mirror of
https://github.com/dolphin-emu/dolphin.git
synced 2025-01-10 16:19:28 +01:00
366 lines
7.5 KiB
C++
366 lines
7.5 KiB
C++
// Copyright 2013 Dolphin Emulator Project
|
|
// Licensed under GPLv2
|
|
// Refer to the license.txt file included.
|
|
|
|
#include <cmath>
|
|
#include <cstring>
|
|
#include <limits>
|
|
#include <numeric>
|
|
|
|
#include "Common/CommonTypes.h"
|
|
#include "Common/MathUtil.h"
|
|
|
|
namespace MathUtil
|
|
{
|
|
|
|
u32 ClassifyDouble(double dvalue)
|
|
{
|
|
// TODO: Optimize the below to be as fast as possible.
|
|
IntDouble value(dvalue);
|
|
u64 sign = value.i & DOUBLE_SIGN;
|
|
u64 exp = value.i & DOUBLE_EXP;
|
|
if (exp > DOUBLE_ZERO && exp < DOUBLE_EXP)
|
|
{
|
|
// Nice normalized number.
|
|
return sign ? PPC_FPCLASS_NN : PPC_FPCLASS_PN;
|
|
}
|
|
else
|
|
{
|
|
u64 mantissa = value.i & DOUBLE_FRAC;
|
|
if (mantissa)
|
|
{
|
|
if (exp)
|
|
{
|
|
return PPC_FPCLASS_QNAN;
|
|
}
|
|
else
|
|
{
|
|
// Denormalized number.
|
|
return sign ? PPC_FPCLASS_ND : PPC_FPCLASS_PD;
|
|
}
|
|
}
|
|
else if (exp)
|
|
{
|
|
//Infinite
|
|
return sign ? PPC_FPCLASS_NINF : PPC_FPCLASS_PINF;
|
|
}
|
|
else
|
|
{
|
|
//Zero
|
|
return sign ? PPC_FPCLASS_NZ : PPC_FPCLASS_PZ;
|
|
}
|
|
}
|
|
}
|
|
|
|
u32 ClassifyFloat(float fvalue)
|
|
{
|
|
// TODO: Optimize the below to be as fast as possible.
|
|
IntFloat value(fvalue);
|
|
u32 sign = value.i & FLOAT_SIGN;
|
|
u32 exp = value.i & FLOAT_EXP;
|
|
if (exp > FLOAT_ZERO && exp < FLOAT_EXP)
|
|
{
|
|
// Nice normalized number.
|
|
return sign ? PPC_FPCLASS_NN : PPC_FPCLASS_PN;
|
|
}
|
|
else
|
|
{
|
|
u32 mantissa = value.i & FLOAT_FRAC;
|
|
if (mantissa)
|
|
{
|
|
if (exp)
|
|
{
|
|
return PPC_FPCLASS_QNAN; // Quiet NAN
|
|
}
|
|
else
|
|
{
|
|
// Denormalized number.
|
|
return sign ? PPC_FPCLASS_ND : PPC_FPCLASS_PD;
|
|
}
|
|
}
|
|
else if (exp)
|
|
{
|
|
// Infinite
|
|
return sign ? PPC_FPCLASS_NINF : PPC_FPCLASS_PINF;
|
|
}
|
|
else
|
|
{
|
|
//Zero
|
|
return sign ? PPC_FPCLASS_NZ : PPC_FPCLASS_PZ;
|
|
}
|
|
}
|
|
}
|
|
|
|
const int frsqrte_expected_base[] =
|
|
{
|
|
0x3ffa000, 0x3c29000, 0x38aa000, 0x3572000,
|
|
0x3279000, 0x2fb7000, 0x2d26000, 0x2ac0000,
|
|
0x2881000, 0x2665000, 0x2468000, 0x2287000,
|
|
0x20c1000, 0x1f12000, 0x1d79000, 0x1bf4000,
|
|
0x1a7e800, 0x17cb800, 0x1552800, 0x130c000,
|
|
0x10f2000, 0x0eff000, 0x0d2e000, 0x0b7c000,
|
|
0x09e5000, 0x0867000, 0x06ff000, 0x05ab800,
|
|
0x046a000, 0x0339800, 0x0218800, 0x0105800,
|
|
};
|
|
const int frsqrte_expected_dec[] =
|
|
{
|
|
0x7a4, 0x700, 0x670, 0x5f2,
|
|
0x584, 0x524, 0x4cc, 0x47e,
|
|
0x43a, 0x3fa, 0x3c2, 0x38e,
|
|
0x35e, 0x332, 0x30a, 0x2e6,
|
|
0x568, 0x4f3, 0x48d, 0x435,
|
|
0x3e7, 0x3a2, 0x365, 0x32e,
|
|
0x2fc, 0x2d0, 0x2a8, 0x283,
|
|
0x261, 0x243, 0x226, 0x20b,
|
|
};
|
|
|
|
double ApproximateReciprocalSquareRoot(double val)
|
|
{
|
|
union
|
|
{
|
|
double valf;
|
|
s64 vali;
|
|
};
|
|
valf = val;
|
|
s64 mantissa = vali & ((1LL << 52) - 1);
|
|
s64 sign = vali & (1ULL << 63);
|
|
s64 exponent = vali & (0x7FFLL << 52);
|
|
|
|
// Special case 0
|
|
if (mantissa == 0 && exponent == 0)
|
|
return sign ? -std::numeric_limits<double>::infinity() :
|
|
std::numeric_limits<double>::infinity();
|
|
// Special case NaN-ish numbers
|
|
if (exponent == (0x7FFLL << 52))
|
|
{
|
|
if (mantissa == 0)
|
|
{
|
|
if (sign)
|
|
return std::numeric_limits<double>::quiet_NaN();
|
|
|
|
return 0.0;
|
|
}
|
|
|
|
return 0.0 + valf;
|
|
}
|
|
|
|
// Negative numbers return NaN
|
|
if (sign)
|
|
return std::numeric_limits<double>::quiet_NaN();
|
|
|
|
if (!exponent)
|
|
{
|
|
// "Normalize" denormal values
|
|
do
|
|
{
|
|
exponent -= 1LL << 52;
|
|
mantissa <<= 1;
|
|
} while (!(mantissa & (1LL << 52)));
|
|
mantissa &= (1LL << 52) - 1;
|
|
exponent += 1LL << 52;
|
|
}
|
|
|
|
bool odd_exponent = !(exponent & (1LL << 52));
|
|
exponent = ((0x3FFLL << 52) - ((exponent - (0x3FELL << 52)) / 2)) & (0x7FFLL << 52);
|
|
|
|
int i = (int)(mantissa >> 37);
|
|
vali = sign | exponent;
|
|
int index = i / 2048 + (odd_exponent ? 16 : 0);
|
|
vali |= (s64)(frsqrte_expected_base[index] - frsqrte_expected_dec[index] * (i % 2048)) << 26;
|
|
return valf;
|
|
}
|
|
|
|
const int fres_expected_base[] =
|
|
{
|
|
0x7ff800, 0x783800, 0x70ea00, 0x6a0800,
|
|
0x638800, 0x5d6200, 0x579000, 0x520800,
|
|
0x4cc800, 0x47ca00, 0x430800, 0x3e8000,
|
|
0x3a2c00, 0x360800, 0x321400, 0x2e4a00,
|
|
0x2aa800, 0x272c00, 0x23d600, 0x209e00,
|
|
0x1d8800, 0x1a9000, 0x17ae00, 0x14f800,
|
|
0x124400, 0x0fbe00, 0x0d3800, 0x0ade00,
|
|
0x088400, 0x065000, 0x041c00, 0x020c00,
|
|
};
|
|
const int fres_expected_dec[] =
|
|
{
|
|
0x3e1, 0x3a7, 0x371, 0x340,
|
|
0x313, 0x2ea, 0x2c4, 0x2a0,
|
|
0x27f, 0x261, 0x245, 0x22a,
|
|
0x212, 0x1fb, 0x1e5, 0x1d1,
|
|
0x1be, 0x1ac, 0x19b, 0x18b,
|
|
0x17c, 0x16e, 0x15b, 0x15b,
|
|
0x143, 0x143, 0x12d, 0x12d,
|
|
0x11a, 0x11a, 0x108, 0x106,
|
|
};
|
|
|
|
// Used by fres and ps_res.
|
|
double ApproximateReciprocal(double val)
|
|
{
|
|
union
|
|
{
|
|
double valf;
|
|
s64 vali;
|
|
};
|
|
|
|
valf = val;
|
|
s64 mantissa = vali & ((1LL << 52) - 1);
|
|
s64 sign = vali & (1ULL << 63);
|
|
s64 exponent = vali & (0x7FFLL << 52);
|
|
|
|
// Special case 0
|
|
if (mantissa == 0 && exponent == 0)
|
|
return sign ? -std::numeric_limits<double>::infinity() : std::numeric_limits<double>::infinity();
|
|
|
|
// Special case NaN-ish numbers
|
|
if (exponent == (0x7FFLL << 52))
|
|
{
|
|
if (mantissa == 0)
|
|
return sign ? -0.0 : 0.0;
|
|
return 0.0 + valf;
|
|
}
|
|
|
|
// Special case small inputs
|
|
if (exponent < (895LL << 52))
|
|
return sign ? -std::numeric_limits<float>::max() : std::numeric_limits<float>::max();
|
|
|
|
// Special case large inputs
|
|
if (exponent >= (1149LL << 52))
|
|
return sign ? -0.0f : 0.0f;
|
|
|
|
exponent = (0x7FDLL << 52) - exponent;
|
|
|
|
int i = (int)(mantissa >> 37);
|
|
vali = sign | exponent;
|
|
vali |= (s64)(fres_expected_base[i / 1024] - (fres_expected_dec[i / 1024] * (i % 1024) + 1) / 2) << 29;
|
|
return valf;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
inline void MatrixMul(int n, const float *a, const float *b, float *result)
|
|
{
|
|
for (int i = 0; i < n; ++i)
|
|
{
|
|
for (int j = 0; j < n; ++j)
|
|
{
|
|
float temp = 0;
|
|
for (int k = 0; k < n; ++k)
|
|
{
|
|
temp += a[i * n + k] * b[k * n + j];
|
|
}
|
|
result[i * n + j] = temp;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Calculate sum of a float list
|
|
float MathFloatVectorSum(const std::vector<float>& Vec)
|
|
{
|
|
return std::accumulate(Vec.begin(), Vec.end(), 0.0f);
|
|
}
|
|
|
|
void Matrix33::LoadIdentity(Matrix33 &mtx)
|
|
{
|
|
memset(mtx.data, 0, sizeof(mtx.data));
|
|
mtx.data[0] = 1.0f;
|
|
mtx.data[4] = 1.0f;
|
|
mtx.data[8] = 1.0f;
|
|
}
|
|
|
|
void Matrix33::RotateX(Matrix33 &mtx, float rad)
|
|
{
|
|
float s = sin(rad);
|
|
float c = cos(rad);
|
|
memset(mtx.data, 0, sizeof(mtx.data));
|
|
mtx.data[0] = 1;
|
|
mtx.data[4] = c;
|
|
mtx.data[5] = -s;
|
|
mtx.data[7] = s;
|
|
mtx.data[8] = c;
|
|
}
|
|
void Matrix33::RotateY(Matrix33 &mtx, float rad)
|
|
{
|
|
float s = sin(rad);
|
|
float c = cos(rad);
|
|
memset(mtx.data, 0, sizeof(mtx.data));
|
|
mtx.data[0] = c;
|
|
mtx.data[2] = s;
|
|
mtx.data[4] = 1;
|
|
mtx.data[6] = -s;
|
|
mtx.data[8] = c;
|
|
}
|
|
|
|
void Matrix33::Multiply(const Matrix33 &a, const Matrix33 &b, Matrix33 &result)
|
|
{
|
|
MatrixMul(3, a.data, b.data, result.data);
|
|
}
|
|
|
|
void Matrix33::Multiply(const Matrix33 &a, const float vec[3], float result[3])
|
|
{
|
|
for (int i = 0; i < 3; ++i)
|
|
{
|
|
result[i] = 0;
|
|
|
|
for (int k = 0; k < 3; ++k)
|
|
{
|
|
result[i] += a.data[i * 3 + k] * vec[k];
|
|
}
|
|
}
|
|
}
|
|
|
|
void Matrix44::LoadIdentity(Matrix44 &mtx)
|
|
{
|
|
memset(mtx.data, 0, sizeof(mtx.data));
|
|
mtx.data[0] = 1.0f;
|
|
mtx.data[5] = 1.0f;
|
|
mtx.data[10] = 1.0f;
|
|
mtx.data[15] = 1.0f;
|
|
}
|
|
|
|
void Matrix44::LoadMatrix33(Matrix44 &mtx, const Matrix33 &m33)
|
|
{
|
|
for (int i = 0; i < 3; ++i)
|
|
{
|
|
for (int j = 0; j < 3; ++j)
|
|
{
|
|
mtx.data[i * 4 + j] = m33.data[i * 3 + j];
|
|
}
|
|
}
|
|
|
|
for (int i = 0; i < 3; ++i)
|
|
{
|
|
mtx.data[i * 4 + 3] = 0;
|
|
mtx.data[i + 12] = 0;
|
|
}
|
|
mtx.data[15] = 1.0f;
|
|
}
|
|
|
|
void Matrix44::Set(Matrix44 &mtx, const float mtxArray[16])
|
|
{
|
|
for (int i = 0; i < 16; ++i)
|
|
{
|
|
mtx.data[i] = mtxArray[i];
|
|
}
|
|
}
|
|
|
|
void Matrix44::Translate(Matrix44 &mtx, const float vec[3])
|
|
{
|
|
LoadIdentity(mtx);
|
|
mtx.data[3] = vec[0];
|
|
mtx.data[7] = vec[1];
|
|
mtx.data[11] = vec[2];
|
|
}
|
|
|
|
void Matrix44::Shear(Matrix44 &mtx, const float a, const float b)
|
|
{
|
|
LoadIdentity(mtx);
|
|
mtx.data[2] = a;
|
|
mtx.data[6] = b;
|
|
}
|
|
|
|
void Matrix44::Multiply(const Matrix44 &a, const Matrix44 &b, Matrix44 &result)
|
|
{
|
|
MatrixMul(4, a.data, b.data, result.data);
|
|
}
|
|
|