894 lines
21 KiB
C++

// Copyright 2013 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include <algorithm>
#include <cassert>
#include <chrono>
#include <cmath>
#include <iostream>
#include <map>
#include <memory>
#include <regex>
#include <string>
#include <vector>
#include "Common/MathUtil.h"
#include "Common/StringUtil.h"
#include "InputCommon/ControlReference/ExpressionParser.h"
namespace ciface::ExpressionParser
{
using namespace ciface::Core;
enum TokenType
{
TOK_DISCARD,
TOK_INVALID,
TOK_EOF,
TOK_LPAREN,
TOK_RPAREN,
TOK_UNARY,
TOK_CONTROL,
TOK_LITERAL,
TOK_VARIABLE,
// Binary Ops:
TOK_BINARY_OPS_BEGIN,
TOK_AND = TOK_BINARY_OPS_BEGIN,
TOK_OR,
TOK_ADD,
TOK_SUB,
TOK_MUL,
TOK_DIV,
TOK_MOD,
TOK_ASSIGN,
TOK_LTHAN,
TOK_GTHAN,
TOK_COND,
TOK_COMMA,
TOK_BINARY_OPS_END,
};
inline std::string OpName(TokenType op)
{
switch (op)
{
case TOK_AND:
return "And";
case TOK_OR:
return "Or";
case TOK_UNARY:
return "Unary";
case TOK_ADD:
return "Add";
case TOK_SUB:
return "Sub";
case TOK_MUL:
return "Mul";
case TOK_DIV:
return "Div";
case TOK_MOD:
return "Mod";
case TOK_ASSIGN:
return "Assign";
case TOK_LTHAN:
return "LThan";
case TOK_GTHAN:
return "GThan";
case TOK_COND:
return "Cond";
case TOK_COMMA:
return "Comma";
case TOK_VARIABLE:
return "Var";
default:
assert(false);
return "";
}
}
class Token
{
public:
TokenType type;
std::string data;
Token(TokenType type_) : type(type_) {}
Token(TokenType type_, std::string data_) : type(type_), data(std::move(data_)) {}
operator std::string() const
{
switch (type)
{
case TOK_DISCARD:
return "Discard";
case TOK_EOF:
return "EOF";
case TOK_LPAREN:
return "(";
case TOK_RPAREN:
return ")";
case TOK_AND:
return "&";
case TOK_OR:
return "|";
case TOK_UNARY:
return '!' + data;
case TOK_ADD:
return "+";
case TOK_SUB:
return "-";
case TOK_MUL:
return "*";
case TOK_DIV:
return "/";
case TOK_MOD:
return "%";
case TOK_ASSIGN:
return "=";
case TOK_LTHAN:
return "<";
case TOK_GTHAN:
return ">";
case TOK_COND:
return "?";
case TOK_COMMA:
return ",";
case TOK_CONTROL:
return "Device(" + data + ')';
case TOK_LITERAL:
return '\'' + data + '\'';
case TOK_VARIABLE:
return '$' + data;
case TOK_INVALID:
break;
}
return "Invalid";
}
};
class Lexer
{
public:
std::string expr;
std::string::iterator it;
Lexer(const std::string& expr_) : expr(expr_) { it = expr.begin(); }
bool FetchDelimString(std::string& value, char delim)
{
value = "";
while (it != expr.end())
{
char c = *it;
++it;
if (c == delim)
return true;
value += c;
}
return false;
}
std::string FetchWordChars()
{
std::string word;
std::regex valid_name_char("[a-z0-9_]", std::regex_constants::icase);
while (it != expr.end() && std::regex_match(std::string(1, *it), valid_name_char))
{
word += *it;
++it;
}
return word;
}
Token GetUnaryFunction() { return Token(TOK_UNARY, FetchWordChars()); }
Token GetLiteral()
{
std::string value;
FetchDelimString(value, '\'');
return Token(TOK_LITERAL, value);
}
Token GetVariable() { return Token(TOK_VARIABLE, FetchWordChars()); }
Token GetFullyQualifiedControl()
{
std::string value;
FetchDelimString(value, '`');
return Token(TOK_CONTROL, value);
}
Token GetBarewordsControl(char c)
{
std::string name;
name += c;
while (it != expr.end())
{
c = *it;
if (!isalpha(c))
break;
name += c;
++it;
}
ControlQualifier qualifier;
qualifier.control_name = name;
return Token(TOK_CONTROL, qualifier);
}
Token NextToken()
{
if (it == expr.end())
return Token(TOK_EOF);
char c = *it++;
switch (c)
{
case ' ':
case '\t':
case '\n':
case '\r':
return Token(TOK_DISCARD);
case '(':
return Token(TOK_LPAREN);
case ')':
return Token(TOK_RPAREN);
case '&':
return Token(TOK_AND);
case '|':
return Token(TOK_OR);
case '!':
return GetUnaryFunction();
case '+':
return Token(TOK_ADD);
case '-':
return Token(TOK_SUB);
case '*':
return Token(TOK_MUL);
case '/':
return Token(TOK_DIV);
case '%':
return Token(TOK_MOD);
case '=':
return Token(TOK_ASSIGN);
case '<':
return Token(TOK_LTHAN);
case '>':
return Token(TOK_GTHAN);
case '?':
return Token(TOK_COND);
case ',':
return Token(TOK_COMMA);
case '\'':
return GetLiteral();
case '$':
return GetVariable();
case '`':
return GetFullyQualifiedControl();
default:
if (isalpha(c))
return GetBarewordsControl(c);
else
return Token(TOK_INVALID);
}
}
ParseStatus Tokenize(std::vector<Token>& tokens)
{
while (true)
{
Token tok = NextToken();
if (tok.type == TOK_DISCARD)
continue;
if (tok.type == TOK_INVALID)
{
tokens.clear();
return ParseStatus::SyntaxError;
}
tokens.push_back(tok);
if (tok.type == TOK_EOF)
break;
}
return ParseStatus::Successful;
}
};
class ControlExpression : public Expression
{
public:
// Keep a shared_ptr to the device so the control pointer doesn't become invalid
// TODO: This is causing devices to be destructed after backends are shutdown:
std::shared_ptr<Device> m_device;
explicit ControlExpression(ControlQualifier qualifier_) : qualifier(qualifier_) {}
ControlState GetValue() const override
{
if (!input)
return 0.0;
// Note: Inputs may return negative values in situations where opposing directions are
// activated. We clamp off the negative values here.
// FYI: Clamping values greater than 1.0 is purposely not done to support unbounded values in
// the future. (e.g. raw accelerometer/gyro data)
return std::max(0.0, input->GetState());
}
void SetValue(ControlState value) override
{
if (output)
output->SetState(value);
}
int CountNumControls() const override { return (input || output) ? 1 : 0; }
void UpdateReferences(ControlEnvironment& env) override
{
m_device = env.FindDevice(qualifier);
input = env.FindInput(qualifier);
output = env.FindOutput(qualifier);
}
operator std::string() const override { return "`" + static_cast<std::string>(qualifier) + "`"; }
private:
ControlQualifier qualifier;
Device::Input* input = nullptr;
Device::Output* output = nullptr;
};
class BinaryExpression : public Expression
{
public:
TokenType op;
std::unique_ptr<Expression> lhs;
std::unique_ptr<Expression> rhs;
BinaryExpression(TokenType op_, std::unique_ptr<Expression>&& lhs_,
std::unique_ptr<Expression>&& rhs_)
: op(op_), lhs(std::move(lhs_)), rhs(std::move(rhs_))
{
}
ControlState GetValue() const override
{
switch (op)
{
case TOK_AND:
return std::min(lhs->GetValue(), rhs->GetValue());
case TOK_OR:
return std::max(lhs->GetValue(), rhs->GetValue());
case TOK_ADD:
return lhs->GetValue() + rhs->GetValue();
case TOK_SUB:
return lhs->GetValue() - rhs->GetValue();
case TOK_MUL:
return lhs->GetValue() * rhs->GetValue();
case TOK_DIV:
{
const ControlState result = lhs->GetValue() / rhs->GetValue();
return std::isinf(result) ? 0.0 : result;
}
case TOK_MOD:
{
const ControlState result = std::fmod(lhs->GetValue(), rhs->GetValue());
return std::isnan(result) ? 0.0 : result;
}
case TOK_ASSIGN:
{
lhs->SetValue(rhs->GetValue());
return lhs->GetValue();
}
case TOK_LTHAN:
return lhs->GetValue() < rhs->GetValue();
case TOK_GTHAN:
return lhs->GetValue() > rhs->GetValue();
case TOK_COND:
{
constexpr ControlState COND_THRESHOLD = 0.5;
if (lhs->GetValue() > COND_THRESHOLD)
return rhs->GetValue();
else
return 0.0;
}
case TOK_COMMA:
{
// Eval and discard lhs:
lhs->GetValue();
return rhs->GetValue();
}
default:
assert(false);
return 0;
}
}
void SetValue(ControlState value) override
{
// Don't do anything special with the op we have.
// Treat "A & B" the same as "A | B".
lhs->SetValue(value);
rhs->SetValue(value);
}
int CountNumControls() const override
{
return lhs->CountNumControls() + rhs->CountNumControls();
}
void UpdateReferences(ControlEnvironment& env) override
{
lhs->UpdateReferences(env);
rhs->UpdateReferences(env);
}
operator std::string() const override
{
return OpName(op) + "(" + (std::string)(*lhs) + ", " + (std::string)(*rhs) + ")";
}
};
class UnaryExpression : public Expression
{
public:
UnaryExpression(std::unique_ptr<Expression>&& inner_) : inner(std::move(inner_)) {}
int CountNumControls() const override { return inner->CountNumControls(); }
void UpdateReferences(ControlEnvironment& env) override { inner->UpdateReferences(env); }
operator std::string() const override
{
return '!' + GetFuncName() + '(' + static_cast<std::string>(*inner) + ')';
}
protected:
virtual std::string GetFuncName() const = 0;
std::unique_ptr<Expression> inner;
};
// TODO: Return an oscillating value to make it apparent something was spelled wrong?
class UnaryUnknownExpression : public UnaryExpression
{
public:
UnaryUnknownExpression(std::unique_ptr<Expression>&& inner_) : UnaryExpression(std::move(inner_))
{
}
ControlState GetValue() const override { return 0.0; }
void SetValue(ControlState value) override {}
std::string GetFuncName() const override { return "Unknown"; }
};
class UnaryToggleExpression : public UnaryExpression
{
public:
UnaryToggleExpression(std::unique_ptr<Expression>&& inner_) : UnaryExpression(std::move(inner_))
{
}
ControlState GetValue() const override
{
const ControlState inner_value = inner->GetValue();
if (inner_value < THRESHOLD)
{
m_released = true;
}
else if (m_released && inner_value > THRESHOLD)
{
m_released = false;
m_state ^= true;
}
return m_state;
}
void SetValue(ControlState value) override {}
std::string GetFuncName() const override { return "Toggle"; }
private:
static constexpr ControlState THRESHOLD = 0.5;
// eww:
mutable bool m_released{};
mutable bool m_state{};
};
class UnaryNotExpression : public UnaryExpression
{
public:
UnaryNotExpression(std::unique_ptr<Expression>&& inner_) : UnaryExpression(std::move(inner_)) {}
ControlState GetValue() const override { return 1.0 - inner->GetValue(); }
void SetValue(ControlState value) override { inner->SetValue(1.0 - value); }
std::string GetFuncName() const override { return ""; }
};
class UnarySinExpression : public UnaryExpression
{
public:
UnarySinExpression(std::unique_ptr<Expression>&& inner_) : UnaryExpression(std::move(inner_)) {}
ControlState GetValue() const override { return std::sin(inner->GetValue()); }
void SetValue(ControlState value) override {}
std::string GetFuncName() const override { return "Sin"; }
};
class UnaryWhileExpression : public UnaryExpression
{
public:
UnaryWhileExpression(std::unique_ptr<Expression>&& inner_) : UnaryExpression(std::move(inner_)) {}
ControlState GetValue() const override
{
constexpr int MAX_REPS = 10000;
constexpr int COND_THRESHOLD = 0.5;
// Returns 1.0 on successful loop, 0.0 on reps exceeded. Sensible?
for (int i = 0; i != MAX_REPS; ++i)
{
const ControlState val = inner->GetValue();
if (val < COND_THRESHOLD)
return 1.0;
}
// Exceeded max reps:
return 0.0;
}
void SetValue(ControlState value) override {}
std::string GetFuncName() const override { return "Sin"; }
};
std::unique_ptr<UnaryExpression> MakeUnaryExpression(std::string name,
std::unique_ptr<Expression>&& inner_)
{
// Case insensitive matching.
std::transform(name.begin(), name.end(), name.begin(),
[](char c) { return std::tolower(c, std::locale::classic()); });
if (name.empty())
return std::make_unique<UnaryNotExpression>(std::move(inner_));
else if ("toggle" == name)
return std::make_unique<UnaryToggleExpression>(std::move(inner_));
else if ("sin" == name)
return std::make_unique<UnarySinExpression>(std::move(inner_));
else if ("while" == name)
return std::make_unique<UnaryWhileExpression>(std::move(inner_));
else
return std::make_unique<UnaryUnknownExpression>(std::move(inner_));
}
class LiteralExpression : public Expression
{
public:
void SetValue(ControlState value) override
{
// Do nothing.
}
int CountNumControls() const override { return 1; }
void UpdateReferences(ControlEnvironment&) override
{
// Nothing needed.
}
operator std::string() const override { return '\'' + GetName() + '\''; }
protected:
virtual std::string GetName() const = 0;
};
class LiteralReal : public LiteralExpression
{
public:
LiteralReal(ControlState value) : m_value(value) {}
ControlState GetValue() const override { return m_value; }
std::string GetName() const override { return ValueToString(m_value); }
private:
const ControlState m_value{};
};
// A +1.0 per second incrementing timer:
class LiteralTimer : public LiteralExpression
{
public:
ControlState GetValue() const override
{
const auto ms =
std::chrono::duration_cast<std::chrono::milliseconds>(Clock::now().time_since_epoch());
// TODO: Will this roll over nicely?
return ms.count() / 1000.0;
}
std::string GetName() const override { return "Timer"; }
private:
using Clock = std::chrono::steady_clock;
};
std::unique_ptr<LiteralExpression> MakeLiteralExpression(std::string name)
{
// Case insensitive matching.
std::transform(name.begin(), name.end(), name.begin(),
[](char c) { return std::tolower(c, std::locale::classic()); });
// Check for named literals:
if ("timer" == name)
{
return std::make_unique<LiteralTimer>();
}
else
{
// Assume it's a Real. If TryParse fails we'll just get a Zero.
ControlState val{};
TryParse(name, &val);
return std::make_unique<LiteralReal>(val);
}
}
class VariableExpression : public Expression
{
public:
VariableExpression(std::string name) : m_name(name) {}
ControlState GetValue() const override { return *m_value_ptr; }
void SetValue(ControlState value) override { *m_value_ptr = value; }
int CountNumControls() const override { return 1; }
void UpdateReferences(ControlEnvironment& env) override
{
m_value_ptr = env.GetVariablePtr(m_name);
}
operator std::string() const override { return '$' + m_name; }
protected:
const std::string m_name;
ControlState* m_value_ptr{};
};
// This class proxies all methods to its either left-hand child if it has bound controls, or its
// right-hand child. Its intended use is for supporting old-style barewords expressions.
class CoalesceExpression : public Expression
{
public:
CoalesceExpression(std::unique_ptr<Expression>&& lhs, std::unique_ptr<Expression>&& rhs)
: m_lhs(std::move(lhs)), m_rhs(std::move(rhs))
{
}
ControlState GetValue() const override { return GetActiveChild()->GetValue(); }
void SetValue(ControlState value) override { GetActiveChild()->SetValue(value); }
int CountNumControls() const override { return GetActiveChild()->CountNumControls(); }
operator std::string() const override
{
return "Coalesce(" + static_cast<std::string>(*m_lhs) + ", " +
static_cast<std::string>(*m_rhs) + ')';
}
void UpdateReferences(ControlEnvironment& env) override
{
m_lhs->UpdateReferences(env);
m_rhs->UpdateReferences(env);
}
private:
const std::unique_ptr<Expression>& GetActiveChild() const
{
return m_lhs->CountNumControls() > 0 ? m_lhs : m_rhs;
}
std::unique_ptr<Expression> m_lhs;
std::unique_ptr<Expression> m_rhs;
};
std::shared_ptr<Device> ControlEnvironment::FindDevice(ControlQualifier qualifier) const
{
if (qualifier.has_device)
return container.FindDevice(qualifier.device_qualifier);
else
return container.FindDevice(default_device);
}
Device::Input* ControlEnvironment::FindInput(ControlQualifier qualifier) const
{
const std::shared_ptr<Device> device = FindDevice(qualifier);
if (!device)
return nullptr;
return device->FindInput(qualifier.control_name);
}
Device::Output* ControlEnvironment::FindOutput(ControlQualifier qualifier) const
{
const std::shared_ptr<Device> device = FindDevice(qualifier);
if (!device)
return nullptr;
return device->FindOutput(qualifier.control_name);
}
ControlState* ControlEnvironment::GetVariablePtr(const std::string& name)
{
return &m_variables[name];
}
struct ParseResult
{
ParseResult(ParseStatus status_, std::unique_ptr<Expression>&& expr_ = {})
: status(status_), expr(std::move(expr_))
{
}
ParseStatus status;
std::unique_ptr<Expression> expr;
};
class Parser
{
public:
explicit Parser(std::vector<Token> tokens_) : tokens(tokens_) { m_it = tokens.begin(); }
ParseResult Parse() { return Toplevel(); }
private:
std::vector<Token> tokens;
std::vector<Token>::iterator m_it;
Token Chew() { return *m_it++; }
Token Peek() { return *m_it; }
bool Expects(TokenType type)
{
Token tok = Chew();
return tok.type == type;
}
ParseResult Atom()
{
Token tok = Chew();
switch (tok.type)
{
case TOK_CONTROL:
{
ControlQualifier cq;
cq.FromString(tok.data);
return {ParseStatus::Successful, std::make_unique<ControlExpression>(cq)};
}
case TOK_LITERAL:
{
return {ParseStatus::Successful, MakeLiteralExpression(tok.data)};
}
case TOK_VARIABLE:
{
return {ParseStatus::Successful, std::make_unique<VariableExpression>(tok.data)};
}
case TOK_LPAREN:
return Paren();
default:
return {ParseStatus::SyntaxError};
}
}
bool IsUnaryExpression(TokenType type)
{
switch (type)
{
case TOK_UNARY:
return true;
default:
return false;
}
}
ParseResult Unary()
{
if (IsUnaryExpression(Peek().type))
{
Token tok = Chew();
ParseResult result = Atom();
if (result.status == ParseStatus::SyntaxError)
return result;
return {ParseStatus::Successful, MakeUnaryExpression(tok.data, std::move(result.expr))};
}
return Atom();
}
bool IsBinaryToken(TokenType type)
{
return type >= TOK_BINARY_OPS_BEGIN && type < TOK_BINARY_OPS_END;
}
ParseResult Binary()
{
ParseResult result = Unary();
if (result.status == ParseStatus::SyntaxError)
return result;
std::unique_ptr<Expression> expr = std::move(result.expr);
while (IsBinaryToken(Peek().type))
{
Token tok = Chew();
ParseResult unary_result = Unary();
if (unary_result.status == ParseStatus::SyntaxError)
{
return unary_result;
}
expr = std::make_unique<BinaryExpression>(tok.type, std::move(expr),
std::move(unary_result.expr));
}
return {ParseStatus::Successful, std::move(expr)};
}
ParseResult Paren()
{
// lparen already chewed
ParseResult result = Toplevel();
if (result.status != ParseStatus::Successful)
return result;
if (!Expects(TOK_RPAREN))
{
return {ParseStatus::SyntaxError};
}
return result;
}
ParseResult Toplevel() { return Binary(); }
};
static ParseResult ParseComplexExpression(const std::string& str)
{
Lexer l(str);
std::vector<Token> tokens;
ParseStatus tokenize_status = l.Tokenize(tokens);
if (tokenize_status != ParseStatus::Successful)
return {tokenize_status};
return Parser(std::move(tokens)).Parse();
}
static std::unique_ptr<Expression> ParseBarewordExpression(const std::string& str)
{
ControlQualifier qualifier;
qualifier.control_name = str;
qualifier.has_device = false;
return std::make_unique<ControlExpression>(qualifier);
}
std::pair<ParseStatus, std::unique_ptr<Expression>> ParseExpression(const std::string& str)
{
if (StripSpaces(str).empty())
return std::make_pair(ParseStatus::EmptyExpression, nullptr);
auto bareword_expr = ParseBarewordExpression(str);
ParseResult complex_result = ParseComplexExpression(str);
if (complex_result.status != ParseStatus::Successful)
{
return std::make_pair(complex_result.status, std::move(bareword_expr));
}
auto combined_expr = std::make_unique<CoalesceExpression>(std::move(bareword_expr),
std::move(complex_result.expr));
return std::make_pair(complex_result.status, std::move(combined_expr));
}
} // namespace ciface::ExpressionParser