dolphin/Source/Core/DiscIO/WIABlob.cpp

2606 lines
89 KiB
C++

// Copyright 2018 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include "DiscIO/WIABlob.h"
#include <algorithm>
#include <array>
#include <cinttypes>
#include <cstring>
#include <limits>
#include <map>
#include <memory>
#include <mutex>
#include <optional>
#include <type_traits>
#include <utility>
#include <bzlib.h>
#include <lzma.h>
#include <mbedtls/sha1.h>
#include <zstd.h>
#include "Common/Align.h"
#include "Common/Assert.h"
#include "Common/CommonTypes.h"
#include "Common/File.h"
#include "Common/FileUtil.h"
#include "Common/Logging/Log.h"
#include "Common/MsgHandler.h"
#include "Common/ScopeGuard.h"
#include "Common/StringUtil.h"
#include "Common/Swap.h"
#include "DiscIO/Blob.h"
#include "DiscIO/DiscExtractor.h"
#include "DiscIO/LaggedFibonacciGenerator.h"
#include "DiscIO/MultithreadedCompressor.h"
#include "DiscIO/Volume.h"
#include "DiscIO/VolumeWii.h"
#include "DiscIO/WiiEncryptionCache.h"
namespace DiscIO
{
std::pair<int, int> GetAllowedCompressionLevels(WIACompressionType compression_type)
{
switch (compression_type)
{
case WIACompressionType::Bzip2:
case WIACompressionType::LZMA:
case WIACompressionType::LZMA2:
return {1, 9};
case WIACompressionType::Zstd:
// The actual minimum level can be gotten by calling ZSTD_minCLevel(). However, returning that
// would make the UI rather weird, because it is a negative number with very large magnitude.
// Note: Level 0 is a special number which means "default level" (level 3 as of this writing).
return {1, ZSTD_maxCLevel()};
default:
return {0, -1};
}
}
WIAFileReader::WIAFileReader(File::IOFile file, const std::string& path)
: m_file(std::move(file)), m_encryption_cache(this)
{
m_valid = Initialize(path);
}
WIAFileReader::~WIAFileReader() = default;
bool WIAFileReader::Initialize(const std::string& path)
{
if (!m_file.Seek(0, SEEK_SET) || !m_file.ReadArray(&m_header_1, 1))
return false;
if (m_header_1.magic != WIA_MAGIC && m_header_1.magic != RVZ_MAGIC)
return false;
m_rvz = m_header_1.magic == RVZ_MAGIC;
const u32 version = m_rvz ? RVZ_VERSION : WIA_VERSION;
const u32 version_read_compatible =
m_rvz ? RVZ_VERSION_READ_COMPATIBLE : WIA_VERSION_READ_COMPATIBLE;
const u32 file_version = Common::swap32(m_header_1.version);
const u32 file_version_compatible = Common::swap32(m_header_1.version_compatible);
if (version < file_version_compatible || version_read_compatible > file_version)
{
ERROR_LOG(DISCIO, "Unsupported version %s in %s", VersionToString(file_version).c_str(),
path.c_str());
return false;
}
SHA1 header_1_actual_hash;
mbedtls_sha1_ret(reinterpret_cast<const u8*>(&m_header_1), sizeof(m_header_1) - sizeof(SHA1),
header_1_actual_hash.data());
if (m_header_1.header_1_hash != header_1_actual_hash)
return false;
if (Common::swap64(m_header_1.wia_file_size) != m_file.GetSize())
{
ERROR_LOG(DISCIO, "File size is incorrect for %s", path.c_str());
return false;
}
const u32 header_2_size = Common::swap32(m_header_1.header_2_size);
const u32 header_2_min_size = sizeof(WIAHeader2) - sizeof(WIAHeader2::compressor_data);
if (header_2_size < header_2_min_size)
return false;
std::vector<u8> header_2(header_2_size);
if (!m_file.ReadBytes(header_2.data(), header_2.size()))
return false;
SHA1 header_2_actual_hash;
mbedtls_sha1_ret(header_2.data(), header_2.size(), header_2_actual_hash.data());
if (m_header_1.header_2_hash != header_2_actual_hash)
return false;
std::memcpy(&m_header_2, header_2.data(), std::min(header_2.size(), sizeof(WIAHeader2)));
if (m_header_2.compressor_data_size > sizeof(WIAHeader2::compressor_data) ||
header_2_size < header_2_min_size + m_header_2.compressor_data_size)
{
return false;
}
const u32 chunk_size = Common::swap32(m_header_2.chunk_size);
const auto is_power_of_two = [](u32 x) { return (x & (x - 1)) == 0; };
if ((!m_rvz || chunk_size < VolumeWii::BLOCK_TOTAL_SIZE || !is_power_of_two(chunk_size)) &&
chunk_size % VolumeWii::GROUP_TOTAL_SIZE != 0)
{
return false;
}
const u32 compression_type = Common::swap32(m_header_2.compression_type);
m_compression_type = static_cast<WIACompressionType>(compression_type);
if (m_compression_type > (m_rvz ? WIACompressionType::Zstd : WIACompressionType::LZMA2) ||
(m_rvz && m_compression_type == WIACompressionType::Purge))
{
ERROR_LOG(DISCIO, "Unsupported compression type %u in %s", compression_type, path.c_str());
return false;
}
const size_t number_of_partition_entries = Common::swap32(m_header_2.number_of_partition_entries);
const size_t partition_entry_size = Common::swap32(m_header_2.partition_entry_size);
std::vector<u8> partition_entries(partition_entry_size * number_of_partition_entries);
if (!m_file.Seek(Common::swap64(m_header_2.partition_entries_offset), SEEK_SET))
return false;
if (!m_file.ReadBytes(partition_entries.data(), partition_entries.size()))
return false;
SHA1 partition_entries_actual_hash;
mbedtls_sha1_ret(reinterpret_cast<const u8*>(partition_entries.data()), partition_entries.size(),
partition_entries_actual_hash.data());
if (m_header_2.partition_entries_hash != partition_entries_actual_hash)
return false;
const size_t copy_length = std::min(partition_entry_size, sizeof(PartitionEntry));
const size_t memset_length = sizeof(PartitionEntry) - copy_length;
u8* ptr = partition_entries.data();
m_partition_entries.resize(number_of_partition_entries);
for (size_t i = 0; i < number_of_partition_entries; ++i, ptr += partition_entry_size)
{
std::memcpy(&m_partition_entries[i], ptr, copy_length);
std::memset(reinterpret_cast<u8*>(&m_partition_entries[i]) + copy_length, 0, memset_length);
}
for (size_t i = 0; i < m_partition_entries.size(); ++i)
{
const std::array<PartitionDataEntry, 2>& entries = m_partition_entries[i].data_entries;
size_t non_empty_entries = 0;
for (size_t j = 0; j < entries.size(); ++j)
{
const u32 number_of_sectors = Common::swap32(entries[j].number_of_sectors);
if (number_of_sectors != 0)
{
++non_empty_entries;
const u32 last_sector = Common::swap32(entries[j].first_sector) + number_of_sectors;
m_data_entries.emplace(last_sector * VolumeWii::BLOCK_TOTAL_SIZE, DataEntry(i, j));
}
}
if (non_empty_entries > 1)
{
if (Common::swap32(entries[0].first_sector) > Common::swap32(entries[1].first_sector))
return false;
}
}
const u32 number_of_raw_data_entries = Common::swap32(m_header_2.number_of_raw_data_entries);
m_raw_data_entries.resize(number_of_raw_data_entries);
Chunk& raw_data_entries = ReadCompressedData(Common::swap64(m_header_2.raw_data_entries_offset),
Common::swap32(m_header_2.raw_data_entries_size),
number_of_raw_data_entries * sizeof(RawDataEntry));
if (!raw_data_entries.ReadAll(&m_raw_data_entries))
return false;
for (size_t i = 0; i < m_raw_data_entries.size(); ++i)
{
const RawDataEntry& entry = m_raw_data_entries[i];
const u64 data_size = Common::swap64(entry.data_size);
if (data_size != 0)
m_data_entries.emplace(Common::swap64(entry.data_offset) + data_size, DataEntry(i));
}
const u32 number_of_group_entries = Common::swap32(m_header_2.number_of_group_entries);
m_group_entries.resize(number_of_group_entries);
Chunk& group_entries = ReadCompressedData(Common::swap64(m_header_2.group_entries_offset),
Common::swap32(m_header_2.group_entries_size),
number_of_group_entries * sizeof(GroupEntry));
if (!group_entries.ReadAll(&m_group_entries))
return false;
if (HasDataOverlap())
return false;
return true;
}
bool WIAFileReader::HasDataOverlap() const
{
for (size_t i = 0; i < m_partition_entries.size(); ++i)
{
const std::array<PartitionDataEntry, 2>& entries = m_partition_entries[i].data_entries;
for (size_t j = 0; j < entries.size(); ++j)
{
if (Common::swap32(entries[j].number_of_sectors) == 0)
continue;
const u64 data_offset = Common::swap32(entries[j].first_sector) * VolumeWii::BLOCK_TOTAL_SIZE;
const auto it = m_data_entries.upper_bound(data_offset);
if (it == m_data_entries.end())
return true; // Not an overlap, but an error nonetheless
if (!it->second.is_partition || it->second.index != i || it->second.partition_data_index != j)
return true; // Overlap
}
}
for (size_t i = 0; i < m_raw_data_entries.size(); ++i)
{
if (Common::swap64(m_raw_data_entries[i].data_size) == 0)
continue;
const u64 data_offset = Common::swap64(m_raw_data_entries[i].data_offset);
const auto it = m_data_entries.upper_bound(data_offset);
if (it == m_data_entries.end())
return true; // Not an overlap, but an error nonetheless
if (it->second.is_partition || it->second.index != i)
return true; // Overlap
}
return false;
}
std::unique_ptr<WIAFileReader> WIAFileReader::Create(File::IOFile file, const std::string& path)
{
std::unique_ptr<WIAFileReader> blob(new WIAFileReader(std::move(file), path));
return blob->m_valid ? std::move(blob) : nullptr;
}
BlobType WIAFileReader::GetBlobType() const
{
return m_rvz ? BlobType::RVZ : BlobType::WIA;
}
bool WIAFileReader::Read(u64 offset, u64 size, u8* out_ptr)
{
if (offset + size > Common::swap64(m_header_1.iso_file_size))
return false;
if (offset < sizeof(WIAHeader2::disc_header))
{
const u64 bytes_to_read = std::min(sizeof(WIAHeader2::disc_header) - offset, size);
std::memcpy(out_ptr, m_header_2.disc_header.data() + offset, bytes_to_read);
offset += bytes_to_read;
size -= bytes_to_read;
out_ptr += bytes_to_read;
}
const u32 chunk_size = Common::swap32(m_header_2.chunk_size);
while (size > 0)
{
const auto it = m_data_entries.upper_bound(offset);
if (it == m_data_entries.end())
return false;
const DataEntry& data = it->second;
if (data.is_partition)
{
const PartitionEntry& partition = m_partition_entries[it->second.index];
const u32 partition_first_sector = Common::swap32(partition.data_entries[0].first_sector);
const u64 partition_data_offset = partition_first_sector * VolumeWii::BLOCK_TOTAL_SIZE;
const u32 second_number_of_sectors =
Common::swap32(partition.data_entries[1].number_of_sectors);
const u32 partition_total_sectors =
second_number_of_sectors ? Common::swap32(partition.data_entries[1].first_sector) -
partition_first_sector + second_number_of_sectors :
Common::swap32(partition.data_entries[0].number_of_sectors);
for (const PartitionDataEntry& partition_data : partition.data_entries)
{
if (size == 0)
return true;
const u32 first_sector = Common::swap32(partition_data.first_sector);
const u32 number_of_sectors = Common::swap32(partition_data.number_of_sectors);
const u64 data_offset = first_sector * VolumeWii::BLOCK_TOTAL_SIZE;
const u64 data_size = number_of_sectors * VolumeWii::BLOCK_TOTAL_SIZE;
if (data_size == 0)
continue;
if (data_offset + data_size <= offset)
continue;
if (offset < data_offset)
return false;
const u64 bytes_to_read = std::min(data_size - (offset - data_offset), size);
m_exception_list.clear();
m_write_to_exception_list = true;
m_exception_list_last_group_index = std::numeric_limits<u64>::max();
Common::ScopeGuard guard([this] { m_write_to_exception_list = false; });
bool hash_exception_error = false;
if (!m_encryption_cache.EncryptGroups(
offset - partition_data_offset, bytes_to_read, out_ptr, partition_data_offset,
partition_total_sectors * VolumeWii::BLOCK_DATA_SIZE, partition.partition_key,
[this, &hash_exception_error](
VolumeWii::HashBlock hash_blocks[VolumeWii::BLOCKS_PER_GROUP], u64 offset) {
// EncryptGroups calls ReadWiiDecrypted, which calls ReadFromGroups,
// which populates m_exception_list when m_write_to_exception_list == true
if (!ApplyHashExceptions(m_exception_list, hash_blocks))
hash_exception_error = true;
}))
{
return false;
}
if (hash_exception_error)
return false;
offset += bytes_to_read;
size -= bytes_to_read;
out_ptr += bytes_to_read;
}
}
else
{
const RawDataEntry& raw_data = m_raw_data_entries[data.index];
if (!ReadFromGroups(&offset, &size, &out_ptr, chunk_size, VolumeWii::BLOCK_TOTAL_SIZE,
Common::swap64(raw_data.data_offset), Common::swap64(raw_data.data_size),
Common::swap32(raw_data.group_index),
Common::swap32(raw_data.number_of_groups), 0))
{
return false;
}
}
}
return true;
}
bool WIAFileReader::SupportsReadWiiDecrypted() const
{
return !m_partition_entries.empty();
}
bool WIAFileReader::ReadWiiDecrypted(u64 offset, u64 size, u8* out_ptr, u64 partition_data_offset)
{
const u64 chunk_size = Common::swap32(m_header_2.chunk_size) * VolumeWii::BLOCK_DATA_SIZE /
VolumeWii::BLOCK_TOTAL_SIZE;
const auto it = m_data_entries.upper_bound(partition_data_offset);
if (it == m_data_entries.end() || !it->second.is_partition)
return false;
const PartitionEntry& partition = m_partition_entries[it->second.index];
const u32 partition_first_sector = Common::swap32(partition.data_entries[0].first_sector);
if (partition_data_offset != partition_first_sector * VolumeWii::BLOCK_TOTAL_SIZE)
return false;
for (const PartitionDataEntry& data : partition.data_entries)
{
if (size == 0)
return true;
const u64 data_offset =
(Common::swap32(data.first_sector) - partition_first_sector) * VolumeWii::BLOCK_DATA_SIZE;
const u64 data_size = Common::swap32(data.number_of_sectors) * VolumeWii::BLOCK_DATA_SIZE;
if (!ReadFromGroups(&offset, &size, &out_ptr, chunk_size, VolumeWii::BLOCK_DATA_SIZE,
data_offset, data_size, Common::swap32(data.group_index),
Common::swap32(data.number_of_groups),
std::max<u64>(1, chunk_size / VolumeWii::GROUP_DATA_SIZE)))
{
return false;
}
}
return size == 0;
}
bool WIAFileReader::ReadFromGroups(u64* offset, u64* size, u8** out_ptr, u64 chunk_size,
u32 sector_size, u64 data_offset, u64 data_size, u32 group_index,
u32 number_of_groups, u32 exception_lists)
{
if (data_offset + data_size <= *offset)
return true;
if (*offset < data_offset)
return false;
const u64 skipped_data = data_offset % sector_size;
data_offset -= skipped_data;
data_size += skipped_data;
const u64 start_group_index = (*offset - data_offset) / chunk_size;
for (u64 i = start_group_index; i < number_of_groups && (*size) > 0; ++i)
{
const u64 total_group_index = group_index + i;
if (total_group_index >= m_group_entries.size())
return false;
const GroupEntry group = m_group_entries[total_group_index];
const u64 group_offset_in_data = i * chunk_size;
const u64 offset_in_group = *offset - group_offset_in_data - data_offset;
chunk_size = std::min(chunk_size, data_size - group_offset_in_data);
const u64 bytes_to_read = std::min(chunk_size - offset_in_group, *size);
const u32 group_data_size = Common::swap32(group.data_size);
if (group_data_size == 0)
{
std::memset(*out_ptr, 0, bytes_to_read);
}
else
{
const u64 group_offset_in_file = static_cast<u64>(Common::swap32(group.data_offset)) << 2;
Chunk& chunk = ReadCompressedData(group_offset_in_file, group_data_size, chunk_size,
exception_lists, m_rvz, group_offset_in_data);
if (!chunk.Read(offset_in_group, bytes_to_read, *out_ptr))
{
m_cached_chunk_offset = std::numeric_limits<u64>::max(); // Invalidate the cache
return false;
}
if (m_write_to_exception_list && m_exception_list_last_group_index != total_group_index)
{
const u64 exception_list_index = offset_in_group / VolumeWii::GROUP_DATA_SIZE;
const u16 additional_offset =
static_cast<u16>(group_offset_in_data % VolumeWii::GROUP_DATA_SIZE /
VolumeWii::BLOCK_DATA_SIZE * VolumeWii::BLOCK_HEADER_SIZE);
chunk.GetHashExceptions(&m_exception_list, exception_list_index, additional_offset);
m_exception_list_last_group_index = total_group_index;
}
}
*offset += bytes_to_read;
*size -= bytes_to_read;
*out_ptr += bytes_to_read;
}
return true;
}
WIAFileReader::Chunk& WIAFileReader::ReadCompressedData(u64 offset_in_file, u64 compressed_size,
u64 decompressed_size, u32 exception_lists,
bool rvz_pack, u64 data_offset)
{
if (offset_in_file == m_cached_chunk_offset)
return m_cached_chunk;
std::unique_ptr<Decompressor> decompressor;
switch (m_compression_type)
{
case WIACompressionType::None:
decompressor = std::make_unique<NoneDecompressor>();
break;
case WIACompressionType::Purge:
decompressor = std::make_unique<PurgeDecompressor>(decompressed_size);
break;
case WIACompressionType::Bzip2:
decompressor = std::make_unique<Bzip2Decompressor>();
break;
case WIACompressionType::LZMA:
decompressor = std::make_unique<LZMADecompressor>(false, m_header_2.compressor_data,
m_header_2.compressor_data_size);
break;
case WIACompressionType::LZMA2:
decompressor = std::make_unique<LZMADecompressor>(true, m_header_2.compressor_data,
m_header_2.compressor_data_size);
break;
case WIACompressionType::Zstd:
decompressor = std::make_unique<ZstdDecompressor>();
break;
}
const bool compressed_exception_lists = m_compression_type > WIACompressionType::Purge;
m_cached_chunk =
Chunk(&m_file, offset_in_file, compressed_size, decompressed_size, exception_lists,
compressed_exception_lists, rvz_pack, data_offset, std::move(decompressor));
m_cached_chunk_offset = offset_in_file;
return m_cached_chunk;
}
std::string WIAFileReader::VersionToString(u32 version)
{
const u8 a = version >> 24;
const u8 b = (version >> 16) & 0xff;
const u8 c = (version >> 8) & 0xff;
const u8 d = version & 0xff;
if (d == 0 || d == 0xff)
return StringFromFormat("%u.%02x.%02x", a, b, c);
else
return StringFromFormat("%u.%02x.%02x.beta%u", a, b, c, d);
}
u32 WIAFileReader::LZMA2DictionarySize(u8 p)
{
return (static_cast<u32>(2) | (p & 1)) << (p / 2 + 11);
}
WIAFileReader::Decompressor::~Decompressor() = default;
bool WIAFileReader::NoneDecompressor::Decompress(const DecompressionBuffer& in,
DecompressionBuffer* out, size_t* in_bytes_read)
{
const size_t length =
std::min(in.bytes_written - *in_bytes_read, out->data.size() - out->bytes_written);
std::memcpy(out->data.data() + out->bytes_written, in.data.data() + *in_bytes_read, length);
*in_bytes_read += length;
out->bytes_written += length;
m_done = in.data.size() == *in_bytes_read;
return true;
}
WIAFileReader::PurgeDecompressor::PurgeDecompressor(u64 decompressed_size)
: m_decompressed_size(decompressed_size)
{
mbedtls_sha1_init(&m_sha1_context);
}
bool WIAFileReader::PurgeDecompressor::Decompress(const DecompressionBuffer& in,
DecompressionBuffer* out, size_t* in_bytes_read)
{
if (!m_started)
{
mbedtls_sha1_starts_ret(&m_sha1_context);
// Include the exception lists in the SHA-1 calculation (but not in the compression...)
mbedtls_sha1_update_ret(&m_sha1_context, in.data.data(), *in_bytes_read);
m_started = true;
}
while (!m_done && in.bytes_written != *in_bytes_read &&
(m_segment_bytes_written < sizeof(m_segment) || out->data.size() != out->bytes_written))
{
if (m_segment_bytes_written == 0 && *in_bytes_read == in.data.size() - sizeof(SHA1))
{
const size_t zeroes_to_write = std::min<size_t>(m_decompressed_size - m_out_bytes_written,
out->data.size() - out->bytes_written);
std::memset(out->data.data() + out->bytes_written, 0, zeroes_to_write);
out->bytes_written += zeroes_to_write;
m_out_bytes_written += zeroes_to_write;
if (m_out_bytes_written == m_decompressed_size && in.bytes_written == in.data.size())
{
SHA1 actual_hash;
mbedtls_sha1_finish_ret(&m_sha1_context, actual_hash.data());
SHA1 expected_hash;
std::memcpy(expected_hash.data(), in.data.data() + *in_bytes_read, expected_hash.size());
*in_bytes_read += expected_hash.size();
m_done = true;
if (actual_hash != expected_hash)
return false;
}
return true;
}
if (m_segment_bytes_written < sizeof(m_segment))
{
const size_t bytes_to_copy =
std::min(in.bytes_written - *in_bytes_read, sizeof(m_segment) - m_segment_bytes_written);
std::memcpy(reinterpret_cast<u8*>(&m_segment) + m_segment_bytes_written,
in.data.data() + *in_bytes_read, bytes_to_copy);
mbedtls_sha1_update_ret(&m_sha1_context, in.data.data() + *in_bytes_read, bytes_to_copy);
*in_bytes_read += bytes_to_copy;
m_bytes_read += bytes_to_copy;
m_segment_bytes_written += bytes_to_copy;
}
if (m_segment_bytes_written < sizeof(m_segment))
return true;
const size_t offset = Common::swap32(m_segment.offset);
const size_t size = Common::swap32(m_segment.size);
if (m_out_bytes_written < offset)
{
const size_t zeroes_to_write =
std::min(offset - m_out_bytes_written, out->data.size() - out->bytes_written);
std::memset(out->data.data() + out->bytes_written, 0, zeroes_to_write);
out->bytes_written += zeroes_to_write;
m_out_bytes_written += zeroes_to_write;
}
if (m_out_bytes_written >= offset && m_out_bytes_written < offset + size)
{
const size_t bytes_to_copy = std::min(
std::min(offset + size - m_out_bytes_written, out->data.size() - out->bytes_written),
in.bytes_written - *in_bytes_read);
std::memcpy(out->data.data() + out->bytes_written, in.data.data() + *in_bytes_read,
bytes_to_copy);
mbedtls_sha1_update_ret(&m_sha1_context, in.data.data() + *in_bytes_read, bytes_to_copy);
*in_bytes_read += bytes_to_copy;
m_bytes_read += bytes_to_copy;
out->bytes_written += bytes_to_copy;
m_out_bytes_written += bytes_to_copy;
}
if (m_out_bytes_written >= offset + size)
m_segment_bytes_written = 0;
}
return true;
}
WIAFileReader::Bzip2Decompressor::~Bzip2Decompressor()
{
if (m_started)
BZ2_bzDecompressEnd(&m_stream);
}
bool WIAFileReader::Bzip2Decompressor::Decompress(const DecompressionBuffer& in,
DecompressionBuffer* out, size_t* in_bytes_read)
{
if (!m_started)
{
if (BZ2_bzDecompressInit(&m_stream, 0, 0) != BZ_OK)
return false;
m_started = true;
}
constexpr auto clamped_cast = [](size_t x) {
return static_cast<unsigned int>(
std::min<size_t>(std::numeric_limits<unsigned int>().max(), x));
};
char* const in_ptr = reinterpret_cast<char*>(const_cast<u8*>(in.data.data() + *in_bytes_read));
m_stream.next_in = in_ptr;
m_stream.avail_in = clamped_cast(in.bytes_written - *in_bytes_read);
char* const out_ptr = reinterpret_cast<char*>(out->data.data() + out->bytes_written);
m_stream.next_out = out_ptr;
m_stream.avail_out = clamped_cast(out->data.size() - out->bytes_written);
const int result = BZ2_bzDecompress(&m_stream);
*in_bytes_read += m_stream.next_in - in_ptr;
out->bytes_written += m_stream.next_out - out_ptr;
m_done = result == BZ_STREAM_END;
return result == BZ_OK || result == BZ_STREAM_END;
}
WIAFileReader::LZMADecompressor::LZMADecompressor(bool lzma2, const u8* filter_options,
size_t filter_options_size)
{
m_options.preset_dict = nullptr;
if (!lzma2 && filter_options_size == 5)
{
// The dictionary size is stored as a 32-bit little endian unsigned integer
static_assert(sizeof(m_options.dict_size) == sizeof(u32));
std::memcpy(&m_options.dict_size, filter_options + 1, sizeof(u32));
const u8 d = filter_options[0];
if (d >= (9 * 5 * 5))
{
m_error_occurred = true;
}
else
{
m_options.lc = d % 9;
const u8 e = d / 9;
m_options.pb = e / 5;
m_options.lp = e % 5;
}
}
else if (lzma2 && filter_options_size == 1)
{
const u8 d = filter_options[0];
if (d > 40)
m_error_occurred = true;
else
m_options.dict_size = d == 40 ? 0xFFFFFFFF : LZMA2DictionarySize(d);
}
else
{
m_error_occurred = true;
}
m_filters[0].id = lzma2 ? LZMA_FILTER_LZMA2 : LZMA_FILTER_LZMA1;
m_filters[0].options = &m_options;
m_filters[1].id = LZMA_VLI_UNKNOWN;
m_filters[1].options = nullptr;
}
WIAFileReader::LZMADecompressor::~LZMADecompressor()
{
if (m_started)
lzma_end(&m_stream);
}
bool WIAFileReader::LZMADecompressor::Decompress(const DecompressionBuffer& in,
DecompressionBuffer* out, size_t* in_bytes_read)
{
if (!m_started)
{
if (m_error_occurred || lzma_raw_decoder(&m_stream, m_filters) != LZMA_OK)
return false;
m_started = true;
}
const u8* const in_ptr = in.data.data() + *in_bytes_read;
m_stream.next_in = in_ptr;
m_stream.avail_in = in.bytes_written - *in_bytes_read;
u8* const out_ptr = out->data.data() + out->bytes_written;
m_stream.next_out = out_ptr;
m_stream.avail_out = out->data.size() - out->bytes_written;
const lzma_ret result = lzma_code(&m_stream, LZMA_RUN);
*in_bytes_read += m_stream.next_in - in_ptr;
out->bytes_written += m_stream.next_out - out_ptr;
m_done = result == LZMA_STREAM_END;
return result == LZMA_OK || result == LZMA_STREAM_END;
}
WIAFileReader::ZstdDecompressor::ZstdDecompressor()
{
m_stream = ZSTD_createDStream();
}
WIAFileReader::ZstdDecompressor::~ZstdDecompressor()
{
ZSTD_freeDStream(m_stream);
}
bool WIAFileReader::ZstdDecompressor::Decompress(const DecompressionBuffer& in,
DecompressionBuffer* out, size_t* in_bytes_read)
{
if (!m_stream)
return false;
ZSTD_inBuffer in_buffer{in.data.data(), in.bytes_written, *in_bytes_read};
ZSTD_outBuffer out_buffer{out->data.data(), out->data.size(), out->bytes_written};
const size_t result = ZSTD_decompressStream(m_stream, &out_buffer, &in_buffer);
*in_bytes_read = in_buffer.pos;
out->bytes_written = out_buffer.pos;
m_done = result == 0;
return !ZSTD_isError(result);
}
WIAFileReader::RVZPackDecompressor::RVZPackDecompressor(std::unique_ptr<Decompressor> decompressor,
DecompressionBuffer decompressed,
u64 data_offset)
: m_decompressor(std::move(decompressor)), m_decompressed(std::move(decompressed)),
m_data_offset(data_offset)
{
}
std::optional<bool> WIAFileReader::RVZPackDecompressor::ReadToDecompressed(
const DecompressionBuffer& in, size_t* in_bytes_read, size_t decompressed_bytes_read,
size_t bytes_to_read)
{
if (m_decompressed.data.size() < decompressed_bytes_read + bytes_to_read)
m_decompressed.data.resize(decompressed_bytes_read + bytes_to_read);
if (m_decompressed.bytes_written < decompressed_bytes_read + bytes_to_read)
{
if (!m_decompressor->Decompress(in, &m_decompressed, in_bytes_read))
return false;
if (m_decompressed.bytes_written < decompressed_bytes_read + bytes_to_read)
return true;
}
return std::nullopt;
}
bool WIAFileReader::RVZPackDecompressor::Decompress(const DecompressionBuffer& in,
DecompressionBuffer* out, size_t* in_bytes_read)
{
while (out->data.size() != out->bytes_written && !Done())
{
if (m_size == 0)
{
if (m_decompressed.bytes_written == m_decompressed_bytes_read)
{
m_decompressed.data.resize(sizeof(u32));
m_decompressed.bytes_written = 0;
m_decompressed_bytes_read = 0;
}
std::optional<bool> result =
ReadToDecompressed(in, in_bytes_read, m_decompressed_bytes_read, sizeof(u32));
if (result)
return *result;
m_size = Common::swap32(m_decompressed.data.data() + m_decompressed_bytes_read);
m_junk = m_size & 0x80000000;
if (m_junk)
{
m_size &= 0x7FFFFFFF;
constexpr size_t SEED_SIZE = LaggedFibonacciGenerator::SEED_SIZE * sizeof(u32);
result = ReadToDecompressed(in, in_bytes_read, m_decompressed_bytes_read + sizeof(u32),
SEED_SIZE);
if (result)
return *result;
m_lfg.SetSeed(m_decompressed.data.data() + m_decompressed_bytes_read + sizeof(u32));
m_lfg.Forward(m_data_offset % VolumeWii::BLOCK_TOTAL_SIZE);
m_decompressed_bytes_read += SEED_SIZE;
}
m_decompressed_bytes_read += sizeof(u32);
}
size_t bytes_to_write = std::min<size_t>(m_size, out->data.size() - out->bytes_written);
if (m_junk)
{
m_lfg.GetBytes(bytes_to_write, out->data.data() + out->bytes_written);
out->bytes_written += bytes_to_write;
}
else
{
if (m_decompressed.bytes_written != m_decompressed_bytes_read)
{
bytes_to_write =
std::min(bytes_to_write, m_decompressed.bytes_written - m_decompressed_bytes_read);
std::memcpy(out->data.data() + out->bytes_written,
m_decompressed.data.data() + m_decompressed_bytes_read, bytes_to_write);
m_decompressed_bytes_read += bytes_to_write;
out->bytes_written += bytes_to_write;
}
else
{
const size_t prev_out_bytes_written = out->bytes_written;
const size_t old_out_size = out->data.size();
const size_t new_out_size = out->bytes_written + bytes_to_write;
if (new_out_size < old_out_size)
out->data.resize(new_out_size);
if (!m_decompressor->Decompress(in, out, in_bytes_read))
return false;
out->data.resize(old_out_size);
bytes_to_write = out->bytes_written - prev_out_bytes_written;
if (bytes_to_write == 0)
return true;
}
}
m_data_offset += bytes_to_write;
m_size -= static_cast<u32>(bytes_to_write);
}
// If out is full but not all data has been read from in, give the decompressor a chance to read
// from in anyway. This is needed for the case where zstd has read everything except the checksum.
if (out->data.size() == out->bytes_written && in.bytes_written != *in_bytes_read)
{
if (!m_decompressor->Decompress(in, out, in_bytes_read))
return false;
}
return true;
}
bool WIAFileReader::RVZPackDecompressor::Done() const
{
return m_size == 0 && m_decompressed.bytes_written == m_decompressed_bytes_read &&
m_decompressor->Done();
}
WIAFileReader::Compressor::~Compressor() = default;
WIAFileReader::PurgeCompressor::PurgeCompressor()
{
mbedtls_sha1_init(&m_sha1_context);
}
WIAFileReader::PurgeCompressor::~PurgeCompressor() = default;
bool WIAFileReader::PurgeCompressor::Start()
{
m_buffer.clear();
m_bytes_written = 0;
mbedtls_sha1_starts_ret(&m_sha1_context);
return true;
}
bool WIAFileReader::PurgeCompressor::AddPrecedingDataOnlyForPurgeHashing(const u8* data,
size_t size)
{
mbedtls_sha1_update_ret(&m_sha1_context, data, size);
return true;
}
bool WIAFileReader::PurgeCompressor::Compress(const u8* data, size_t size)
{
// We could add support for calling this twice if we're fine with
// making the code more complicated, but there's no need to support it
ASSERT_MSG(DISCIO, m_bytes_written == 0,
"Calling PurgeCompressor::Compress() twice is not supported");
m_buffer.resize(size + sizeof(PurgeSegment) + sizeof(SHA1));
size_t bytes_read = 0;
while (true)
{
const auto first_non_zero =
std::find_if(data + bytes_read, data + size, [](u8 x) { return x != 0; });
const u32 non_zero_data_start = static_cast<u32>(first_non_zero - data);
if (non_zero_data_start == size)
break;
size_t non_zero_data_end = non_zero_data_start;
size_t sequence_length = 0;
for (size_t i = non_zero_data_start; i < size; ++i)
{
if (data[i] == 0)
{
++sequence_length;
}
else
{
sequence_length = 0;
non_zero_data_end = i + 1;
}
// To avoid wasting space, only count runs of zeroes that are of a certain length
// (unless there is nothing after the run of zeroes, then we might as well always count it)
if (sequence_length > sizeof(PurgeSegment))
break;
}
const u32 non_zero_data_length = static_cast<u32>(non_zero_data_end - non_zero_data_start);
const PurgeSegment segment{Common::swap32(non_zero_data_start),
Common::swap32(non_zero_data_length)};
std::memcpy(m_buffer.data() + m_bytes_written, &segment, sizeof(segment));
m_bytes_written += sizeof(segment);
std::memcpy(m_buffer.data() + m_bytes_written, data + non_zero_data_start,
non_zero_data_length);
m_bytes_written += non_zero_data_length;
bytes_read = non_zero_data_end;
}
return true;
}
bool WIAFileReader::PurgeCompressor::End()
{
mbedtls_sha1_update_ret(&m_sha1_context, m_buffer.data(), m_bytes_written);
mbedtls_sha1_finish_ret(&m_sha1_context, m_buffer.data() + m_bytes_written);
m_bytes_written += sizeof(SHA1);
ASSERT(m_bytes_written <= m_buffer.size());
return true;
}
const u8* WIAFileReader::PurgeCompressor::GetData() const
{
return m_buffer.data();
}
size_t WIAFileReader::PurgeCompressor::GetSize() const
{
return m_bytes_written;
}
WIAFileReader::Bzip2Compressor::Bzip2Compressor(int compression_level)
: m_compression_level(compression_level)
{
}
WIAFileReader::Bzip2Compressor::~Bzip2Compressor()
{
BZ2_bzCompressEnd(&m_stream);
}
bool WIAFileReader::Bzip2Compressor::Start()
{
ASSERT_MSG(DISCIO, m_stream.state == nullptr,
"Called Bzip2Compressor::Start() twice without calling Bzip2Compressor::End()");
m_buffer.clear();
m_stream.next_out = reinterpret_cast<char*>(m_buffer.data());
return BZ2_bzCompressInit(&m_stream, m_compression_level, 0, 0) == BZ_OK;
}
bool WIAFileReader::Bzip2Compressor::Compress(const u8* data, size_t size)
{
m_stream.next_in = reinterpret_cast<char*>(const_cast<u8*>(data));
m_stream.avail_in = static_cast<unsigned int>(size);
ExpandBuffer(size);
while (m_stream.avail_in != 0)
{
if (m_stream.avail_out == 0)
ExpandBuffer(0x100);
if (BZ2_bzCompress(&m_stream, BZ_RUN) != BZ_RUN_OK)
return false;
}
return true;
}
bool WIAFileReader::Bzip2Compressor::End()
{
bool success = true;
while (true)
{
if (m_stream.avail_out == 0)
ExpandBuffer(0x100);
const int result = BZ2_bzCompress(&m_stream, BZ_FINISH);
if (result != BZ_FINISH_OK && result != BZ_STREAM_END)
success = false;
if (result != BZ_FINISH_OK)
break;
}
if (BZ2_bzCompressEnd(&m_stream) != BZ_OK)
success = false;
return success;
}
void WIAFileReader::Bzip2Compressor::ExpandBuffer(size_t bytes_to_add)
{
const size_t bytes_written = GetSize();
m_buffer.resize(m_buffer.size() + bytes_to_add);
m_stream.next_out = reinterpret_cast<char*>(m_buffer.data()) + bytes_written;
m_stream.avail_out = static_cast<unsigned int>(m_buffer.size() - bytes_written);
}
const u8* WIAFileReader::Bzip2Compressor::GetData() const
{
return m_buffer.data();
}
size_t WIAFileReader::Bzip2Compressor::GetSize() const
{
return static_cast<size_t>(reinterpret_cast<u8*>(m_stream.next_out) - m_buffer.data());
}
WIAFileReader::LZMACompressor::LZMACompressor(bool lzma2, int compression_level,
u8 compressor_data_out[7],
u8* compressor_data_size_out)
{
// lzma_lzma_preset returns false on success for some reason
if (lzma_lzma_preset(&m_options, static_cast<uint32_t>(compression_level)))
{
m_initialization_failed = true;
return;
}
if (!lzma2)
{
if (compressor_data_size_out)
*compressor_data_size_out = 5;
if (compressor_data_out)
{
ASSERT(m_options.lc < 9);
ASSERT(m_options.lp < 5);
ASSERT(m_options.pb < 5);
compressor_data_out[0] =
static_cast<u8>((m_options.pb * 5 + m_options.lp) * 9 + m_options.lc);
// The dictionary size is stored as a 32-bit little endian unsigned integer
static_assert(sizeof(m_options.dict_size) == sizeof(u32));
std::memcpy(compressor_data_out + 1, &m_options.dict_size, sizeof(u32));
}
}
else
{
if (compressor_data_size_out)
*compressor_data_size_out = 1;
if (compressor_data_out)
{
u8 encoded_dict_size = 0;
while (encoded_dict_size < 40 && m_options.dict_size > LZMA2DictionarySize(encoded_dict_size))
++encoded_dict_size;
compressor_data_out[0] = encoded_dict_size;
}
}
m_filters[0].id = lzma2 ? LZMA_FILTER_LZMA2 : LZMA_FILTER_LZMA1;
m_filters[0].options = &m_options;
m_filters[1].id = LZMA_VLI_UNKNOWN;
m_filters[1].options = nullptr;
}
WIAFileReader::LZMACompressor::~LZMACompressor()
{
lzma_end(&m_stream);
}
bool WIAFileReader::LZMACompressor::Start()
{
if (m_initialization_failed)
return false;
m_buffer.clear();
m_stream.next_out = m_buffer.data();
return lzma_raw_encoder(&m_stream, m_filters) == LZMA_OK;
}
bool WIAFileReader::LZMACompressor::Compress(const u8* data, size_t size)
{
m_stream.next_in = data;
m_stream.avail_in = size;
ExpandBuffer(size);
while (m_stream.avail_in != 0)
{
if (m_stream.avail_out == 0)
ExpandBuffer(0x100);
if (lzma_code(&m_stream, LZMA_RUN) != LZMA_OK)
return false;
}
return true;
}
bool WIAFileReader::LZMACompressor::End()
{
while (true)
{
if (m_stream.avail_out == 0)
ExpandBuffer(0x100);
switch (lzma_code(&m_stream, LZMA_FINISH))
{
case LZMA_OK:
break;
case LZMA_STREAM_END:
return true;
default:
return false;
}
}
}
void WIAFileReader::LZMACompressor::ExpandBuffer(size_t bytes_to_add)
{
const size_t bytes_written = GetSize();
m_buffer.resize(m_buffer.size() + bytes_to_add);
m_stream.next_out = m_buffer.data() + bytes_written;
m_stream.avail_out = m_buffer.size() - bytes_written;
}
const u8* WIAFileReader::LZMACompressor::GetData() const
{
return m_buffer.data();
}
size_t WIAFileReader::LZMACompressor::GetSize() const
{
return static_cast<size_t>(m_stream.next_out - m_buffer.data());
}
WIAFileReader::ZstdCompressor::ZstdCompressor(int compression_level)
{
m_stream = ZSTD_createCStream();
if (ZSTD_isError(ZSTD_CCtx_setParameter(m_stream, ZSTD_c_compressionLevel, compression_level)))
m_stream = nullptr;
}
WIAFileReader::ZstdCompressor::~ZstdCompressor()
{
ZSTD_freeCStream(m_stream);
}
bool WIAFileReader::ZstdCompressor::Start()
{
if (!m_stream)
return false;
m_buffer.clear();
m_out_buffer = {};
return !ZSTD_isError(ZSTD_CCtx_reset(m_stream, ZSTD_reset_session_only));
}
bool WIAFileReader::ZstdCompressor::Compress(const u8* data, size_t size)
{
ZSTD_inBuffer in_buffer{data, size, 0};
ExpandBuffer(size);
while (in_buffer.size != in_buffer.pos)
{
if (m_out_buffer.size == m_out_buffer.pos)
ExpandBuffer(0x100);
if (ZSTD_isError(ZSTD_compressStream(m_stream, &m_out_buffer, &in_buffer)))
return false;
}
return true;
}
bool WIAFileReader::ZstdCompressor::End()
{
while (true)
{
if (m_out_buffer.size == m_out_buffer.pos)
ExpandBuffer(0x100);
const size_t result = ZSTD_endStream(m_stream, &m_out_buffer);
if (ZSTD_isError(result))
return false;
if (result == 0)
return true;
}
}
void WIAFileReader::ZstdCompressor::ExpandBuffer(size_t bytes_to_add)
{
m_buffer.resize(m_buffer.size() + bytes_to_add);
m_out_buffer.dst = m_buffer.data();
m_out_buffer.size = m_buffer.size();
}
WIAFileReader::Chunk::Chunk() = default;
WIAFileReader::Chunk::Chunk(File::IOFile* file, u64 offset_in_file, u64 compressed_size,
u64 decompressed_size, u32 exception_lists,
bool compressed_exception_lists, bool rvz_pack, u64 data_offset,
std::unique_ptr<Decompressor> decompressor)
: m_file(file), m_offset_in_file(offset_in_file), m_exception_lists(exception_lists),
m_compressed_exception_lists(compressed_exception_lists), m_rvz_pack(rvz_pack),
m_data_offset(data_offset), m_decompressor(std::move(decompressor))
{
constexpr size_t MAX_SIZE_PER_EXCEPTION_LIST =
Common::AlignUp(VolumeWii::BLOCK_HEADER_SIZE, sizeof(SHA1)) / sizeof(SHA1) *
VolumeWii::BLOCKS_PER_GROUP * sizeof(HashExceptionEntry) +
sizeof(u16);
m_out_bytes_allocated_for_exceptions =
m_compressed_exception_lists ? MAX_SIZE_PER_EXCEPTION_LIST * m_exception_lists : 0;
m_in.data.resize(compressed_size);
m_out.data.resize(decompressed_size + m_out_bytes_allocated_for_exceptions);
}
bool WIAFileReader::Chunk::Read(u64 offset, u64 size, u8* out_ptr)
{
if (!m_decompressor || !m_file ||
offset + size > m_out.data.size() - m_out_bytes_allocated_for_exceptions)
{
return false;
}
while (offset + size > m_out.bytes_written - m_out_bytes_used_for_exceptions)
{
u64 bytes_to_read;
if (offset + size == m_out.data.size())
{
// Read all the remaining data.
bytes_to_read = m_in.data.size() - m_in.bytes_written;
}
else
{
// Pick a suitable amount of compressed data to read. The std::min line has to
// be as it is, but the rest is a bit arbitrary and can be changed if desired.
// The compressed data is probably not much bigger than the decompressed data.
// Add a few bytes for possible compression overhead and for any hash exceptions.
bytes_to_read =
offset + size - (m_out.bytes_written - m_out_bytes_used_for_exceptions) + 0x100;
// Align the access in an attempt to gain speed. But we don't actually know the
// block size of the underlying storage device, so we just use the Wii block size.
bytes_to_read =
Common::AlignUp(bytes_to_read + m_offset_in_file, VolumeWii::BLOCK_TOTAL_SIZE) -
m_offset_in_file;
// Ensure we don't read too much.
bytes_to_read = std::min<u64>(m_in.data.size() - m_in.bytes_written, bytes_to_read);
}
if (bytes_to_read == 0)
{
// Compressed size is larger than expected or decompressed size is smaller than expected
return false;
}
if (!m_file->Seek(m_offset_in_file, SEEK_SET))
return false;
if (!m_file->ReadBytes(m_in.data.data() + m_in.bytes_written, bytes_to_read))
return false;
m_offset_in_file += bytes_to_read;
m_in.bytes_written += bytes_to_read;
if (m_exception_lists > 0 && !m_compressed_exception_lists)
{
if (!HandleExceptions(m_in.data.data(), m_in.data.size(), m_in.bytes_written,
&m_in_bytes_used_for_exceptions, true))
{
return false;
}
m_in_bytes_read = m_in_bytes_used_for_exceptions;
}
if (m_exception_lists == 0 || m_compressed_exception_lists)
{
if (!Decompress())
return false;
}
if (m_exception_lists > 0 && m_compressed_exception_lists)
{
if (!HandleExceptions(m_out.data.data(), m_out_bytes_allocated_for_exceptions,
m_out.bytes_written, &m_out_bytes_used_for_exceptions, false))
{
return false;
}
if (m_rvz_pack && m_exception_lists == 0)
{
if (!Decompress())
return false;
}
}
if (m_exception_lists == 0)
{
const size_t expected_out_bytes = m_out.data.size() - m_out_bytes_allocated_for_exceptions +
m_out_bytes_used_for_exceptions;
if (m_out.bytes_written > expected_out_bytes)
return false; // Decompressed size is larger than expected
// The reason why we need the m_in.bytes_written == m_in.data.size() check as part of
// this conditional is because (for example) zstd can finish writing all data to m_out
// before becoming done if we've given it all input data except the checksum at the end.
if (m_out.bytes_written == expected_out_bytes && !m_decompressor->Done() &&
m_in.bytes_written == m_in.data.size())
{
return false; // Decompressed size is larger than expected
}
if (m_decompressor->Done() && m_in_bytes_read != m_in.data.size())
return false; // Compressed size is smaller than expected
}
}
std::memcpy(out_ptr, m_out.data.data() + offset + m_out_bytes_used_for_exceptions, size);
return true;
}
bool WIAFileReader::Chunk::Decompress()
{
if (m_rvz_pack && m_exception_lists == 0)
{
m_rvz_pack = false;
const size_t bytes_to_move = m_out.bytes_written - m_out_bytes_used_for_exceptions;
DecompressionBuffer in{std::vector<u8>(bytes_to_move), bytes_to_move};
std::memcpy(in.data.data(), m_out.data.data() + m_out_bytes_used_for_exceptions, bytes_to_move);
m_out.bytes_written = m_out_bytes_used_for_exceptions;
m_decompressor = std::make_unique<RVZPackDecompressor>(std::move(m_decompressor), std::move(in),
m_data_offset);
}
return m_decompressor->Decompress(m_in, &m_out, &m_in_bytes_read);
}
bool WIAFileReader::Chunk::HandleExceptions(const u8* data, size_t bytes_allocated,
size_t bytes_written, size_t* bytes_used, bool align)
{
while (m_exception_lists > 0)
{
if (sizeof(u16) + *bytes_used > bytes_allocated)
{
ERROR_LOG(DISCIO, "More hash exceptions than expected");
return false;
}
if (sizeof(u16) + *bytes_used > bytes_written)
return true;
const u16 exceptions = Common::swap16(data + *bytes_used);
size_t exception_list_size = exceptions * sizeof(HashExceptionEntry) + sizeof(u16);
if (align && m_exception_lists == 1)
exception_list_size = Common::AlignUp(*bytes_used + exception_list_size, 4) - *bytes_used;
if (exception_list_size + *bytes_used > bytes_allocated)
{
ERROR_LOG(DISCIO, "More hash exceptions than expected");
return false;
}
if (exception_list_size + *bytes_used > bytes_written)
return true;
*bytes_used += exception_list_size;
--m_exception_lists;
}
return true;
}
void WIAFileReader::Chunk::GetHashExceptions(std::vector<HashExceptionEntry>* exception_list,
u64 exception_list_index, u16 additional_offset) const
{
ASSERT(m_exception_lists == 0);
const u8* data_start = m_compressed_exception_lists ? m_out.data.data() : m_in.data.data();
const u8* data = data_start;
for (u64 i = exception_list_index; i > 0; --i)
data += Common::swap16(data) * sizeof(HashExceptionEntry) + sizeof(u16);
const u16 exceptions = Common::swap16(data);
data += sizeof(u16);
for (size_t i = 0; i < exceptions; ++i)
{
std::memcpy(&exception_list->emplace_back(), data, sizeof(HashExceptionEntry));
data += sizeof(HashExceptionEntry);
u16& offset = exception_list->back().offset;
offset = Common::swap16(Common::swap16(offset) + additional_offset);
}
ASSERT(data <= data_start + (m_compressed_exception_lists ? m_out_bytes_used_for_exceptions :
m_in_bytes_used_for_exceptions));
}
bool WIAFileReader::ApplyHashExceptions(
const std::vector<HashExceptionEntry>& exception_list,
VolumeWii::HashBlock hash_blocks[VolumeWii::BLOCKS_PER_GROUP])
{
for (const HashExceptionEntry& exception : exception_list)
{
const u16 offset = Common::swap16(exception.offset);
const size_t block_index = offset / VolumeWii::BLOCK_HEADER_SIZE;
if (block_index > VolumeWii::BLOCKS_PER_GROUP)
return false;
const size_t offset_in_block = offset % VolumeWii::BLOCK_HEADER_SIZE;
if (offset_in_block + sizeof(SHA1) > VolumeWii::BLOCK_HEADER_SIZE)
return false;
std::memcpy(reinterpret_cast<u8*>(&hash_blocks[block_index]) + offset_in_block, &exception.hash,
sizeof(SHA1));
}
return true;
}
bool WIAFileReader::PadTo4(File::IOFile* file, u64* bytes_written)
{
constexpr u32 ZEROES = 0;
const u64 bytes_to_write = Common::AlignUp(*bytes_written, 4) - *bytes_written;
if (bytes_to_write == 0)
return true;
*bytes_written += bytes_to_write;
return file->WriteBytes(&ZEROES, bytes_to_write);
}
void WIAFileReader::AddRawDataEntry(u64 offset, u64 size, int chunk_size, u32* total_groups,
std::vector<RawDataEntry>* raw_data_entries,
std::vector<DataEntry>* data_entries)
{
constexpr size_t SKIP_SIZE = sizeof(WIAHeader2::disc_header);
const u64 skip = offset < SKIP_SIZE ? std::min(SKIP_SIZE - offset, size) : 0;
offset += skip;
size -= skip;
if (size == 0)
return;
const u32 group_index = *total_groups;
const u32 groups = static_cast<u32>(Common::AlignUp(size, chunk_size) / chunk_size);
*total_groups += groups;
data_entries->emplace_back(raw_data_entries->size());
raw_data_entries->emplace_back(RawDataEntry{Common::swap64(offset), Common::swap64(size),
Common::swap32(group_index), Common::swap32(groups)});
}
WIAFileReader::PartitionDataEntry WIAFileReader::CreatePartitionDataEntry(
u64 offset, u64 size, u32 index, int chunk_size, u32* total_groups,
const std::vector<PartitionEntry>& partition_entries, std::vector<DataEntry>* data_entries)
{
const u32 group_index = *total_groups;
const u64 rounded_size = Common::AlignDown(size, VolumeWii::BLOCK_TOTAL_SIZE);
const u32 groups = static_cast<u32>(Common::AlignUp(rounded_size, chunk_size) / chunk_size);
*total_groups += groups;
data_entries->emplace_back(partition_entries.size(), index);
return PartitionDataEntry{Common::swap32(offset / VolumeWii::BLOCK_TOTAL_SIZE),
Common::swap32(size / VolumeWii::BLOCK_TOTAL_SIZE),
Common::swap32(group_index), Common::swap32(groups)};
}
ConversionResultCode WIAFileReader::SetUpDataEntriesForWriting(
const VolumeDisc* volume, int chunk_size, u64 iso_size, u32* total_groups,
std::vector<PartitionEntry>* partition_entries, std::vector<RawDataEntry>* raw_data_entries,
std::vector<DataEntry>* data_entries)
{
std::vector<Partition> partitions;
if (volume && volume->IsEncryptedAndHashed())
partitions = volume->GetPartitions();
std::sort(partitions.begin(), partitions.end(),
[](const Partition& a, const Partition& b) { return a.offset < b.offset; });
*total_groups = 0;
u64 last_partition_end_offset = 0;
const auto add_raw_data_entry = [&](u64 offset, u64 size) {
return AddRawDataEntry(offset, size, chunk_size, total_groups, raw_data_entries, data_entries);
};
const auto create_partition_data_entry = [&](u64 offset, u64 size, u32 index) {
return CreatePartitionDataEntry(offset, size, index, chunk_size, total_groups,
*partition_entries, data_entries);
};
for (const Partition& partition : partitions)
{
// If a partition is odd in some way that prevents us from encoding it as a partition,
// we encode it as raw data instead by skipping the current loop iteration.
// Partitions can always be encoded as raw data, but it is less space efficient.
if (partition.offset < last_partition_end_offset)
{
WARN_LOG(DISCIO, "Overlapping partitions at %" PRIx64, partition.offset);
continue;
}
if (volume->ReadSwapped<u32>(partition.offset, PARTITION_NONE) != u32(0x10001))
{
// This looks more like garbage data than an actual partition.
// The values of data_offset and data_size will very likely also be garbage.
// Some WBFS writing programs scrub the SSBB Masterpiece partitions without
// removing them from the partition table, causing this problem.
WARN_LOG(DISCIO, "Invalid partition at %" PRIx64, partition.offset);
continue;
}
std::optional<u64> data_offset =
volume->ReadSwappedAndShifted(partition.offset + 0x2b8, PARTITION_NONE);
std::optional<u64> data_size =
volume->ReadSwappedAndShifted(partition.offset + 0x2bc, PARTITION_NONE);
if (!data_offset || !data_size)
return ConversionResultCode::ReadFailed;
const u64 data_start = partition.offset + *data_offset;
const u64 data_end = data_start + *data_size;
if (data_start % VolumeWii::BLOCK_TOTAL_SIZE != 0)
{
WARN_LOG(DISCIO, "Misaligned partition at %" PRIx64, partition.offset);
continue;
}
if (*data_size < VolumeWii::BLOCK_TOTAL_SIZE)
{
WARN_LOG(DISCIO, "Very small partition at %" PRIx64, partition.offset);
continue;
}
if (data_end > iso_size)
{
WARN_LOG(DISCIO, "Too large partition at %" PRIx64, partition.offset);
*data_size = iso_size - *data_offset - partition.offset;
}
const std::optional<u64> fst_offset = GetFSTOffset(*volume, partition);
const std::optional<u64> fst_size = GetFSTSize(*volume, partition);
if (!fst_offset || !fst_size)
return ConversionResultCode::ReadFailed;
const IOS::ES::TicketReader& ticket = volume->GetTicket(partition);
if (!ticket.IsValid())
return ConversionResultCode::ReadFailed;
add_raw_data_entry(last_partition_end_offset, partition.offset - last_partition_end_offset);
add_raw_data_entry(partition.offset, *data_offset);
const u64 fst_end = volume->PartitionOffsetToRawOffset(*fst_offset + *fst_size, partition);
const u64 split_point = std::min(
data_end, Common::AlignUp(fst_end - data_start, VolumeWii::GROUP_TOTAL_SIZE) + data_start);
PartitionEntry partition_entry;
partition_entry.partition_key = ticket.GetTitleKey();
partition_entry.data_entries[0] =
create_partition_data_entry(data_start, split_point - data_start, 0);
partition_entry.data_entries[1] =
create_partition_data_entry(split_point, data_end - split_point, 1);
// Note: We can't simply set last_partition_end_offset to data_end,
// because construct_partition_data_entry may have rounded it
last_partition_end_offset =
(Common::swap32(partition_entry.data_entries[1].first_sector) +
Common::swap32(partition_entry.data_entries[1].number_of_sectors)) *
VolumeWii::BLOCK_TOTAL_SIZE;
partition_entries->emplace_back(std::move(partition_entry));
}
add_raw_data_entry(last_partition_end_offset, iso_size - last_partition_end_offset);
return ConversionResultCode::Success;
}
std::optional<std::vector<u8>> WIAFileReader::Compress(Compressor* compressor, const u8* data,
size_t size)
{
if (compressor)
{
if (!compressor->Start() || !compressor->Compress(data, size) || !compressor->End())
return std::nullopt;
data = compressor->GetData();
size = compressor->GetSize();
}
return std::vector<u8>(data, data + size);
}
void WIAFileReader::SetUpCompressor(std::unique_ptr<Compressor>* compressor,
WIACompressionType compression_type, int compression_level,
WIAHeader2* header_2)
{
switch (compression_type)
{
case WIACompressionType::None:
*compressor = nullptr;
break;
case WIACompressionType::Purge:
*compressor = std::make_unique<PurgeCompressor>();
break;
case WIACompressionType::Bzip2:
*compressor = std::make_unique<Bzip2Compressor>(compression_level);
break;
case WIACompressionType::LZMA:
case WIACompressionType::LZMA2:
{
u8* compressor_data = nullptr;
u8* compressor_data_size = nullptr;
if (header_2)
{
compressor_data = header_2->compressor_data;
compressor_data_size = &header_2->compressor_data_size;
}
const bool lzma2 = compression_type == WIACompressionType::LZMA2;
*compressor = std::make_unique<LZMACompressor>(lzma2, compression_level, compressor_data,
compressor_data_size);
break;
}
case WIACompressionType::Zstd:
*compressor = std::make_unique<ZstdCompressor>(compression_level);
break;
}
}
bool WIAFileReader::TryReuse(std::map<ReuseID, GroupEntry>* reusable_groups,
std::mutex* reusable_groups_mutex, OutputParametersEntry* entry)
{
if (entry->reused_group)
return true;
if (!entry->reuse_id)
return false;
std::lock_guard guard(*reusable_groups_mutex);
const auto it = reusable_groups->find(*entry->reuse_id);
if (it == reusable_groups->end())
return false;
entry->reused_group = it->second;
return true;
}
static bool AllAre(const std::vector<u8>& data, u8 x)
{
return std::all_of(data.begin(), data.end(), [x](u8 y) { return x == y; });
};
static bool AllAre(const u8* begin, const u8* end, u8 x)
{
return std::all_of(begin, end, [x](u8 y) { return x == y; });
};
static bool AllZero(const std::vector<u8>& data)
{
return AllAre(data, 0);
};
static bool AllSame(const std::vector<u8>& data)
{
return AllAre(data, data.front());
};
static bool AllSame(const u8* begin, const u8* end)
{
return AllAre(begin, end, *begin);
};
void WIAFileReader::RVZPack(const u8* in, OutputParametersEntry* out, u64 bytes_per_chunk,
size_t chunks, u64 total_size, u64 data_offset, u64 in_offset,
bool allow_junk_reuse)
{
using Seed = std::array<u32, LaggedFibonacciGenerator::SEED_SIZE>;
struct JunkInfo
{
size_t start_offset;
Seed seed;
};
// Maps end_offset -> (start_offset, seed)
std::map<size_t, JunkInfo> junk_info;
size_t position = 0;
while (position < total_size)
{
const size_t bytes_to_read =
std::min(Common::AlignUp(data_offset + 1, VolumeWii::BLOCK_TOTAL_SIZE) - data_offset,
total_size - position);
const size_t data_offset_mod = static_cast<size_t>(data_offset % VolumeWii::BLOCK_TOTAL_SIZE);
Seed seed;
const size_t bytes_reconstructed = LaggedFibonacciGenerator::GetSeed(
in + in_offset + position, bytes_to_read, data_offset_mod, seed.data());
if (bytes_reconstructed > 0)
junk_info.emplace(position + bytes_reconstructed, JunkInfo{position, seed});
position += bytes_to_read;
data_offset += bytes_to_read;
}
for (size_t i = 0; i < chunks; ++i)
{
OutputParametersEntry& entry = out[i];
if (entry.reused_group)
continue;
u64 current_offset = i * bytes_per_chunk;
const u64 end_offset = std::min(current_offset + bytes_per_chunk, total_size);
const bool store_junk_efficiently = allow_junk_reuse || !entry.reuse_id;
while (current_offset < end_offset)
{
constexpr size_t SEED_SIZE = LaggedFibonacciGenerator::SEED_SIZE * sizeof(u32);
u64 next_junk_start = end_offset;
u64 next_junk_end = end_offset;
Seed* seed = nullptr;
if (store_junk_efficiently && end_offset - current_offset > SEED_SIZE)
{
const auto next_junk_it = junk_info.upper_bound(current_offset + SEED_SIZE);
if (next_junk_it != junk_info.end() &&
next_junk_it->second.start_offset + SEED_SIZE < end_offset)
{
next_junk_start = std::max<u64>(current_offset, next_junk_it->second.start_offset);
next_junk_end = std::min<u64>(end_offset, next_junk_it->first);
seed = &next_junk_it->second.seed;
}
}
const u64 non_junk_bytes = next_junk_start - current_offset;
if (non_junk_bytes > 0)
{
const u8* ptr = in + in_offset + current_offset;
PushBack(&entry.main_data, Common::swap32(static_cast<u32>(non_junk_bytes)));
PushBack(&entry.main_data, ptr, ptr + non_junk_bytes);
current_offset += non_junk_bytes;
}
const u64 junk_bytes = next_junk_end - current_offset;
if (junk_bytes > 0)
{
PushBack(&entry.main_data, Common::swap32(static_cast<u32>(junk_bytes) | 0x80000000));
PushBack(&entry.main_data, *seed);
current_offset += junk_bytes;
}
}
}
}
void WIAFileReader::RVZPack(const u8* in, OutputParametersEntry* out, u64 size, u64 data_offset,
bool allow_junk_reuse)
{
RVZPack(in, out, size, 1, size, data_offset, 0, allow_junk_reuse);
}
ConversionResult<WIAFileReader::OutputParameters> WIAFileReader::ProcessAndCompress(
CompressThreadState* state, CompressParameters parameters,
const std::vector<PartitionEntry>& partition_entries,
const std::vector<DataEntry>& data_entries, std::map<ReuseID, GroupEntry>* reusable_groups,
std::mutex* reusable_groups_mutex, u64 chunks_per_wii_group, u64 exception_lists_per_chunk,
bool compressed_exception_lists, bool rvz)
{
std::vector<OutputParametersEntry> output_entries;
if (!parameters.data_entry->is_partition)
{
OutputParametersEntry& entry = output_entries.emplace_back();
std::vector<u8>& data = parameters.data;
if (AllSame(data))
entry.reuse_id = ReuseID{nullptr, data.size(), false, data.front()};
if (rvz)
RVZPack(data.data(), output_entries.data(), data.size(), parameters.data_offset, true);
else
entry.main_data = std::move(data);
}
else
{
const PartitionEntry& partition_entry = partition_entries[parameters.data_entry->index];
mbedtls_aes_context aes_context;
mbedtls_aes_setkey_dec(&aes_context, partition_entry.partition_key.data(), 128);
const u64 groups = Common::AlignUp(parameters.data.size(), VolumeWii::GROUP_TOTAL_SIZE) /
VolumeWii::GROUP_TOTAL_SIZE;
ASSERT(parameters.data.size() % VolumeWii::BLOCK_TOTAL_SIZE == 0);
const u64 blocks = parameters.data.size() / VolumeWii::BLOCK_TOTAL_SIZE;
const u64 blocks_per_chunk = chunks_per_wii_group == 1 ?
exception_lists_per_chunk * VolumeWii::BLOCKS_PER_GROUP :
VolumeWii::BLOCKS_PER_GROUP / chunks_per_wii_group;
const u64 chunks = Common::AlignUp(blocks, blocks_per_chunk) / blocks_per_chunk;
const u64 in_data_per_chunk = blocks_per_chunk * VolumeWii::BLOCK_TOTAL_SIZE;
const u64 out_data_per_chunk = blocks_per_chunk * VolumeWii::BLOCK_DATA_SIZE;
const size_t first_chunk = output_entries.size();
const auto create_reuse_id = [&partition_entry, blocks,
blocks_per_chunk](u8 value, bool encrypted, u64 block) {
const u64 size = std::min(blocks - block, blocks_per_chunk) * VolumeWii::BLOCK_DATA_SIZE;
return ReuseID{&partition_entry.partition_key, size, encrypted, value};
};
const u8* parameters_data_end = parameters.data.data() + parameters.data.size();
for (u64 i = 0; i < chunks; ++i)
{
const u64 block_index = i * blocks_per_chunk;
OutputParametersEntry& entry = output_entries.emplace_back();
std::optional<ReuseID>& reuse_id = entry.reuse_id;
// Set this chunk as reusable if the encrypted data is AllSame
const u8* data = parameters.data.data() + block_index * VolumeWii::BLOCK_TOTAL_SIZE;
if (AllSame(data, std::min(parameters_data_end, data + in_data_per_chunk)))
reuse_id = create_reuse_id(parameters.data.front(), true, i * blocks_per_chunk);
TryReuse(reusable_groups, reusable_groups_mutex, &entry);
if (!entry.reused_group && reuse_id)
{
const auto it = std::find_if(output_entries.begin(), output_entries.begin() + i,
[reuse_id](const auto& e) { return e.reuse_id == reuse_id; });
if (it != output_entries.begin() + i)
entry.reused_group = it->reused_group;
}
}
if (!std::all_of(output_entries.begin(), output_entries.end(),
[](const OutputParametersEntry& entry) { return entry.reused_group; }))
{
const u64 number_of_exception_lists =
chunks_per_wii_group == 1 ? exception_lists_per_chunk : chunks;
std::vector<std::vector<HashExceptionEntry>> exception_lists(number_of_exception_lists);
for (u64 i = 0; i < groups; ++i)
{
const u64 offset_of_group = i * VolumeWii::GROUP_TOTAL_SIZE;
const u64 write_offset_of_group = i * VolumeWii::GROUP_DATA_SIZE;
const u64 blocks_in_this_group =
std::min<u64>(VolumeWii::BLOCKS_PER_GROUP, blocks - i * VolumeWii::BLOCKS_PER_GROUP);
for (u32 j = 0; j < VolumeWii::BLOCKS_PER_GROUP; ++j)
{
if (j < blocks_in_this_group)
{
const u64 offset_of_block = offset_of_group + j * VolumeWii::BLOCK_TOTAL_SIZE;
VolumeWii::DecryptBlockData(parameters.data.data() + offset_of_block,
state->decryption_buffer[j].data(), &aes_context);
}
else
{
state->decryption_buffer[j].fill(0);
}
}
VolumeWii::HashGroup(state->decryption_buffer.data(), state->hash_buffer.data());
for (u64 j = 0; j < blocks_in_this_group; ++j)
{
const u64 chunk_index = j / blocks_per_chunk;
const u64 block_index_in_chunk = j % blocks_per_chunk;
if (output_entries[chunk_index].reused_group)
continue;
const u64 exception_list_index = chunks_per_wii_group == 1 ? i : chunk_index;
const u64 offset_of_block = offset_of_group + j * VolumeWii::BLOCK_TOTAL_SIZE;
const u64 hash_offset_of_block = block_index_in_chunk * VolumeWii::BLOCK_HEADER_SIZE;
VolumeWii::HashBlock hashes;
VolumeWii::DecryptBlockHashes(parameters.data.data() + offset_of_block, &hashes,
&aes_context);
const auto compare_hash = [&](size_t offset_in_block) {
ASSERT(offset_in_block + sizeof(SHA1) <= VolumeWii::BLOCK_HEADER_SIZE);
const u8* desired_hash = reinterpret_cast<u8*>(&hashes) + offset_in_block;
const u8* computed_hash =
reinterpret_cast<u8*>(&state->hash_buffer[j]) + offset_in_block;
// We want to store a hash exception either if there is a hash mismatch, or if this
// chunk might get reused in a context where it is paired up (within a 2 MiB Wii group)
// with chunks that are different from the chunks it currently is paired up with, since
// that affects the recalculated hashes. Chunks which have been marked as reusable at
// this point normally have zero matching hashes anyway, so this shouldn't waste space.
if ((chunks_per_wii_group != 1 && output_entries[chunk_index].reuse_id) ||
!std::equal(desired_hash, desired_hash + sizeof(SHA1), computed_hash))
{
const u64 hash_offset = hash_offset_of_block + offset_in_block;
ASSERT(hash_offset <= std::numeric_limits<u16>::max());
HashExceptionEntry& exception = exception_lists[exception_list_index].emplace_back();
exception.offset = static_cast<u16>(Common::swap16(hash_offset));
std::memcpy(exception.hash.data(), desired_hash, sizeof(SHA1));
}
};
const auto compare_hashes = [&compare_hash](size_t offset, size_t size) {
for (size_t l = 0; l < size; l += sizeof(SHA1))
// The std::min is to ensure that we don't go beyond the end of HashBlock with
// padding_2, which is 32 bytes long (not divisible by sizeof(SHA1), which is 20).
compare_hash(offset + std::min(l, size - sizeof(SHA1)));
};
using HashBlock = VolumeWii::HashBlock;
compare_hashes(offsetof(HashBlock, h0), sizeof(HashBlock::h0));
compare_hashes(offsetof(HashBlock, padding_0), sizeof(HashBlock::padding_0));
compare_hashes(offsetof(HashBlock, h1), sizeof(HashBlock::h1));
compare_hashes(offsetof(HashBlock, padding_1), sizeof(HashBlock::padding_1));
compare_hashes(offsetof(HashBlock, h2), sizeof(HashBlock::h2));
compare_hashes(offsetof(HashBlock, padding_2), sizeof(HashBlock::padding_2));
}
static_assert(std::is_trivially_copyable_v<decltype(
CompressThreadState::decryption_buffer)::value_type>);
if (rvz)
{
// We must not store junk efficiently for chunks that may get reused at a position
// which has a different value of data_offset % VolumeWii::BLOCK_TOTAL_SIZE
const bool allow_junk_reuse = chunks_per_wii_group == 1;
const u64 bytes_per_chunk = std::min(out_data_per_chunk, VolumeWii::GROUP_DATA_SIZE);
const u64 total_size = blocks_in_this_group * VolumeWii::BLOCK_DATA_SIZE;
const u64 data_offset = parameters.data_offset + write_offset_of_group;
RVZPack(state->decryption_buffer[0].data(), output_entries.data() + first_chunk,
bytes_per_chunk, chunks, total_size, data_offset, write_offset_of_group,
allow_junk_reuse);
}
else
{
const u8* in_ptr = state->decryption_buffer[0].data();
for (u64 j = 0; j < chunks; ++j)
{
OutputParametersEntry& entry = output_entries[first_chunk + j];
if (!entry.reused_group)
{
const u64 bytes_left = (blocks - j * blocks_per_chunk) * VolumeWii::BLOCK_DATA_SIZE;
const u64 bytes_to_write_total = std::min(out_data_per_chunk, bytes_left);
if (i == 0)
entry.main_data.resize(bytes_to_write_total);
const u64 bytes_to_write = std::min(bytes_to_write_total, VolumeWii::GROUP_DATA_SIZE);
std::memcpy(entry.main_data.data() + write_offset_of_group, in_ptr, bytes_to_write);
// Set this chunk as reusable if the decrypted data is AllSame.
// There is also a requirement that it lacks exceptions, but this is checked later
if (i == 0 && !entry.reuse_id)
{
if (AllSame(in_ptr, in_ptr + bytes_to_write))
entry.reuse_id = create_reuse_id(*in_ptr, false, j * blocks_per_chunk);
}
else
{
if (entry.reuse_id && !entry.reuse_id->encrypted &&
(!AllSame(in_ptr, in_ptr + bytes_to_write) || entry.reuse_id->value != *in_ptr))
{
entry.reuse_id.reset();
}
}
}
in_ptr += out_data_per_chunk;
}
}
}
for (size_t i = 0; i < exception_lists.size(); ++i)
{
OutputParametersEntry& entry = output_entries[chunks_per_wii_group == 1 ? 0 : i];
if (entry.reused_group)
continue;
const std::vector<HashExceptionEntry>& in = exception_lists[i];
std::vector<u8>& out = entry.exception_lists;
const u16 exceptions = Common::swap16(static_cast<u16>(in.size()));
PushBack(&out, exceptions);
for (const HashExceptionEntry& exception : in)
PushBack(&out, exception);
}
for (u64 i = 0; i < output_entries.size(); ++i)
{
OutputParametersEntry& entry = output_entries[i];
// If this chunk was set as reusable because the decrypted data is AllSame,
// but it has exceptions, unmark it as reusable
if (entry.reuse_id && !entry.reuse_id->encrypted && !AllZero(entry.exception_lists))
entry.reuse_id.reset();
}
}
}
for (OutputParametersEntry& entry : output_entries)
{
TryReuse(reusable_groups, reusable_groups_mutex, &entry);
if (entry.reused_group)
continue;
// Special case - a compressed size of zero is treated by WIA as meaning the data is all zeroes
if (entry.reuse_id && !entry.reuse_id->encrypted && entry.reuse_id->value == 0)
{
entry.exception_lists.clear();
entry.main_data.clear();
continue;
}
if (state->compressor)
{
if (!state->compressor->Start())
return ConversionResultCode::InternalError;
}
if (!entry.exception_lists.empty())
{
if (compressed_exception_lists && state->compressor)
{
if (!state->compressor->Compress(entry.exception_lists.data(),
entry.exception_lists.size()))
{
return ConversionResultCode::InternalError;
}
entry.exception_lists.clear();
}
else
{
if (!compressed_exception_lists)
{
while (entry.exception_lists.size() % 4 != 0)
entry.exception_lists.push_back(0);
}
if (state->compressor)
{
if (!state->compressor->AddPrecedingDataOnlyForPurgeHashing(entry.exception_lists.data(),
entry.exception_lists.size()))
{
return ConversionResultCode::InternalError;
}
}
}
}
if (state->compressor)
{
if (!state->compressor->Compress(entry.main_data.data(), entry.main_data.size()))
return ConversionResultCode::InternalError;
if (!state->compressor->End())
return ConversionResultCode::InternalError;
}
if (state->compressor)
{
const u8* data = state->compressor->GetData();
const size_t size = state->compressor->GetSize();
entry.main_data.resize(size);
std::copy(data, data + size, entry.main_data.data());
}
}
return OutputParameters{std::move(output_entries), parameters.bytes_read, parameters.group_index};
}
ConversionResultCode WIAFileReader::Output(std::vector<OutputParametersEntry>* entries,
File::IOFile* outfile,
std::map<ReuseID, GroupEntry>* reusable_groups,
std::mutex* reusable_groups_mutex,
GroupEntry* group_entry, u64* bytes_written)
{
for (OutputParametersEntry& entry : *entries)
{
TryReuse(reusable_groups, reusable_groups_mutex, &entry);
if (entry.reused_group)
{
*group_entry = *entry.reused_group;
++group_entry;
continue;
}
const size_t data_size = entry.exception_lists.size() + entry.main_data.size();
if (*bytes_written >> 2 > std::numeric_limits<u32>::max())
return ConversionResultCode::InternalError;
ASSERT((*bytes_written & 3) == 0);
group_entry->data_offset = Common::swap32(static_cast<u32>(*bytes_written >> 2));
group_entry->data_size = Common::swap32(static_cast<u32>(data_size));
if (!outfile->WriteArray(entry.exception_lists.data(), entry.exception_lists.size()))
return ConversionResultCode::WriteFailed;
if (!outfile->WriteArray(entry.main_data.data(), entry.main_data.size()))
return ConversionResultCode::WriteFailed;
*bytes_written += data_size;
if (entry.reuse_id)
{
std::lock_guard guard(*reusable_groups_mutex);
reusable_groups->emplace(*entry.reuse_id, *group_entry);
}
if (!PadTo4(outfile, bytes_written))
return ConversionResultCode::WriteFailed;
++group_entry;
}
return ConversionResultCode::Success;
}
ConversionResultCode WIAFileReader::RunCallback(size_t groups_written, u64 bytes_read,
u64 bytes_written, u32 total_groups, u64 iso_size,
CompressCB callback, void* arg)
{
int ratio = 0;
if (bytes_read != 0)
ratio = static_cast<int>(100 * bytes_written / bytes_read);
const std::string text =
StringFromFormat(Common::GetStringT("%i of %i blocks. Compression ratio %i%%").c_str(),
groups_written, total_groups, ratio);
const float completion = static_cast<float>(bytes_read) / iso_size;
return callback(text, completion, arg) ? ConversionResultCode::Success :
ConversionResultCode::Canceled;
}
bool WIAFileReader::WriteHeader(File::IOFile* file, const u8* data, size_t size, u64 upper_bound,
u64* bytes_written, u64* offset_out)
{
// The first part of the check is to prevent this from running more than once. If *bytes_written
// is past the upper bound, we are already at the end of the file, so we don't need to do anything
if (*bytes_written <= upper_bound && *bytes_written + size > upper_bound)
{
WARN_LOG(DISCIO, "Headers did not fit in the allocated space. Writing to end of file instead");
if (!file->Seek(0, SEEK_END))
return false;
*bytes_written = file->Tell();
}
*offset_out = *bytes_written;
if (!file->WriteArray(data, size))
return false;
*bytes_written += size;
return PadTo4(file, bytes_written);
}
ConversionResultCode
WIAFileReader::ConvertToWIA(BlobReader* infile, const VolumeDisc* infile_volume,
File::IOFile* outfile, bool rvz, WIACompressionType compression_type,
int compression_level, int chunk_size, CompressCB callback, void* arg)
{
ASSERT(infile->IsDataSizeAccurate());
ASSERT(chunk_size > 0);
const u64 iso_size = infile->GetDataSize();
const u64 chunks_per_wii_group = std::max<u64>(1, VolumeWii::GROUP_TOTAL_SIZE / chunk_size);
const u64 exception_lists_per_chunk = std::max<u64>(1, chunk_size / VolumeWii::GROUP_TOTAL_SIZE);
const bool compressed_exception_lists = compression_type > WIACompressionType::Purge;
u64 bytes_read = 0;
u64 bytes_written = 0;
size_t groups_processed = 0;
WIAHeader1 header_1{};
WIAHeader2 header_2{};
std::vector<PartitionEntry> partition_entries;
std::vector<RawDataEntry> raw_data_entries;
std::vector<GroupEntry> group_entries;
u32 total_groups;
std::vector<DataEntry> data_entries;
const ConversionResultCode set_up_data_entries_result =
SetUpDataEntriesForWriting(infile_volume, chunk_size, iso_size, &total_groups,
&partition_entries, &raw_data_entries, &data_entries);
if (set_up_data_entries_result != ConversionResultCode::Success)
return set_up_data_entries_result;
group_entries.resize(total_groups);
const size_t partition_entries_size = partition_entries.size() * sizeof(PartitionEntry);
const size_t raw_data_entries_size = raw_data_entries.size() * sizeof(RawDataEntry);
const size_t group_entries_size = group_entries.size() * sizeof(GroupEntry);
// Conservative estimate for how much space will be taken up by headers.
// The compression methods None and Purge have very predictable overhead,
// and the other methods are able to compress group entries well
const u64 headers_size_upper_bound =
Common::AlignUp(sizeof(WIAHeader1) + sizeof(WIAHeader2) + partition_entries_size +
raw_data_entries_size + group_entries_size + 0x100,
VolumeWii::BLOCK_TOTAL_SIZE);
std::vector<u8> buffer;
buffer.resize(headers_size_upper_bound);
outfile->WriteBytes(buffer.data(), buffer.size());
bytes_written = headers_size_upper_bound;
if (!infile->Read(0, header_2.disc_header.size(), header_2.disc_header.data()))
return ConversionResultCode::ReadFailed;
// We intentially do not increment bytes_read here, since these bytes will be read again
std::map<ReuseID, GroupEntry> reusable_groups;
std::mutex reusable_groups_mutex;
const auto set_up_compress_thread_state = [&](CompressThreadState* state) {
SetUpCompressor(&state->compressor, compression_type, compression_level, nullptr);
return ConversionResultCode::Success;
};
const auto process_and_compress = [&](CompressThreadState* state, CompressParameters parameters) {
return ProcessAndCompress(state, std::move(parameters), partition_entries, data_entries,
&reusable_groups, &reusable_groups_mutex, chunks_per_wii_group,
exception_lists_per_chunk, compressed_exception_lists, rvz);
};
const auto output = [&](OutputParameters parameters) {
const ConversionResultCode result =
Output(&parameters.entries, outfile, &reusable_groups, &reusable_groups_mutex,
&group_entries[parameters.group_index], &bytes_written);
if (result != ConversionResultCode::Success)
return result;
return RunCallback(parameters.group_index + parameters.entries.size(), parameters.bytes_read,
bytes_written, total_groups, iso_size, callback, arg);
};
MultithreadedCompressor<CompressThreadState, CompressParameters, OutputParameters> mt_compressor(
set_up_compress_thread_state, process_and_compress, output);
for (const DataEntry& data_entry : data_entries)
{
u32 first_group;
u32 last_group;
u64 data_offset;
u64 data_size;
u64 data_offset_in_partition;
if (data_entry.is_partition)
{
const PartitionEntry& partition_entry = partition_entries[data_entry.index];
const PartitionDataEntry& partition_data_entry =
partition_entry.data_entries[data_entry.partition_data_index];
first_group = Common::swap32(partition_data_entry.group_index);
last_group = first_group + Common::swap32(partition_data_entry.number_of_groups);
const u32 first_sector = Common::swap32(partition_data_entry.first_sector);
data_offset = first_sector * VolumeWii::BLOCK_TOTAL_SIZE;
data_size =
Common::swap32(partition_data_entry.number_of_sectors) * VolumeWii::BLOCK_TOTAL_SIZE;
const u32 block_in_partition =
first_sector - Common::swap32(partition_entry.data_entries[0].first_sector);
data_offset_in_partition = block_in_partition * VolumeWii::BLOCK_DATA_SIZE;
}
else
{
const RawDataEntry& raw_data_entry = raw_data_entries[data_entry.index];
first_group = Common::swap32(raw_data_entry.group_index);
last_group = first_group + Common::swap32(raw_data_entry.number_of_groups);
data_offset = Common::swap64(raw_data_entry.data_offset);
data_size = Common::swap64(raw_data_entry.data_size);
const u64 skipped_data = data_offset % VolumeWii::BLOCK_TOTAL_SIZE;
data_offset -= skipped_data;
data_size += skipped_data;
data_offset_in_partition = data_offset;
}
ASSERT(groups_processed == first_group);
ASSERT(bytes_read == data_offset);
while (groups_processed < last_group)
{
const ConversionResultCode status = mt_compressor.GetStatus();
if (status != ConversionResultCode::Success)
return status;
u64 bytes_to_read = chunk_size;
if (data_entry.is_partition)
bytes_to_read = std::max<u64>(bytes_to_read, VolumeWii::GROUP_TOTAL_SIZE);
bytes_to_read = std::min<u64>(bytes_to_read, data_offset + data_size - bytes_read);
buffer.resize(bytes_to_read);
if (!infile->Read(bytes_read, bytes_to_read, buffer.data()))
return ConversionResultCode::ReadFailed;
bytes_read += bytes_to_read;
mt_compressor.CompressAndWrite(CompressParameters{
buffer, &data_entry, data_offset_in_partition, bytes_read, groups_processed});
data_offset += bytes_to_read;
data_size -= bytes_to_read;
if (data_entry.is_partition)
{
data_offset_in_partition +=
bytes_to_read / VolumeWii::BLOCK_TOTAL_SIZE * VolumeWii::BLOCK_DATA_SIZE;
}
else
{
data_offset_in_partition += bytes_to_read;
}
groups_processed += Common::AlignUp(bytes_to_read, chunk_size) / chunk_size;
}
ASSERT(data_size == 0);
}
ASSERT(groups_processed == total_groups);
ASSERT(bytes_read == iso_size);
mt_compressor.Shutdown();
const ConversionResultCode status = mt_compressor.GetStatus();
if (status != ConversionResultCode::Success)
return status;
std::unique_ptr<Compressor> compressor;
SetUpCompressor(&compressor, compression_type, compression_level, &header_2);
const std::optional<std::vector<u8>> compressed_raw_data_entries = Compress(
compressor.get(), reinterpret_cast<u8*>(raw_data_entries.data()), raw_data_entries_size);
if (!compressed_raw_data_entries)
return ConversionResultCode::InternalError;
const std::optional<std::vector<u8>> compressed_group_entries =
Compress(compressor.get(), reinterpret_cast<u8*>(group_entries.data()), group_entries_size);
if (!compressed_group_entries)
return ConversionResultCode::InternalError;
bytes_written = sizeof(WIAHeader1) + sizeof(WIAHeader2);
if (!outfile->Seek(sizeof(WIAHeader1) + sizeof(WIAHeader2), SEEK_SET))
return ConversionResultCode::WriteFailed;
u64 partition_entries_offset;
if (!WriteHeader(outfile, reinterpret_cast<u8*>(partition_entries.data()), partition_entries_size,
headers_size_upper_bound, &bytes_written, &partition_entries_offset))
{
return ConversionResultCode::WriteFailed;
}
u64 raw_data_entries_offset;
if (!WriteHeader(outfile, compressed_raw_data_entries->data(),
compressed_raw_data_entries->size(), headers_size_upper_bound, &bytes_written,
&raw_data_entries_offset))
{
return ConversionResultCode::WriteFailed;
}
u64 group_entries_offset;
if (!WriteHeader(outfile, compressed_group_entries->data(), compressed_group_entries->size(),
headers_size_upper_bound, &bytes_written, &group_entries_offset))
{
return ConversionResultCode::WriteFailed;
}
u32 disc_type = 0;
if (infile_volume)
{
if (infile_volume->GetVolumeType() == Platform::GameCubeDisc)
disc_type = 1;
else if (infile_volume->GetVolumeType() == Platform::WiiDisc)
disc_type = 2;
}
header_2.disc_type = Common::swap32(disc_type);
header_2.compression_type = Common::swap32(static_cast<u32>(compression_type));
header_2.compression_level = Common::swap32(static_cast<u32>(compression_level));
header_2.chunk_size = Common::swap32(static_cast<u32>(chunk_size));
header_2.number_of_partition_entries = Common::swap32(static_cast<u32>(partition_entries.size()));
header_2.partition_entry_size = Common::swap32(sizeof(PartitionEntry));
header_2.partition_entries_offset = Common::swap64(partition_entries_offset);
if (partition_entries.data() == nullptr)
partition_entries.reserve(1); // Avoid a crash in mbedtls_sha1_ret
mbedtls_sha1_ret(reinterpret_cast<const u8*>(partition_entries.data()), partition_entries_size,
header_2.partition_entries_hash.data());
header_2.number_of_raw_data_entries = Common::swap32(static_cast<u32>(raw_data_entries.size()));
header_2.raw_data_entries_offset = Common::swap64(raw_data_entries_offset);
header_2.raw_data_entries_size =
Common::swap32(static_cast<u32>(compressed_raw_data_entries->size()));
header_2.number_of_group_entries = Common::swap32(static_cast<u32>(group_entries.size()));
header_2.group_entries_offset = Common::swap64(group_entries_offset);
header_2.group_entries_size = Common::swap32(static_cast<u32>(compressed_group_entries->size()));
header_1.magic = rvz ? RVZ_MAGIC : WIA_MAGIC;
header_1.version = Common::swap32(rvz ? RVZ_VERSION : WIA_VERSION);
header_1.version_compatible =
Common::swap32(rvz ? RVZ_VERSION_WRITE_COMPATIBLE : WIA_VERSION_WRITE_COMPATIBLE);
header_1.header_2_size = Common::swap32(sizeof(WIAHeader2));
mbedtls_sha1_ret(reinterpret_cast<const u8*>(&header_2), sizeof(header_2),
header_1.header_2_hash.data());
header_1.iso_file_size = Common::swap64(infile->GetDataSize());
header_1.wia_file_size = Common::swap64(outfile->GetSize());
mbedtls_sha1_ret(reinterpret_cast<const u8*>(&header_1), offsetof(WIAHeader1, header_1_hash),
header_1.header_1_hash.data());
if (!outfile->Seek(0, SEEK_SET))
return ConversionResultCode::WriteFailed;
if (!outfile->WriteArray(&header_1, 1))
return ConversionResultCode::WriteFailed;
if (!outfile->WriteArray(&header_2, 1))
return ConversionResultCode::WriteFailed;
return ConversionResultCode::Success;
}
bool ConvertToWIA(BlobReader* infile, const std::string& infile_path,
const std::string& outfile_path, bool rvz, WIACompressionType compression_type,
int compression_level, int chunk_size, CompressCB callback, void* arg)
{
File::IOFile outfile(outfile_path, "wb");
if (!outfile)
{
PanicAlertT("Failed to open the output file \"%s\".\n"
"Check that you have permissions to write the target folder and that the media can "
"be written.",
outfile_path.c_str());
return false;
}
std::unique_ptr<VolumeDisc> infile_volume = CreateDisc(infile_path);
const ConversionResultCode result =
WIAFileReader::ConvertToWIA(infile, infile_volume.get(), &outfile, rvz, compression_type,
compression_level, chunk_size, callback, arg);
if (result == ConversionResultCode::ReadFailed)
PanicAlertT("Failed to read from the input file \"%s\".", infile_path.c_str());
if (result == ConversionResultCode::WriteFailed)
{
PanicAlertT("Failed to write the output file \"%s\".\n"
"Check that you have enough space available on the target drive.",
outfile_path.c_str());
}
if (result != ConversionResultCode::Success)
{
// Remove the incomplete output file
outfile.Close();
File::Delete(outfile_path);
}
return result == ConversionResultCode::Success;
}
} // namespace DiscIO