dolphin/Source/Core/DiscIO/VolumeWiiCrypted.cpp
JosJuice ace060748b Don't read from disk when checking volume type
Should be faster than relying on the OS to cache the magic words.
Also gets rid of the odd recursive call in VolumeDirectory.
2015-01-17 13:21:02 +01:00

317 lines
7.1 KiB
C++

// Copyright 2013 Dolphin Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.
#include <cstddef>
#include <cstring>
#include <string>
#include <vector>
#include <polarssl/aes.h>
#include <polarssl/sha1.h>
#include "Common/CommonFuncs.h"
#include "Common/CommonTypes.h"
#include "Common/MsgHandler.h"
#include "Common/Logging/Log.h"
#include "DiscIO/Blob.h"
#include "DiscIO/FileMonitor.h"
#include "DiscIO/Volume.h"
#include "DiscIO/VolumeCreator.h"
#include "DiscIO/VolumeGC.h"
#include "DiscIO/VolumeWiiCrypted.h"
namespace DiscIO
{
CVolumeWiiCrypted::CVolumeWiiCrypted(IBlobReader* _pReader, u64 _VolumeOffset,
const unsigned char* _pVolumeKey)
: m_pReader(_pReader),
m_AES_ctx(new aes_context),
m_pBuffer(nullptr),
m_VolumeOffset(_VolumeOffset),
m_dataOffset(0x20000),
m_LastDecryptedBlockOffset(-1)
{
aes_setkey_dec(m_AES_ctx.get(), _pVolumeKey, 128);
m_pBuffer = new u8[0x8000];
}
bool CVolumeWiiCrypted::ChangePartition(u64 offset)
{
m_VolumeOffset = offset;
m_LastDecryptedBlockOffset = -1;
u8 volume_key[16];
DiscIO::VolumeKeyForParition(*m_pReader, offset, volume_key);
aes_setkey_dec(m_AES_ctx.get(), volume_key, 128);
return true;
}
CVolumeWiiCrypted::~CVolumeWiiCrypted()
{
delete[] m_pBuffer;
m_pBuffer = nullptr;
}
bool CVolumeWiiCrypted::Read(u64 _ReadOffset, u64 _Length, u8* _pBuffer, bool decrypt) const
{
if (m_pReader == nullptr)
return false;
if (!decrypt)
return m_pReader->Read(_ReadOffset, _Length, _pBuffer);
FileMon::FindFilename(_ReadOffset);
while (_Length > 0)
{
static unsigned char IV[16];
// math block offset
u64 Block = _ReadOffset / 0x7C00;
u64 Offset = _ReadOffset % 0x7C00;
// read current block
if (!m_pReader->Read(m_VolumeOffset + m_dataOffset + Block * 0x8000, 0x8000, m_pBuffer))
return(false);
if (m_LastDecryptedBlockOffset != Block)
{
memcpy(IV, m_pBuffer + 0x3d0, 16);
aes_crypt_cbc(m_AES_ctx.get(), AES_DECRYPT, 0x7C00, IV, m_pBuffer + 0x400, m_LastDecryptedBlock);
m_LastDecryptedBlockOffset = Block;
}
// copy the encrypted data
u64 MaxSizeToCopy = 0x7C00 - Offset;
u64 CopySize = (_Length > MaxSizeToCopy) ? MaxSizeToCopy : _Length;
memcpy(_pBuffer, &m_LastDecryptedBlock[Offset], (size_t)CopySize);
// increase buffers
_Length -= CopySize;
_pBuffer += CopySize;
_ReadOffset += CopySize;
}
return(true);
}
bool CVolumeWiiCrypted::GetTitleID(u8* _pBuffer) const
{
// Tik is at m_VolumeOffset size 0x2A4
// TitleID offset in tik is 0x1DC
return Read(m_VolumeOffset + 0x1DC, 8, _pBuffer, false);
}
std::unique_ptr<u8[]> CVolumeWiiCrypted::GetTMD(u32 *size) const
{
*size = 0;
u32 tmd_size;
u32 tmd_address;
Read(m_VolumeOffset + 0x2a4, sizeof(u32), (u8*)&tmd_size, false);
Read(m_VolumeOffset + 0x2a8, sizeof(u32), (u8*)&tmd_address, false);
tmd_size = Common::swap32(tmd_size);
tmd_address = Common::swap32(tmd_address) << 2;
if (tmd_size > 1024 * 1024 * 4)
{
// The size is checked so that a malicious or corrupt ISO
// can't force Dolphin to allocate up to 4 GiB of memory.
// 4 MiB should be much bigger than the size of TMDs and much smaller
// than the amount of RAM in a computer that can run Dolphin.
PanicAlert("TMD > 4 MiB");
tmd_size = 1024 * 1024 * 4;
}
std::unique_ptr<u8[]> buf{ new u8[tmd_size] };
Read(m_VolumeOffset + tmd_address, tmd_size, buf.get(), false);
*size = tmd_size;
return buf;
}
std::string CVolumeWiiCrypted::GetUniqueID() const
{
if (m_pReader == nullptr)
return std::string();
char ID[7];
if (!Read(0, 6, (u8*)ID, false))
return std::string();
ID[6] = '\0';
return ID;
}
IVolume::ECountry CVolumeWiiCrypted::GetCountry() const
{
if (!m_pReader)
return COUNTRY_UNKNOWN;
u8 CountryCode;
m_pReader->Read(3, 1, &CountryCode);
return CountrySwitch(CountryCode);
}
std::string CVolumeWiiCrypted::GetMakerID() const
{
if (m_pReader == nullptr)
return std::string();
char makerID[3];
if (!Read(0x4, 0x2, (u8*)&makerID, false))
return std::string();
makerID[2] = '\0';
return makerID;
}
int CVolumeWiiCrypted::GetRevision() const
{
if (!m_pReader)
return 0;
u8 revision;
if (!m_pReader->Read(7, 1, &revision))
return 0;
return revision;
}
std::vector<std::string> CVolumeWiiCrypted::GetNames() const
{
std::vector<std::string> names;
auto const string_decoder = CVolumeGC::GetStringDecoder(GetCountry());
char name[0xFF] = {};
if (m_pReader != nullptr && Read(0x20, 0x60, (u8*)&name, true))
names.push_back(string_decoder(name));
return names;
}
u32 CVolumeWiiCrypted::GetFSTSize() const
{
if (m_pReader == nullptr)
return 0;
u32 size;
if (!Read(0x428, 0x4, (u8*)&size, true))
return 0;
return size;
}
std::string CVolumeWiiCrypted::GetApploaderDate() const
{
if (m_pReader == nullptr)
return std::string();
char date[16];
if (!Read(0x2440, 0x10, (u8*)&date, true))
return std::string();
date[10] = '\0';
return date;
}
bool CVolumeWiiCrypted::IsWiiDisc() const
{
return true;
}
u64 CVolumeWiiCrypted::GetSize() const
{
if (m_pReader)
return m_pReader->GetDataSize();
else
return 0;
}
u64 CVolumeWiiCrypted::GetRawSize() const
{
if (m_pReader)
return m_pReader->GetRawSize();
else
return 0;
}
bool CVolumeWiiCrypted::CheckIntegrity() const
{
// Get partition data size
u32 partSizeDiv4;
Read(m_VolumeOffset + 0x2BC, 4, (u8*)&partSizeDiv4, false);
u64 partDataSize = (u64)Common::swap32(partSizeDiv4) * 4;
u32 nClusters = (u32)(partDataSize / 0x8000);
for (u32 clusterID = 0; clusterID < nClusters; ++clusterID)
{
u64 clusterOff = m_VolumeOffset + m_dataOffset + (u64)clusterID * 0x8000;
// Read and decrypt the cluster metadata
u8 clusterMDCrypted[0x400];
u8 clusterMD[0x400];
u8 IV[16] = { 0 };
if (!m_pReader->Read(clusterOff, 0x400, clusterMDCrypted))
{
NOTICE_LOG(DISCIO, "Integrity Check: fail at cluster %d: could not read metadata", clusterID);
return false;
}
aes_crypt_cbc(m_AES_ctx.get(), AES_DECRYPT, 0x400, IV, clusterMDCrypted, clusterMD);
// Some clusters have invalid data and metadata because they aren't
// meant to be read by the game (for example, holes between files). To
// try to avoid reporting errors because of these clusters, we check
// the 0x00 paddings in the metadata.
//
// This may cause some false negatives though: some bad clusters may be
// skipped because they are *too* bad and are not even recognized as
// valid clusters. To be improved.
bool meaningless = false;
for (u32 idx = 0x26C; idx < 0x280; ++idx)
if (clusterMD[idx] != 0)
meaningless = true;
if (meaningless)
continue;
u8 clusterData[0x7C00];
if (!Read((u64)clusterID * 0x7C00, 0x7C00, clusterData, true))
{
NOTICE_LOG(DISCIO, "Integrity Check: fail at cluster %d: could not read data", clusterID);
return false;
}
for (u32 hashID = 0; hashID < 31; ++hashID)
{
u8 hash[20];
sha1(clusterData + hashID * 0x400, 0x400, hash);
// Note that we do not use strncmp here
if (memcmp(hash, clusterMD + hashID * 20, 20))
{
NOTICE_LOG(DISCIO, "Integrity Check: fail at cluster %d: hash %d is invalid", clusterID, hashID);
return false;
}
}
}
return true;
}
} // namespace