CONDTIONAL_NOT_EQUAL = 0x02,
CONDTIONAL_LESS_THAN_SIGNED = 0x03,
CONDTIONAL_GREATER_THAN_SIGNED = 0x04,
CONDTIONAL_LESS_THAN_UNSIGNED = 0x05,
CONDTIONAL_GREATER_THAN_UNSIGNED = 0x06,
CONDTIONAL_AND = 0x07, // bitwise AND
// Conditional Line Counts
CONDTIONAL_ONE_LINE = 0x00,
CONDTIONAL_TWO_LINES = 0x01,
CONDTIONAL_ALL_LINES_UNTIL = 0x02,
CONDTIONAL_ALL_LINES = 0x03,
// Data Types
DATATYPE_8BIT = 0x00,
DATATYPE_16BIT = 0x01,
DATATYPE_32BIT = 0x02,
DATATYPE_32BIT_FLOAT = 0x03,
// Normal Code 0 Subtypes
SUB_RAM_WRITE = 0x00,
SUB_WRITE_POINTER = 0x01,
SUB_ADD_CODE = 0x02,
SUB_MASTER_CODE = 0x03,
};
// pointer to the code currently being run, (used by log messages that include the code name)
static ARCode const* current_code = nullptr;
static bool b_RanOnce = false;
static std::vector<ARCode> arCodes;
static std::vector<ARCode> activeCodes;
static bool logSelf = false;
static std::vector<std::string> arLog;
struct ARAddr
{
union
{
u32 address;
struct
{
u32 gcaddr : 25;
u32 size : 2;
u32 type : 3;
u32 subtype : 2;
};
};
ARAddr(const u32 addr) : address(addr) {}
u32 GCAddress() const { return gcaddr | 0x80000000; }
operator u32() const { return address; }
};
// ----------------------
// AR Remote Functions
void LoadCodes(const IniFile& globalIni, const IniFile& localIni, bool forceLoad)
{
// Parses the Action Replay section of a game ini file.
if (!SConfig::GetInstance().m_LocalCoreStartupParameter.bEnableCheats &&
!forceLoad)
return;
arCodes.clear();
std::vector<std::string> enabledLines;
std::set<std::string> enabledNames;
localIni.GetLines("ActionReplay_Enabled", &enabledLines);
for (const std::string& line : enabledLines)
{
if (line.size() != 0 && line[0] == '$')
{
std::string name = line.substr(1, line.size() - 1);
enabledNames.insert(name);
}
}
const IniFile* inis[2] = {&globalIni, &localIni};
for (const IniFile* ini : inis)
{
std::vector<std::string> lines;
std::vector<std::string> encryptedLines;
ARCode currentCode;
ini->GetLines("ActionReplay", &lines);
for (const std::string& line : lines)
{
if (line.empty())
{
continue;
}
std::vector<std::string> pieces;
// Check if the line is a name of the code
if (line[0] == '$')
{
if (currentCode.ops.size())
{
arCodes.push_back(currentCode);
currentCode.ops.clear();
}
if (encryptedLines.size())
{
DecryptARCode(encryptedLines, currentCode.ops);
arCodes.push_back(currentCode);
currentCode.ops.clear();
encryptedLines.clear();
}
currentCode.name = line.substr(1, line.size() - 1);
currentCode.active = enabledNames.find(currentCode.name) != enabledNames.end();
currentCode.user_defined = (ini == &localIni);
}
else
{
SplitString(line, ' ', pieces);
// Check if the AR code is decrypted
if (pieces.size() == 2 && pieces[0].size() == 8 && pieces[1].size() == 8)
{
AREntry op;
bool success_addr = TryParse(std::string("0x") + pieces[0], &op.cmd_addr);
bool success_val = TryParse(std::string("0x") + pieces[1], &op.value);
if (success_addr && success_val)
{
currentCode.ops.push_back(op);
}
else
{
PanicAlertT("Action Replay Error: invalid AR code line: %s", line.c_str());
if (!success_addr)
PanicAlertT("The address is invalid");
if (!success_val)
PanicAlertT("The value is invalid");
}
}
else
{
SplitString(line, '-', pieces);
if (pieces.size() == 3 && pieces[0].size() == 4 && pieces[1].size() == 4 && pieces[2].size() == 5)
{
// Encrypted AR code
// Decryption is done in "blocks", so we must push blocks into a vector,
// then send to decrypt when a new block is encountered, or if it's the last block.
encryptedLines.push_back(pieces[0]+pieces[1]+pieces[2]);
}
}
}
}
// Handle the last code correctly.
if (currentCode.ops.size())
{
arCodes.push_back(currentCode);
}
if (encryptedLines.size())
{
DecryptARCode(encryptedLines, currentCode.ops);
arCodes.push_back(currentCode);
}
}
UpdateActiveList();
}
void LoadCodes(std::vector<ARCode> &_arCodes, IniFile &globalIni, IniFile& localIni)
{
LoadCodes(globalIni, localIni, true);
_arCodes = arCodes;
}
static void LogInfo(const char *format, ...)
{
if (!b_RanOnce)
{
if (LogManager::GetMaxLevel() >= LogTypes::LINFO || logSelf)
{
char* temp = (char*)alloca(strlen(format)+512);
va_list args;
va_start(args, format);
CharArrayFromFormatV(temp, 512, format, args);
va_end(args);
INFO_LOG(ACTIONREPLAY, "%s", temp);
if (logSelf)
{
std::string text = temp;
text += '\n';
arLog.push_back(text);
}
}
}
}
size_t GetCodeListSize()
{
return arCodes.size();
}
ARCode GetARCode(size_t index)
{
if (index > arCodes.size())
{
PanicAlertT("GetARCode: Index is greater than "
"ar code list size %lu", (unsigned long)index);
return ARCode();
}
return arCodes[index];
}
void SetARCode_IsActive(bool active, size_t index)
{
if (index > arCodes.size())
{
PanicAlertT("SetARCode_IsActive: Index is greater than "
"ar code list size %lu", (unsigned long)index);
return;
}
arCodes[index].active = active;
UpdateActiveList();
}
void UpdateActiveList()
{
bool old_value = SConfig::GetInstance().m_LocalCoreStartupParameter.bEnableCheats;
SConfig::GetInstance().m_LocalCoreStartupParameter.bEnableCheats = false;
b_RanOnce = false;
activeCodes.clear();
for (auto& arCode : arCodes)
{
if (arCode.active)
activeCodes.push_back(arCode);
}
SConfig::GetInstance().m_LocalCoreStartupParameter.bEnableCheats = old_value;
}
void EnableSelfLogging(bool enable)
{
logSelf = enable;
}
const std::vector<std::string> &GetSelfLog()
{
return arLog;
}
bool IsSelfLogging()
{
return logSelf;
}
// ----------------------
// Code Functions
static bool Subtype_RamWriteAndFill(const ARAddr& addr, const u32 data)
{
const u32 new_addr = addr.GCAddress();
LogInfo("Hardware Address: %08x", new_addr);
LogInfo("Size: %08x", addr.size);
switch (addr.size)
{
case DATATYPE_8BIT:
{
LogInfo("8-bit Write");
LogInfo("--------");
u32 repeat = data >> 8;
for (u32 i = 0; i <= repeat; ++i)
{
Memory::Write_U8(data & 0xFF, new_addr + i);
LogInfo("Wrote %08x to address %08x", data & 0xFF, new_addr + i);
}
LogInfo("--------");
break;
}
case DATATYPE_16BIT:
{
LogInfo("16-bit Write");
LogInfo("--------");
u32 repeat = data >> 16;
for (u32 i = 0; i <= repeat; ++i)
{
Memory::Write_U16(data & 0xFFFF, new_addr + i * 2);
LogInfo("Wrote %08x to address %08x", data & 0xFFFF, new_addr + i * 2);
}
LogInfo("--------");
break;
}
case DATATYPE_32BIT_FLOAT:
case DATATYPE_32BIT: // Dword write
LogInfo("32-bit Write");
LogInfo("--------");
Memory::Write_U32(data, new_addr);
LogInfo("Wrote %08x to address %08x", data, new_addr);
LogInfo("--------");
break;
default:
LogInfo("Bad Size");
PanicAlertT("Action Replay Error: Invalid size "
"(%08x : address = %08x) in Ram Write And Fill (%s)",
addr.size, addr.gcaddr, current_code->name.c_str());
return false;
}
return true;
}
static bool Subtype_WriteToPointer(const ARAddr& addr, const u32 data)
{
const u32 new_addr = addr.GCAddress();
const u32 ptr = Memory::Read_U32(new_addr);
LogInfo("Hardware Address: %08x", new_addr);
LogInfo("Size: %08x", addr.size);
switch (addr.size)
{
case DATATYPE_8BIT:
{
LogInfo("Write 8-bit to pointer");
LogInfo("--------");
const u8 thebyte = data & 0xFF;
const u32 offset = data >> 8;
LogInfo("Pointer: %08x", ptr);
LogInfo("Byte: %08x", thebyte);
LogInfo("Offset: %08x", offset);
Memory::Write_U8(thebyte, ptr + offset);
LogInfo("Wrote %08x to address %08x", thebyte, ptr + offset);
LogInfo("--------");
break;
}
case DATATYPE_16BIT:
{
LogInfo("Write 16-bit to pointer");
LogInfo("--------");
const u16 theshort = data & 0xFFFF;
const u32 offset = (data >> 16) << 1;
LogInfo("Pointer: %08x", ptr);
LogInfo("Byte: %08x", theshort);
LogInfo("Offset: %08x", offset);
Memory::Write_U16(theshort, ptr + offset);
LogInfo("Wrote %08x to address %08x", theshort, ptr + offset);
LogInfo("--------");
break;
}
case DATATYPE_32BIT_FLOAT:
case DATATYPE_32BIT:
LogInfo("Write 32-bit to pointer");
LogInfo("--------");
Memory::Write_U32(data, ptr);
LogInfo("Wrote %08x to address %08x", data, ptr);
LogInfo("--------");
break;
default:
LogInfo("Bad Size");
PanicAlertT("Action Replay Error: Invalid size "
"(%08x : address = %08x) in Write To Pointer (%s)",
addr.size, addr.gcaddr, current_code->name.c_str());
return false;
}
return true;
}
static bool Subtype_AddCode(const ARAddr& addr, const u32 data)
{
// Used to increment/decrement a value in memory
const u32 new_addr = addr.GCAddress();
LogInfo("Hardware Address: %08x", new_addr);
LogInfo("Size: %08x", addr.size);
switch (addr.size)
{
case DATATYPE_8BIT:
LogInfo("8-bit Add");
LogInfo("--------");
Memory::Write_U8(Memory::Read_U8(new_addr) + data, new_addr);
LogInfo("Wrote %08x to address %08x", Memory::Read_U8(new_addr) + (data & 0xFF), new_addr);
LogInfo("--------");
break;
case DATATYPE_16BIT:
LogInfo("16-bit Add");
LogInfo("--------");
Memory::Write_U16(Memory::Read_U16(new_addr) + data, new_addr);
LogInfo("Wrote %08x to address %08x", Memory::Read_U16(new_addr) + (data & 0xFFFF), new_addr);
LogInfo("--------");
break;
case DATATYPE_32BIT:
LogInfo("32-bit Add");
LogInfo("--------");
Memory::Write_U32(Memory::Read_U32(new_addr) + data, new_addr);
LogInfo("Wrote %08x to address %08x", Memory::Read_U32(new_addr) + data, new_addr);
LogInfo("--------");
break;
case DATATYPE_32BIT_FLOAT:
{
LogInfo("32-bit floating Add");
LogInfo("--------");
const u32 read = Memory::Read_U32(new_addr);
const float fread = *((float*)&read) + (float)data; // data contains an integer value
const u32 newval = *((u32*)&fread);
Memory::Write_U32(newval, new_addr);
LogInfo("Old Value %08x", read);
LogInfo("Increment %08x", data);
LogInfo("New value %08x", newval);
LogInfo("--------");
break;
}
default:
LogInfo("Bad Size");
PanicAlertT("Action Replay Error: Invalid size "
"(%08x : address = %08x) in Add Code (%s)",
addr.size, addr.gcaddr, current_code->name.c_str());
return false;
}
return true;
}
static bool Subtype_MasterCodeAndWriteToCCXXXXXX(const ARAddr& addr, const u32 data)
{
// code not yet implemented - TODO
// u32 new_addr = (addr & 0x01FFFFFF) | 0x80000000;
// u8 mcode_type = (data & 0xFF0000) >> 16;
// u8 mcode_count = (data & 0xFF00) >> 8;
// u8 mcode_number = data & 0xFF;
PanicAlertT("Action Replay Error: Master Code and Write To CCXXXXXX not implemented (%s)\n"
"Master codes are not needed. Do not use master codes.", current_code->name.c_str());
return false;
}
static bool ZeroCode_FillAndSlide(const u32 val_last, const ARAddr& addr, const u32 data) // This needs more testing
{
const u32 new_addr = ((ARAddr*)&val_last)->GCAddress();
const u8 size = ((ARAddr*)&val_last)->size;
const s16 addr_incr = (s16)(data & 0xFFFF);
const s8 val_incr = (s8)(data >> 24);
const u8 write_num = (data & 0xFF0000) >> 16;
u32 val = addr;
u32 curr_addr = new_addr;
LogInfo("Current Hardware Address: %08x", new_addr);
LogInfo("Size: %08x", addr.size);
LogInfo("Write Num: %08x", write_num);
LogInfo("Address Increment: %i", addr_incr);
LogInfo("Value Increment: %i", val_incr);
switch (size)
{
case DATATYPE_8BIT:
LogInfo("8-bit Write");
LogInfo("--------");
for (int i = 0; i < write_num; ++i)
{
Memory::Write_U8(val & 0xFF, curr_addr);
curr_addr += addr_incr;
val += val_incr;
LogInfo("Write %08x to address %08x", val & 0xFF, curr_addr);
LogInfo("Value Update: %08x", val);
LogInfo("Current Hardware Address Update: %08x", curr_addr);
}
LogInfo("--------");
break;
case DATATYPE_16BIT:
LogInfo("16-bit Write");
LogInfo("--------");
for (int i=0; i < write_num; ++i)
{
Memory::Write_U16(val & 0xFFFF, curr_addr);
LogInfo("Write %08x to address %08x", val & 0xFFFF, curr_addr);
curr_addr += addr_incr * 2;
val += val_incr;
LogInfo("Value Update: %08x", val);
LogInfo("Current Hardware Address Update: %08x", curr_addr);
}
LogInfo("--------");
break;
case DATATYPE_32BIT:
LogInfo("32-bit Write");
LogInfo("--------");
for (int i = 0; i < write_num; ++i)
{
Memory::Write_U32(val, curr_addr);
LogInfo("Write %08x to address %08x", val, curr_addr);
curr_addr += addr_incr * 4;
val += val_incr;
LogInfo("Value Update: %08x", val);
LogInfo("Current Hardware Address Update: %08x", curr_addr);
}
LogInfo("--------");
break;
default:
LogInfo("Bad Size");
PanicAlertT("Action Replay Error: Invalid size (%08x : address = %08x) in Fill and Slide (%s)", size, new_addr, current_code->name.c_str());
return false;
}
return true;
}
// Looks like this is new?? - untested
static bool ZeroCode_MemoryCopy(const u32 val_last, const ARAddr& addr, const u32 data)
{
const u32 addr_dest = val_last | 0x06000000;
const u32 addr_src = addr.GCAddress();
const u8 num_bytes = data & 0x7FFF;
LogInfo("Dest Address: %08x", addr_dest);
LogInfo("Src Address: %08x", addr_src);
LogInfo("Size: %08x", num_bytes);
if ((data & ~0x7FFF) == 0x0000)
{
if ((data >> 24) != 0x0)
{ // Memory Copy With Pointers Support
LogInfo("Memory Copy With Pointers Support");
LogInfo("--------");
for (int i = 0; i < 138; ++i)
{
Memory::Write_U8(Memory::Read_U8(addr_src + i), addr_dest + i);
LogInfo("Wrote %08x to address %08x", Memory::Read_U8(addr_src + i), addr_dest + i);
}
LogInfo("--------");
}
else
{ // Memory Copy Without Pointer Support
LogInfo("Memory Copy Without Pointers Support");
LogInfo("--------");
for (int i=0; i < num_bytes; ++i)
{
Memory::Write_U32(Memory::Read_U32(addr_src + i), addr_dest + i);
LogInfo("Wrote %08x to address %08x", Memory::Read_U32(addr_src + i), addr_dest + i);
}
LogInfo("--------");
return true;
}
}
else
{
LogInfo("Bad Value");
PanicAlertT("Action Replay Error: Invalid value (%08x) in Memory Copy (%s)", (data & ~0x7FFF), current_code->name.c_str());
return false;
}
return true;
}
static bool NormalCode(const ARAddr& addr, const u32 data)
{
switch (addr.subtype)
{
case SUB_RAM_WRITE: // Ram write (and fill)
LogInfo("Doing Ram Write And Fill");
if (!Subtype_RamWriteAndFill(addr, data))
return false;
break;
case SUB_WRITE_POINTER: // Write to pointer
LogInfo("Doing Write To Pointer");
if (!Subtype_WriteToPointer(addr, data))
return false;
break;
case SUB_ADD_CODE: // Increment Value
LogInfo("Doing Add Code");
if (!Subtype_AddCode(addr, data))
return false;
break;
case SUB_MASTER_CODE: // Master Code & Write to CCXXXXXX
LogInfo("Doing Master Code And Write to CCXXXXXX (ncode not supported)");
if (!Subtype_MasterCodeAndWriteToCCXXXXXX(addr, data))
return false;
break;
default:
LogInfo("Bad Subtype");
PanicAlertT("Action Replay: Normal Code 0: Invalid Subtype %08x (%s)", addr.subtype, current_code->name.c_str());
return false;
break;
}
return true;
}
static bool CompareValues(const u32 val1, const u32 val2, const int type)
{
switch (type)
{
case CONDTIONAL_EQUAL:
LogInfo("Type 1: If Equal");
return (val1 == val2);
break;
case CONDTIONAL_NOT_EQUAL:
LogInfo("Type 2: If Not Equal");
return (val1 != val2);
break;
case CONDTIONAL_LESS_THAN_SIGNED:
LogInfo("Type 3: If Less Than (Signed)");
return ((int)val1 < (int)val2);
break;
case CONDTIONAL_GREATER_THAN_SIGNED:
LogInfo("Type 4: If Greater Than (Signed)");
return ((int)val1 >(int)val2);
break;
case CONDTIONAL_LESS_THAN_UNSIGNED:
LogInfo("Type 5: If Less Than (Unsigned)");
return (val1 < val2);
break;
case CONDTIONAL_GREATER_THAN_UNSIGNED:
LogInfo("Type 6: If Greater Than (Unsigned)");
return (val1 > val2);
break;
case CONDTIONAL_AND:
LogInfo("Type 7: If And");
return !!(val1 & val2); // bitwise AND
break;
default: LogInfo("Unknown Compare type");
PanicAlertT("Action Replay: Invalid Normal Code Type %08x (%s)", type, current_code->name.c_str());
return false;
break;
}
}
static bool ConditionalCode(const ARAddr& addr, const u32 data, int* const pSkipCount)
{
const u32 new_addr = addr.GCAddress();
LogInfo("Size: %08x", addr.size);
LogInfo("Hardware Address: %08x", new_addr);
bool result = true;
switch (addr.size)
{
case DATATYPE_8BIT:
result = CompareValues((u32)Memory::Read_U8(new_addr), (data & 0xFF), addr.type);
break;
case DATATYPE_16BIT:
result = CompareValues((u32)Memory::Read_U16(new_addr), (data & 0xFFFF), addr.type);
break;
case DATATYPE_32BIT_FLOAT:
case DATATYPE_32BIT:
result = CompareValues(Memory::Read_U32(new_addr), data, addr.type);
break;
default:
LogInfo("Bad Size");
PanicAlertT("Action Replay: Conditional Code: Invalid Size %08x (%s)", addr.size, current_code->name.c_str());
return false;
break;
}
// if the comparison failed we need to skip some lines
if (false == result)
{
switch (addr.subtype)
{
case CONDTIONAL_ONE_LINE:
case CONDTIONAL_TWO_LINES:
*pSkipCount = addr.subtype + 1; // Skip 1 or 2 lines
break;
// Skip all lines,
// Skip lines until a "00000000 40000000" line is reached
case CONDTIONAL_ALL_LINES:
case CONDTIONAL_ALL_LINES_UNTIL:
*pSkipCount = -(int) addr.subtype;
break;
default:
LogInfo("Bad Subtype");
PanicAlertT("Action Replay: Normal Code %i: Invalid subtype %08x (%s)", 1, addr.subtype, current_code->name.c_str());
return false;
break;
}
}
return true;
}
void RunAllActive()
{
if (SConfig::GetInstance().m_LocalCoreStartupParameter.bEnableCheats)
{
for (auto& activeCode : activeCodes)
{
if (activeCode.active)
{
activeCode.active = RunCode(activeCode);
LogInfo("\n");
}
}
b_RanOnce = true;
}
}
bool RunCode(const ARCode &arcode)
{
// The mechanism is different than what the real AR uses, so there may be compatibility problems.
bool doFillNSlide = false;
bool doMemoryCopy = false;
// used for conditional codes
int skip_count = 0;
u32 val_last = 0;
current_code = &arcode;
LogInfo("Code Name: %s", arcode.name.c_str());
LogInfo("Number of codes: %i", arcode.ops.size());
for (const AREntry& entry : arcode.ops)
{
const ARAddr& addr = *(ARAddr*)&entry.cmd_addr;
const u32 data = entry.value;
// after a conditional code, skip lines if needed
if (skip_count)
{
if (skip_count > 0) // skip x lines
{
LogInfo("Line skipped");
--skip_count;
}
else if (-CONDTIONAL_ALL_LINES == skip_count)
{
// skip all lines
LogInfo("All Lines skipped");
return true; // don't need to iterate through the rest of the ops
}
else if (-CONDTIONAL_ALL_LINES_UNTIL == skip_count)
{
// skip until a "00000000 40000000" line is reached
LogInfo("Line skipped");
if (addr == 0 && 0x40000000 == data) // check for an endif line
skip_count = 0;
}
continue;
}
LogInfo("--- Running Code: %08x %08x ---", addr.address, data);
//LogInfo("Command: %08x", cmd);
// Do Fill & Slide
if (doFillNSlide)
{
doFillNSlide = false;
LogInfo("Doing Fill And Slide");
if (false == ZeroCode_FillAndSlide(val_last, addr, data))
return false;
continue;
}
// Memory Copy
if (doMemoryCopy)
{
doMemoryCopy = false;
LogInfo("Doing Memory Copy");
if (false == ZeroCode_MemoryCopy(val_last, addr, data))
return false;
continue;
}
// ActionReplay program self modification codes
if (addr >= 0x00002000 && addr < 0x00003000)
{
LogInfo("This action replay simulator does not support codes that modify Action Replay itself.");
PanicAlertT("This action replay simulator does not support codes that modify Action Replay itself.");
return false;
}
// skip these weird init lines
// TODO: Where are the "weird init lines"?
//if (iter == code.ops.begin() && cmd == 1)
//continue;
// Zero codes
if (0x0 == addr) // Check if the code is a zero code
{
const u8 zcode = (data >> 29);
LogInfo("Doing Zero Code %08x", zcode);
switch (zcode)
{
case ZCODE_END: // END OF CODES
LogInfo("ZCode: End Of Codes");
return true;
break;
// TODO: the "00000000 40000000"(end if) codes fall into this case, I don't think that is correct
case ZCODE_NORM: // Normal execution of codes
// Todo: Set register 1BB4 to 0
LogInfo("ZCode: Normal execution of codes, set register 1BB4 to 0 (zcode not supported)");
break;
case ZCODE_ROW: // Executes all codes in the same row
// Todo: Set register 1BB4 to 1
LogInfo("ZCode: Executes all codes in the same row, Set register 1BB4 to 1 (zcode not supported)");
PanicAlertT("Zero 3 code not supported");
return false;
break;
case ZCODE_04: // Fill & Slide or Memory Copy
if (0x3 == ((data >> 25) & 0x03))
{
LogInfo("ZCode: Memory Copy");
doMemoryCopy = true;
val_last = data;
}
else
{
LogInfo("ZCode: Fill And Slide");
doFillNSlide = true;
val_last = data;
}
break;
default:
LogInfo("ZCode: Unknown");
PanicAlertT("Zero code unknown to dolphin: %08x", zcode);
return false;
break;
}
// done handling zero codes
continue;
}
// Normal codes
LogInfo("Doing Normal Code %08x", addr.type);
LogInfo("Subtype: %08x", addr.subtype);
switch (addr.type)
{
case 0x00:
if (false == NormalCode(addr, data))
return false;
break;
default:
LogInfo("This Normal Code is a Conditional Code");
if (false == ConditionalCode(addr, data, &skip_count))
return false;
break;
}
}
b_RanOnce = true;
return true;
}
} // namespace ActionReplay