dolphin/Source/Core/Core/DSP/DSPIntUtil.h
2014-09-08 15:39:58 -04:00

383 lines
8.7 KiB
C

/*====================================================================
filename: gdsp_opcodes_helper.h
project: GameCube DSP Tool (gcdsp)
created: 2005.03.04
mail: duddie@walla.com
Copyright (c) 2005 Duddie
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
====================================================================*/
#pragma once
#include "Common/CommonTypes.h"
#include "Core/DSP/DSPCore.h"
#include "Core/DSP/DSPInterpreter.h"
#include "Core/DSP/DSPMemoryMap.h"
#include "Core/DSP/DSPStacks.h"
// ---------------------------------------------------------------------------------------
// --- SR
// ---------------------------------------------------------------------------------------
static inline void dsp_SR_set_flag(int flag)
{
g_dsp.r.sr |= flag;
}
static inline bool dsp_SR_is_flag_set(int flag)
{
return (g_dsp.r.sr & flag) != 0;
}
// ---------------------------------------------------------------------------------------
// --- AR increments, decrements
// ---------------------------------------------------------------------------------------
static inline u16 dsp_increase_addr_reg(u16 reg, s16 _ix)
{
u32 ar = g_dsp.r.ar[reg];
u32 wr = g_dsp.r.wr[reg];
s32 ix = _ix;
u32 mx = (wr | 1) << 1;
u32 nar = ar + ix;
u32 dar = (nar ^ ar ^ ix) & mx;
if (ix >= 0)
{
if (dar > wr) //overflow
nar -= wr + 1;
}
else
{
if ((((nar + wr + 1) ^ nar) & dar) <= wr) //underflow or below min for mask
nar += wr + 1;
}
return nar;
}
static inline u16 dsp_decrease_addr_reg(u16 reg, s16 _ix)
{
u32 ar = g_dsp.r.ar[reg];
u32 wr = g_dsp.r.wr[reg];
s32 ix = _ix;
u32 mx = (wr | 1) << 1;
u32 nar = ar - ix;
u32 dar = (nar ^ ar ^ ~ix) & mx;
if ((u32)ix > 0xFFFF8000) //(ix < 0 && ix != -0x8000)
{
if (dar > wr) //overflow
nar -= wr + 1;
}
else
{
if ((((nar + wr + 1) ^ nar) & dar) <= wr) //underflow or below min for mask
nar += wr + 1;
}
return nar;
}
static inline u16 dsp_increment_addr_reg(u16 reg)
{
u32 ar = g_dsp.r.ar[reg];
u32 wr = g_dsp.r.wr[reg];
u32 nar = ar + 1;
if ((nar ^ ar) > ((wr | 1) << 1))
nar -= wr + 1;
return nar;
}
static inline u16 dsp_decrement_addr_reg(u16 reg)
{
u32 ar = g_dsp.r.ar[reg];
u32 wr = g_dsp.r.wr[reg];
u32 nar = ar + wr;
if (((nar ^ ar) & ((wr | 1) << 1)) > wr)
nar -= wr + 1;
return nar;
}
// ---------------------------------------------------------------------------------------
// --- reg
// ---------------------------------------------------------------------------------------
static inline u16 dsp_op_read_reg(int _reg)
{
int reg = _reg & 0x1f;
switch (reg)
{
case DSP_REG_ST0:
case DSP_REG_ST1:
case DSP_REG_ST2:
case DSP_REG_ST3:
return dsp_reg_load_stack(reg - DSP_REG_ST0);
case DSP_REG_AR0:
case DSP_REG_AR1:
case DSP_REG_AR2:
case DSP_REG_AR3:
return g_dsp.r.ar[reg - DSP_REG_AR0];
case DSP_REG_IX0:
case DSP_REG_IX1:
case DSP_REG_IX2:
case DSP_REG_IX3:
return g_dsp.r.ix[reg - DSP_REG_IX0];
case DSP_REG_WR0:
case DSP_REG_WR1:
case DSP_REG_WR2:
case DSP_REG_WR3:
return g_dsp.r.wr[reg - DSP_REG_WR0];
case DSP_REG_ACH0:
case DSP_REG_ACH1:
return g_dsp.r.ac[reg - DSP_REG_ACH0].h;
case DSP_REG_CR: return g_dsp.r.cr;
case DSP_REG_SR: return g_dsp.r.sr;
case DSP_REG_PRODL: return g_dsp.r.prod.l;
case DSP_REG_PRODM: return g_dsp.r.prod.m;
case DSP_REG_PRODH: return g_dsp.r.prod.h;
case DSP_REG_PRODM2: return g_dsp.r.prod.m2;
case DSP_REG_AXL0:
case DSP_REG_AXL1:
return g_dsp.r.ax[reg - DSP_REG_AXL0].l;
case DSP_REG_AXH0:
case DSP_REG_AXH1:
return g_dsp.r.ax[reg - DSP_REG_AXH0].h;
case DSP_REG_ACL0:
case DSP_REG_ACL1:
return g_dsp.r.ac[reg - DSP_REG_ACL0].l;
case DSP_REG_ACM0:
case DSP_REG_ACM1:
return g_dsp.r.ac[reg - DSP_REG_ACM0].m;
default:
_assert_msg_(DSP_INT, 0, "cannot happen");
return 0;
}
}
static inline void dsp_op_write_reg(int _reg, u16 val)
{
int reg = _reg & 0x1f;
switch (reg)
{
// 8-bit sign extended registers. Should look at prod.h too...
case DSP_REG_ACH0:
case DSP_REG_ACH1:
// sign extend from the bottom 8 bits.
g_dsp.r.ac[reg-DSP_REG_ACH0].h = (u16)(s16)(s8)(u8)val;
break;
// Stack registers.
case DSP_REG_ST0:
case DSP_REG_ST1:
case DSP_REG_ST2:
case DSP_REG_ST3:
dsp_reg_store_stack(reg - DSP_REG_ST0, val);
break;
case DSP_REG_AR0:
case DSP_REG_AR1:
case DSP_REG_AR2:
case DSP_REG_AR3:
g_dsp.r.ar[reg - DSP_REG_AR0] = val;
break;
case DSP_REG_IX0:
case DSP_REG_IX1:
case DSP_REG_IX2:
case DSP_REG_IX3:
g_dsp.r.ix[reg - DSP_REG_IX0] = val;
break;
case DSP_REG_WR0:
case DSP_REG_WR1:
case DSP_REG_WR2:
case DSP_REG_WR3:
g_dsp.r.wr[reg - DSP_REG_WR0] = val;
break;
case DSP_REG_CR: g_dsp.r.cr = val; break;
case DSP_REG_SR: g_dsp.r.sr = val; break;
case DSP_REG_PRODL: g_dsp.r.prod.l = val; break;
case DSP_REG_PRODM: g_dsp.r.prod.m = val; break;
case DSP_REG_PRODH: g_dsp.r.prod.h = val; break;
case DSP_REG_PRODM2: g_dsp.r.prod.m2 = val; break;
case DSP_REG_AXL0:
case DSP_REG_AXL1:
g_dsp.r.ax[reg - DSP_REG_AXL0].l = val;
break;
case DSP_REG_AXH0:
case DSP_REG_AXH1:
g_dsp.r.ax[reg - DSP_REG_AXH0].h = val;
break;
case DSP_REG_ACL0:
case DSP_REG_ACL1:
g_dsp.r.ac[reg - DSP_REG_ACL0].l = val;
break;
case DSP_REG_ACM0:
case DSP_REG_ACM1:
g_dsp.r.ac[reg - DSP_REG_ACM0].m = val;
break;
}
}
static inline void dsp_conditional_extend_accum(int reg)
{
switch (reg)
{
case DSP_REG_ACM0:
case DSP_REG_ACM1:
if (g_dsp.r.sr & SR_40_MODE_BIT)
{
// Sign extend into whole accum.
u16 val = g_dsp.r.ac[reg-DSP_REG_ACM0].m;
g_dsp.r.ac[reg - DSP_REG_ACM0].h = (val & 0x8000) ? 0xFFFF : 0x0000;
g_dsp.r.ac[reg - DSP_REG_ACM0].l = 0;
}
}
}
// ---------------------------------------------------------------------------------------
// --- prod (40-bit)
// ---------------------------------------------------------------------------------------
static inline s64 dsp_get_long_prod()
{
s64 val = (s8)(u8)g_dsp.r.prod.h;
val <<= 32;
s64 low_prod = g_dsp.r.prod.m;
low_prod += g_dsp.r.prod.m2;
low_prod <<= 16;
low_prod |= g_dsp.r.prod.l;
val += low_prod;
return val;
}
static inline s64 dsp_get_long_prod_round_prodl()
{
s64 prod = dsp_get_long_prod();
if (prod & 0x10000)
prod = (prod + 0x8000) & ~0xffff;
else
prod = (prod + 0x7fff) & ~0xffff;
return prod;
}
// For accurate emulation, this is wrong - but the real prod registers behave
// in completely bizarre ways. Not needed to emulate them correctly for game ucodes.
inline void dsp_set_long_prod(s64 val)
{
g_dsp.r.prod.val = val & 0x000000FFFFFFFFFFULL;
}
// ---------------------------------------------------------------------------------------
// --- ACC - main accumulators (40-bit)
// ---------------------------------------------------------------------------------------
inline s64 dsp_get_long_acc(int reg)
{
return ((s64)(g_dsp.r.ac[reg].val << 24) >> 24);
}
inline void dsp_set_long_acc(int _reg, s64 val)
{
g_dsp.r.ac[_reg].val = (u64)val;
}
inline s64 dsp_convert_long_acc(s64 val) // s64 -> s40
{
return ((val << 24) >> 24);
}
inline s64 dsp_round_long_acc(s64 val)
{
if (val & 0x10000)
val = (val + 0x8000) & ~0xffff;
else
val = (val + 0x7fff) & ~0xffff;
return val;
}
inline s16 dsp_get_acc_l(int _reg)
{
return (s16)g_dsp.r.ac[_reg].l;
}
inline s16 dsp_get_acc_m(int _reg)
{
return (s16)g_dsp.r.ac[_reg].m;
}
inline s16 dsp_get_acc_h(int _reg)
{
return (s16)g_dsp.r.ac[_reg].h;
}
inline u16 dsp_op_read_reg_and_saturate(u8 _reg)
{
if (g_dsp.r.sr & SR_40_MODE_BIT)
{
s64 acc = dsp_get_long_acc(_reg);
if (acc != (s32)acc)
{
if (acc > 0)
return 0x7fff;
else
return 0x8000;
}
else
{
return g_dsp.r.ac[_reg].m;
}
}
else
{
return g_dsp.r.ac[_reg].m;
}
}
// ---------------------------------------------------------------------------------------
// --- AX - extra accumulators (32-bit)
// ---------------------------------------------------------------------------------------
inline s32 dsp_get_long_acx(int _reg)
{
return (s32)(((u32)g_dsp.r.ax[_reg].h << 16) | g_dsp.r.ax[_reg].l);
}
inline s16 dsp_get_ax_l(int _reg)
{
return (s16)g_dsp.r.ax[_reg].l;
}
inline s16 dsp_get_ax_h(int _reg)
{
return (s16)g_dsp.r.ax[_reg].h;
}