mirror of
https://github.com/dolphin-emu/dolphin.git
synced 2025-01-15 10:39:13 +01:00
454537d53e
Now that we've flipped the C++20 switch, let's start making use of the nice new <bit> header. I'm planning on handling this move away from BitUtils.h incrementally in a series of PRs. There may be a few functions remaining in BitUtils.h by the end that C++20 doesn't have any equivalents for.
474 lines
9.0 KiB
C++
474 lines
9.0 KiB
C++
// Copyright 2008 Dolphin Emulator Project
|
|
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
|
|
#include "Common/Hash.h"
|
|
|
|
#include <algorithm>
|
|
#include <bit>
|
|
#include <cstring>
|
|
|
|
#include <zlib.h>
|
|
|
|
#include "Common/BitUtils.h"
|
|
#include "Common/CPUDetect.h"
|
|
#include "Common/CommonFuncs.h"
|
|
#include "Common/Intrinsics.h"
|
|
|
|
#ifdef _M_ARM_64
|
|
#ifdef _MSC_VER
|
|
#include <intrin.h>
|
|
#else
|
|
#include <arm_acle.h>
|
|
#endif
|
|
#endif
|
|
|
|
namespace Common
|
|
{
|
|
u32 HashAdler32(const u8* data, size_t len)
|
|
{
|
|
// Use fast implementation from zlib-ng
|
|
return adler32_z(1, data, len);
|
|
}
|
|
|
|
// Stupid hash - but can't go back now :)
|
|
// Don't use for new things. At least it's reasonably fast.
|
|
u32 HashEctor(const u8* data, size_t len)
|
|
{
|
|
u32 crc = 0;
|
|
|
|
for (size_t i = 0; i < len; i++)
|
|
{
|
|
crc ^= data[i];
|
|
crc = (crc << 3) | (crc >> 29);
|
|
}
|
|
|
|
return crc;
|
|
}
|
|
|
|
#ifdef _ARCH_64
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Block read - if your platform needs to do endian-swapping or can only
|
|
// handle aligned reads, do the conversion here
|
|
|
|
static u64 getblock(const u64* p, int i)
|
|
{
|
|
return p[i];
|
|
}
|
|
|
|
//----------
|
|
// Block mix - combine the key bits with the hash bits and scramble everything
|
|
|
|
static void bmix64(u64& h1, u64& h2, u64& k1, u64& k2, u64& c1, u64& c2)
|
|
{
|
|
k1 *= c1;
|
|
k1 = std::rotl(k1, 23);
|
|
k1 *= c2;
|
|
h1 ^= k1;
|
|
h1 += h2;
|
|
|
|
h2 = std::rotl(h2, 41);
|
|
|
|
k2 *= c2;
|
|
k2 = std::rotl(k2, 23);
|
|
k2 *= c1;
|
|
h2 ^= k2;
|
|
h2 += h1;
|
|
|
|
h1 = h1 * 3 + 0x52dce729;
|
|
h2 = h2 * 3 + 0x38495ab5;
|
|
|
|
c1 = c1 * 5 + 0x7b7d159c;
|
|
c2 = c2 * 5 + 0x6bce6396;
|
|
}
|
|
|
|
//----------
|
|
// Finalization mix - avalanches all bits to within 0.05% bias
|
|
|
|
static u64 fmix64(u64 k)
|
|
{
|
|
k ^= k >> 33;
|
|
k *= 0xff51afd7ed558ccd;
|
|
k ^= k >> 33;
|
|
k *= 0xc4ceb9fe1a85ec53;
|
|
k ^= k >> 33;
|
|
|
|
return k;
|
|
}
|
|
|
|
static u64 GetMurmurHash3(const u8* src, u32 len, u32 samples)
|
|
{
|
|
const u8* data = (const u8*)src;
|
|
const int nblocks = len / 16;
|
|
u32 Step = (len / 8);
|
|
if (samples == 0)
|
|
samples = std::max(Step, 1u);
|
|
Step = Step / samples;
|
|
if (Step < 1)
|
|
Step = 1;
|
|
|
|
u64 h1 = 0x9368e53c2f6af274;
|
|
u64 h2 = 0x586dcd208f7cd3fd;
|
|
|
|
u64 c1 = 0x87c37b91114253d5;
|
|
u64 c2 = 0x4cf5ad432745937f;
|
|
|
|
//----------
|
|
// body
|
|
|
|
const u64* blocks = (const u64*)(data);
|
|
|
|
for (int i = 0; i < nblocks; i += Step)
|
|
{
|
|
u64 k1 = getblock(blocks, i * 2 + 0);
|
|
u64 k2 = getblock(blocks, i * 2 + 1);
|
|
|
|
bmix64(h1, h2, k1, k2, c1, c2);
|
|
}
|
|
|
|
//----------
|
|
// tail
|
|
|
|
const u8* tail = (const u8*)(data + nblocks * 16);
|
|
|
|
u64 k1 = 0;
|
|
u64 k2 = 0;
|
|
|
|
switch (len & 15)
|
|
{
|
|
case 15:
|
|
k2 ^= u64(tail[14]) << 48;
|
|
case 14:
|
|
k2 ^= u64(tail[13]) << 40;
|
|
case 13:
|
|
k2 ^= u64(tail[12]) << 32;
|
|
case 12:
|
|
k2 ^= u64(tail[11]) << 24;
|
|
case 11:
|
|
k2 ^= u64(tail[10]) << 16;
|
|
case 10:
|
|
k2 ^= u64(tail[9]) << 8;
|
|
case 9:
|
|
k2 ^= u64(tail[8]) << 0;
|
|
|
|
case 8:
|
|
k1 ^= u64(tail[7]) << 56;
|
|
case 7:
|
|
k1 ^= u64(tail[6]) << 48;
|
|
case 6:
|
|
k1 ^= u64(tail[5]) << 40;
|
|
case 5:
|
|
k1 ^= u64(tail[4]) << 32;
|
|
case 4:
|
|
k1 ^= u64(tail[3]) << 24;
|
|
case 3:
|
|
k1 ^= u64(tail[2]) << 16;
|
|
case 2:
|
|
k1 ^= u64(tail[1]) << 8;
|
|
case 1:
|
|
k1 ^= u64(tail[0]) << 0;
|
|
bmix64(h1, h2, k1, k2, c1, c2);
|
|
};
|
|
|
|
//----------
|
|
// finalization
|
|
|
|
h2 ^= len;
|
|
|
|
h1 += h2;
|
|
h2 += h1;
|
|
|
|
h1 = fmix64(h1);
|
|
h2 = fmix64(h2);
|
|
|
|
h1 += h2;
|
|
|
|
return h1;
|
|
}
|
|
|
|
#else
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Block read - if your platform needs to do endian-swapping or can only
|
|
// handle aligned reads, do the conversion here
|
|
|
|
static u32 getblock(const u32* p, int i)
|
|
{
|
|
return p[i];
|
|
}
|
|
|
|
//----------
|
|
// Finalization mix - force all bits of a hash block to avalanche
|
|
|
|
// avalanches all bits to within 0.25% bias
|
|
|
|
static u32 fmix32(u32 h)
|
|
{
|
|
h ^= h >> 16;
|
|
h *= 0x85ebca6b;
|
|
h ^= h >> 13;
|
|
h *= 0xc2b2ae35;
|
|
h ^= h >> 16;
|
|
|
|
return h;
|
|
}
|
|
|
|
static void bmix32(u32& h1, u32& h2, u32& k1, u32& k2, u32& c1, u32& c2)
|
|
{
|
|
k1 *= c1;
|
|
k1 = Common::RotateLeft(k1, 11);
|
|
k1 *= c2;
|
|
h1 ^= k1;
|
|
h1 += h2;
|
|
|
|
h2 = Common::RotateLeft(h2, 17);
|
|
|
|
k2 *= c2;
|
|
k2 = Common::RotateLeft(k2, 11);
|
|
k2 *= c1;
|
|
h2 ^= k2;
|
|
h2 += h1;
|
|
|
|
h1 = h1 * 3 + 0x52dce729;
|
|
h2 = h2 * 3 + 0x38495ab5;
|
|
|
|
c1 = c1 * 5 + 0x7b7d159c;
|
|
c2 = c2 * 5 + 0x6bce6396;
|
|
}
|
|
|
|
//----------
|
|
|
|
static u64 GetMurmurHash3(const u8* src, u32 len, u32 samples)
|
|
{
|
|
const u8* data = (const u8*)src;
|
|
u32 out[2];
|
|
const int nblocks = len / 8;
|
|
u32 Step = (len / 4);
|
|
if (samples == 0)
|
|
samples = std::max(Step, 1u);
|
|
Step = Step / samples;
|
|
if (Step < 1)
|
|
Step = 1;
|
|
|
|
u32 h1 = 0x8de1c3ac;
|
|
u32 h2 = 0xbab98226;
|
|
|
|
u32 c1 = 0x95543787;
|
|
u32 c2 = 0x2ad7eb25;
|
|
|
|
//----------
|
|
// body
|
|
|
|
const u32* blocks = (const u32*)(data + nblocks * 8);
|
|
|
|
for (int i = -nblocks; i < 0; i += Step)
|
|
{
|
|
u32 k1 = getblock(blocks, i * 2 + 0);
|
|
u32 k2 = getblock(blocks, i * 2 + 1);
|
|
|
|
bmix32(h1, h2, k1, k2, c1, c2);
|
|
}
|
|
|
|
//----------
|
|
// tail
|
|
|
|
const u8* tail = (const u8*)(data + nblocks * 8);
|
|
|
|
u32 k1 = 0;
|
|
u32 k2 = 0;
|
|
|
|
switch (len & 7)
|
|
{
|
|
case 7:
|
|
k2 ^= tail[6] << 16;
|
|
case 6:
|
|
k2 ^= tail[5] << 8;
|
|
case 5:
|
|
k2 ^= tail[4] << 0;
|
|
case 4:
|
|
k1 ^= tail[3] << 24;
|
|
case 3:
|
|
k1 ^= tail[2] << 16;
|
|
case 2:
|
|
k1 ^= tail[1] << 8;
|
|
case 1:
|
|
k1 ^= tail[0] << 0;
|
|
bmix32(h1, h2, k1, k2, c1, c2);
|
|
};
|
|
|
|
//----------
|
|
// finalization
|
|
|
|
h2 ^= len;
|
|
|
|
h1 += h2;
|
|
h2 += h1;
|
|
|
|
h1 = fmix32(h1);
|
|
h2 = fmix32(h2);
|
|
|
|
h1 += h2;
|
|
h2 += h1;
|
|
|
|
out[0] = h1;
|
|
out[1] = h2;
|
|
|
|
return *((u64*)&out);
|
|
}
|
|
|
|
#endif
|
|
|
|
#if defined(_M_X86_64)
|
|
|
|
FUNCTION_TARGET_SSE42
|
|
static u64 GetHash64_SSE42_CRC32(const u8* src, u32 len, u32 samples)
|
|
{
|
|
u64 h[4] = {len, 0, 0, 0};
|
|
u32 Step = (len / 8);
|
|
const u64* data = (const u64*)src;
|
|
const u64* end = data + Step;
|
|
if (samples == 0)
|
|
samples = std::max(Step, 1u);
|
|
Step = Step / samples;
|
|
if (Step < 1)
|
|
Step = 1;
|
|
|
|
while (data < end - Step * 3)
|
|
{
|
|
h[0] = _mm_crc32_u64(h[0], data[Step * 0]);
|
|
h[1] = _mm_crc32_u64(h[1], data[Step * 1]);
|
|
h[2] = _mm_crc32_u64(h[2], data[Step * 2]);
|
|
h[3] = _mm_crc32_u64(h[3], data[Step * 3]);
|
|
data += Step * 4;
|
|
}
|
|
if (data < end - Step * 0)
|
|
h[0] = _mm_crc32_u64(h[0], data[Step * 0]);
|
|
if (data < end - Step * 1)
|
|
h[1] = _mm_crc32_u64(h[1], data[Step * 1]);
|
|
if (data < end - Step * 2)
|
|
h[2] = _mm_crc32_u64(h[2], data[Step * 2]);
|
|
|
|
if (len & 7)
|
|
{
|
|
u64 temp = 0;
|
|
memcpy(&temp, end, len & 7);
|
|
h[0] = _mm_crc32_u64(h[0], temp);
|
|
}
|
|
|
|
// FIXME: is there a better way to combine these partial hashes?
|
|
return h[0] + (h[1] << 10) + (h[2] << 21) + (h[3] << 32);
|
|
}
|
|
|
|
#elif defined(_M_X86)
|
|
|
|
FUNCTION_TARGET_SSE42
|
|
static u64 GetHash64_SSE42_CRC32(const u8* src, u32 len, u32 samples)
|
|
{
|
|
u32 h = len;
|
|
u32 Step = (len / 4);
|
|
const u32* data = (const u32*)src;
|
|
const u32* end = data + Step;
|
|
if (samples == 0)
|
|
samples = std::max(Step, 1u);
|
|
Step = Step / samples;
|
|
if (Step < 1)
|
|
Step = 1;
|
|
while (data < end)
|
|
{
|
|
h = _mm_crc32_u32(h, data[0]);
|
|
data += Step;
|
|
}
|
|
|
|
const u8* data2 = (const u8*)end;
|
|
return (u64)_mm_crc32_u32(h, u32(data2[0]));
|
|
}
|
|
|
|
#elif defined(_M_ARM_64)
|
|
|
|
static u64 GetHash64_ARMv8_CRC32(const u8* src, u32 len, u32 samples)
|
|
{
|
|
u64 h[4] = {len, 0, 0, 0};
|
|
u32 Step = (len / 8);
|
|
const u64* data = (const u64*)src;
|
|
const u64* end = data + Step;
|
|
if (samples == 0)
|
|
samples = std::max(Step, 1u);
|
|
Step = Step / samples;
|
|
if (Step < 1)
|
|
Step = 1;
|
|
|
|
while (data < end - Step * 3)
|
|
{
|
|
h[0] = __crc32d(h[0], data[Step * 0]);
|
|
h[1] = __crc32d(h[1], data[Step * 1]);
|
|
h[2] = __crc32d(h[2], data[Step * 2]);
|
|
h[3] = __crc32d(h[3], data[Step * 3]);
|
|
data += Step * 4;
|
|
}
|
|
if (data < end - Step * 0)
|
|
h[0] = __crc32d(h[0], data[Step * 0]);
|
|
if (data < end - Step * 1)
|
|
h[1] = __crc32d(h[1], data[Step * 1]);
|
|
if (data < end - Step * 2)
|
|
h[2] = __crc32d(h[2], data[Step * 2]);
|
|
|
|
if (len & 7)
|
|
{
|
|
u64 temp = 0;
|
|
memcpy(&temp, end, len & 7);
|
|
h[0] = __crc32d(h[0], temp);
|
|
}
|
|
|
|
// FIXME: is there a better way to combine these partial hashes?
|
|
return h[0] + (h[1] << 10) + (h[2] << 21) + (h[3] << 32);
|
|
}
|
|
|
|
#endif
|
|
|
|
using TextureHashFunction = u64 (*)(const u8* src, u32 len, u32 samples);
|
|
static u64 SetHash64Function(const u8* src, u32 len, u32 samples);
|
|
static TextureHashFunction s_texture_hash_func = SetHash64Function;
|
|
|
|
static u64 SetHash64Function(const u8* src, u32 len, u32 samples)
|
|
{
|
|
if (cpu_info.bCRC32)
|
|
{
|
|
#if defined(_M_X86_64) || defined(_M_X86)
|
|
s_texture_hash_func = &GetHash64_SSE42_CRC32;
|
|
#elif defined(_M_ARM_64)
|
|
s_texture_hash_func = &GetHash64_ARMv8_CRC32;
|
|
#endif
|
|
}
|
|
else
|
|
{
|
|
s_texture_hash_func = &GetMurmurHash3;
|
|
}
|
|
return s_texture_hash_func(src, len, samples);
|
|
}
|
|
|
|
u64 GetHash64(const u8* src, u32 len, u32 samples)
|
|
{
|
|
return s_texture_hash_func(src, len, samples);
|
|
}
|
|
|
|
u32 StartCRC32()
|
|
{
|
|
return crc32_z(0L, Z_NULL, 0);
|
|
}
|
|
|
|
u32 UpdateCRC32(u32 crc, const u8* data, size_t len)
|
|
{
|
|
return crc32_z(crc, data, len);
|
|
}
|
|
|
|
u32 ComputeCRC32(const u8* data, size_t len)
|
|
{
|
|
return UpdateCRC32(StartCRC32(), data, len);
|
|
}
|
|
|
|
u32 ComputeCRC32(std::string_view data)
|
|
{
|
|
return ComputeCRC32(reinterpret_cast<const u8*>(data.data()), data.size());
|
|
}
|
|
} // namespace Common
|