dolphin/Source/Core/VideoCommon/VertexLoaderARM64.cpp
2021-01-15 23:27:11 -08:00

617 lines
20 KiB
C++

// Copyright 2015 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include "VideoCommon/VertexLoaderARM64.h"
#include "Common/CommonTypes.h"
#include "VideoCommon/DataReader.h"
#include "VideoCommon/VertexLoaderManager.h"
using namespace Arm64Gen;
constexpr ARM64Reg src_reg = X0;
constexpr ARM64Reg dst_reg = X1;
constexpr ARM64Reg count_reg = W2;
constexpr ARM64Reg skipped_reg = W17;
constexpr ARM64Reg scratch1_reg = W16;
constexpr ARM64Reg scratch2_reg = W15;
constexpr ARM64Reg scratch3_reg = W14;
constexpr ARM64Reg saved_count = W12;
constexpr ARM64Reg stride_reg = X11;
constexpr ARM64Reg arraybase_reg = X10;
constexpr ARM64Reg scale_reg = X9;
alignas(16) static const float scale_factors[] = {
1.0 / (1ULL << 0), 1.0 / (1ULL << 1), 1.0 / (1ULL << 2), 1.0 / (1ULL << 3),
1.0 / (1ULL << 4), 1.0 / (1ULL << 5), 1.0 / (1ULL << 6), 1.0 / (1ULL << 7),
1.0 / (1ULL << 8), 1.0 / (1ULL << 9), 1.0 / (1ULL << 10), 1.0 / (1ULL << 11),
1.0 / (1ULL << 12), 1.0 / (1ULL << 13), 1.0 / (1ULL << 14), 1.0 / (1ULL << 15),
1.0 / (1ULL << 16), 1.0 / (1ULL << 17), 1.0 / (1ULL << 18), 1.0 / (1ULL << 19),
1.0 / (1ULL << 20), 1.0 / (1ULL << 21), 1.0 / (1ULL << 22), 1.0 / (1ULL << 23),
1.0 / (1ULL << 24), 1.0 / (1ULL << 25), 1.0 / (1ULL << 26), 1.0 / (1ULL << 27),
1.0 / (1ULL << 28), 1.0 / (1ULL << 29), 1.0 / (1ULL << 30), 1.0 / (1ULL << 31),
};
VertexLoaderARM64::VertexLoaderARM64(const TVtxDesc& vtx_desc, const VAT& vtx_att)
: VertexLoaderBase(vtx_desc, vtx_att), m_float_emit(this)
{
if (!IsInitialized())
return;
AllocCodeSpace(4096);
ClearCodeSpace();
GenerateVertexLoader();
WriteProtect();
}
void VertexLoaderARM64::GetVertexAddr(int array, u64 attribute, ARM64Reg reg)
{
if (attribute & MASK_INDEXED)
{
if (attribute == INDEX8)
{
if (m_src_ofs < 4096)
{
LDRB(IndexType::Unsigned, scratch1_reg, src_reg, m_src_ofs);
}
else
{
ADD(reg, src_reg, m_src_ofs);
LDRB(IndexType::Unsigned, scratch1_reg, reg, 0);
}
m_src_ofs += 1;
}
else
{
if (m_src_ofs < 256)
{
LDURH(scratch1_reg, src_reg, m_src_ofs);
}
else if (m_src_ofs <= 8190 && !(m_src_ofs & 1))
{
LDRH(IndexType::Unsigned, scratch1_reg, src_reg, m_src_ofs);
}
else
{
ADD(reg, src_reg, m_src_ofs);
LDRH(IndexType::Unsigned, scratch1_reg, reg, 0);
}
m_src_ofs += 2;
REV16(scratch1_reg, scratch1_reg);
}
if (array == ARRAY_POSITION)
{
EOR(scratch2_reg, scratch1_reg, 0, attribute == INDEX8 ? 7 : 15); // 0xFF : 0xFFFF
m_skip_vertex = CBZ(scratch2_reg);
}
LDR(IndexType::Unsigned, scratch2_reg, stride_reg, array * 4);
MUL(scratch1_reg, scratch1_reg, scratch2_reg);
LDR(IndexType::Unsigned, EncodeRegTo64(scratch2_reg), arraybase_reg, array * 8);
ADD(EncodeRegTo64(reg), EncodeRegTo64(scratch1_reg), EncodeRegTo64(scratch2_reg));
}
else
ADD(reg, src_reg, m_src_ofs);
}
s32 VertexLoaderARM64::GetAddressImm(int array, u64 attribute, Arm64Gen::ARM64Reg reg, u32 align)
{
if (attribute & MASK_INDEXED || (m_src_ofs > 255 && (m_src_ofs & (align - 1))))
GetVertexAddr(array, attribute, reg);
else
return m_src_ofs;
return -1;
}
int VertexLoaderARM64::ReadVertex(u64 attribute, int format, int count_in, int count_out,
bool dequantize, u8 scaling_exponent,
AttributeFormat* native_format, s32 offset)
{
ARM64Reg coords = count_in == 3 ? Q31 : D31;
ARM64Reg scale = count_in == 3 ? Q30 : D30;
int elem_size = 1 << (format / 2);
int load_bytes = elem_size * count_in;
int load_size =
load_bytes == 1 ? 1 : load_bytes <= 2 ? 2 : load_bytes <= 4 ? 4 : load_bytes <= 8 ? 8 : 16;
load_size <<= 3;
elem_size <<= 3;
if (offset == -1)
{
if (count_in == 1)
m_float_emit.LDR(elem_size, IndexType::Unsigned, coords, EncodeRegTo64(scratch1_reg), 0);
else
m_float_emit.LD1(elem_size, 1, coords, EncodeRegTo64(scratch1_reg));
}
else if (offset & (load_size - 1)) // Not aligned - unscaled
{
m_float_emit.LDUR(load_size, coords, src_reg, offset);
}
else
{
m_float_emit.LDR(load_size, IndexType::Unsigned, coords, src_reg, offset);
}
if (format != FORMAT_FLOAT)
{
// Extend and convert to float
switch (format)
{
case FORMAT_UBYTE:
m_float_emit.UXTL(8, EncodeRegToDouble(coords), EncodeRegToDouble(coords));
m_float_emit.UXTL(16, EncodeRegToDouble(coords), EncodeRegToDouble(coords));
break;
case FORMAT_BYTE:
m_float_emit.SXTL(8, EncodeRegToDouble(coords), EncodeRegToDouble(coords));
m_float_emit.SXTL(16, EncodeRegToDouble(coords), EncodeRegToDouble(coords));
break;
case FORMAT_USHORT:
m_float_emit.REV16(8, EncodeRegToDouble(coords), EncodeRegToDouble(coords));
m_float_emit.UXTL(16, EncodeRegToDouble(coords), EncodeRegToDouble(coords));
break;
case FORMAT_SHORT:
m_float_emit.REV16(8, EncodeRegToDouble(coords), EncodeRegToDouble(coords));
m_float_emit.SXTL(16, EncodeRegToDouble(coords), EncodeRegToDouble(coords));
break;
}
m_float_emit.SCVTF(32, coords, coords);
if (dequantize && scaling_exponent)
{
m_float_emit.LDR(32, IndexType::Unsigned, scale, scale_reg, scaling_exponent * 4);
m_float_emit.FMUL(32, coords, coords, scale, 0);
}
}
else
{
m_float_emit.REV32(8, coords, coords);
}
const u32 write_size = count_out == 3 ? 128 : count_out * 32;
const u32 mask = count_out == 3 ? 0xF : count_out == 2 ? 0x7 : 0x3;
if (m_dst_ofs < 256)
{
m_float_emit.STUR(write_size, coords, dst_reg, m_dst_ofs);
}
else if (!(m_dst_ofs & mask))
{
m_float_emit.STR(write_size, IndexType::Unsigned, coords, dst_reg, m_dst_ofs);
}
else
{
ADD(EncodeRegTo64(scratch2_reg), dst_reg, m_dst_ofs);
m_float_emit.ST1(32, 1, coords, EncodeRegTo64(scratch2_reg));
}
// Z-Freeze
if (native_format == &m_native_vtx_decl.position)
{
CMP(count_reg, 3);
FixupBranch dont_store = B(CC_GT);
MOVP2R(EncodeRegTo64(scratch2_reg), VertexLoaderManager::position_cache);
ADD(EncodeRegTo64(scratch1_reg), EncodeRegTo64(scratch2_reg), EncodeRegTo64(count_reg),
ArithOption(EncodeRegTo64(count_reg), ST_LSL, 4));
m_float_emit.STUR(write_size, coords, EncodeRegTo64(scratch1_reg), -16);
SetJumpTarget(dont_store);
}
native_format->components = count_out;
native_format->enable = true;
native_format->offset = m_dst_ofs;
native_format->type = VAR_FLOAT;
native_format->integer = false;
m_dst_ofs += sizeof(float) * count_out;
if (attribute == DIRECT)
m_src_ofs += load_bytes;
return load_bytes;
}
void VertexLoaderARM64::ReadColor(u64 attribute, int format, s32 offset)
{
int load_bytes = 0;
switch (format)
{
case FORMAT_24B_888:
case FORMAT_32B_888x:
case FORMAT_32B_8888:
if (offset == -1)
LDR(IndexType::Unsigned, scratch2_reg, EncodeRegTo64(scratch1_reg), 0);
else if (offset & 3) // Not aligned - unscaled
LDUR(scratch2_reg, src_reg, offset);
else
LDR(IndexType::Unsigned, scratch2_reg, src_reg, offset);
if (format != FORMAT_32B_8888)
ORRI2R(scratch2_reg, scratch2_reg, 0xFF000000);
STR(IndexType::Unsigned, scratch2_reg, dst_reg, m_dst_ofs);
load_bytes = 3 + (format != FORMAT_24B_888);
break;
case FORMAT_16B_565:
// RRRRRGGG GGGBBBBB
// AAAAAAAA BBBBBBBB GGGGGGGG RRRRRRRR
if (offset == -1)
LDRH(IndexType::Unsigned, scratch3_reg, EncodeRegTo64(scratch1_reg), 0);
else if (offset & 1) // Not aligned - unscaled
LDURH(scratch3_reg, src_reg, offset);
else
LDRH(IndexType::Unsigned, scratch3_reg, src_reg, offset);
REV16(scratch3_reg, scratch3_reg);
// B
AND(scratch2_reg, scratch3_reg, 32, 4);
ORR(scratch2_reg, WSP, scratch2_reg, ArithOption(scratch2_reg, ST_LSL, 3));
ORR(scratch2_reg, scratch2_reg, scratch2_reg, ArithOption(scratch2_reg, ST_LSR, 5));
ORR(scratch1_reg, WSP, scratch2_reg, ArithOption(scratch2_reg, ST_LSL, 16));
// G
UBFM(scratch2_reg, scratch3_reg, 5, 10);
ORR(scratch2_reg, WSP, scratch2_reg, ArithOption(scratch2_reg, ST_LSL, 2));
ORR(scratch2_reg, scratch2_reg, scratch2_reg, ArithOption(scratch2_reg, ST_LSR, 6));
ORR(scratch1_reg, scratch1_reg, scratch2_reg, ArithOption(scratch2_reg, ST_LSL, 8));
// R
UBFM(scratch2_reg, scratch3_reg, 11, 15);
ORR(scratch1_reg, scratch1_reg, scratch2_reg, ArithOption(scratch2_reg, ST_LSL, 3));
ORR(scratch1_reg, scratch1_reg, scratch2_reg, ArithOption(scratch2_reg, ST_LSR, 2));
// A
ORRI2R(scratch1_reg, scratch1_reg, 0xFF000000);
STR(IndexType::Unsigned, scratch1_reg, dst_reg, m_dst_ofs);
load_bytes = 2;
break;
case FORMAT_16B_4444:
// BBBBAAAA RRRRGGGG
// REV16 - RRRRGGGG BBBBAAAA
// AAAAAAAA BBBBBBBB GGGGGGGG RRRRRRRR
if (offset == -1)
LDRH(IndexType::Unsigned, scratch3_reg, EncodeRegTo64(scratch1_reg), 0);
else if (offset & 1) // Not aligned - unscaled
LDURH(scratch3_reg, src_reg, offset);
else
LDRH(IndexType::Unsigned, scratch3_reg, src_reg, offset);
// R
UBFM(scratch1_reg, scratch3_reg, 4, 7);
// G
AND(scratch2_reg, scratch3_reg, 32, 3);
ORR(scratch1_reg, scratch1_reg, scratch2_reg, ArithOption(scratch2_reg, ST_LSL, 8));
// B
UBFM(scratch2_reg, scratch3_reg, 12, 15);
ORR(scratch1_reg, scratch1_reg, scratch2_reg, ArithOption(scratch2_reg, ST_LSL, 16));
// A
UBFM(scratch2_reg, scratch3_reg, 8, 11);
ORR(scratch1_reg, scratch1_reg, scratch2_reg, ArithOption(scratch2_reg, ST_LSL, 24));
// Final duplication
ORR(scratch1_reg, scratch1_reg, scratch1_reg, ArithOption(scratch1_reg, ST_LSL, 4));
STR(IndexType::Unsigned, scratch1_reg, dst_reg, m_dst_ofs);
load_bytes = 2;
break;
case FORMAT_24B_6666:
// RRRRRRGG GGGGBBBB BBAAAAAA
// AAAAAAAA BBBBBBBB GGGGGGGG RRRRRRRR
if (offset == -1)
{
LDUR(scratch3_reg, EncodeRegTo64(scratch1_reg), -1);
}
else
{
offset -= 1;
if (offset & 3) // Not aligned - unscaled
LDUR(scratch3_reg, src_reg, offset);
else
LDR(IndexType::Unsigned, scratch3_reg, src_reg, offset);
}
REV32(scratch3_reg, scratch3_reg);
// A
UBFM(scratch2_reg, scratch3_reg, 0, 5);
ORR(scratch2_reg, WSP, scratch2_reg, ArithOption(scratch2_reg, ST_LSL, 2));
ORR(scratch2_reg, scratch2_reg, scratch2_reg, ArithOption(scratch2_reg, ST_LSR, 6));
ORR(scratch1_reg, WSP, scratch2_reg, ArithOption(scratch2_reg, ST_LSL, 24));
// B
UBFM(scratch2_reg, scratch3_reg, 6, 11);
ORR(scratch2_reg, WSP, scratch2_reg, ArithOption(scratch2_reg, ST_LSL, 2));
ORR(scratch2_reg, scratch2_reg, scratch2_reg, ArithOption(scratch2_reg, ST_LSR, 6));
ORR(scratch1_reg, scratch1_reg, scratch2_reg, ArithOption(scratch2_reg, ST_LSL, 16));
// G
UBFM(scratch2_reg, scratch3_reg, 12, 17);
ORR(scratch2_reg, WSP, scratch2_reg, ArithOption(scratch2_reg, ST_LSL, 2));
ORR(scratch2_reg, scratch2_reg, scratch2_reg, ArithOption(scratch2_reg, ST_LSR, 6));
ORR(scratch1_reg, scratch1_reg, scratch2_reg, ArithOption(scratch2_reg, ST_LSL, 8));
// R
UBFM(scratch2_reg, scratch3_reg, 18, 23);
ORR(scratch1_reg, scratch1_reg, scratch2_reg, ArithOption(scratch2_reg, ST_LSL, 2));
ORR(scratch1_reg, scratch1_reg, scratch2_reg, ArithOption(scratch2_reg, ST_LSR, 4));
STR(IndexType::Unsigned, scratch1_reg, dst_reg, m_dst_ofs);
load_bytes = 3;
break;
}
if (attribute == DIRECT)
m_src_ofs += load_bytes;
}
void VertexLoaderARM64::GenerateVertexLoader()
{
// R0 - Source pointer
// R1 - Destination pointer
// R2 - Count
// R30 - LR
//
// R0 return how many
//
// Registers we don't have to worry about saving
// R9-R17 are caller saved temporaries
// R18 is a temporary or platform specific register(iOS)
//
// VFP registers
// We can touch all except v8-v15
// If we need to use those, we need to retain the lower 64bits(!) of the register
const u64 tc[8] = {
m_VtxDesc.Tex0Coord, m_VtxDesc.Tex1Coord, m_VtxDesc.Tex2Coord, m_VtxDesc.Tex3Coord,
m_VtxDesc.Tex4Coord, m_VtxDesc.Tex5Coord, m_VtxDesc.Tex6Coord, m_VtxDesc.Tex7Coord,
};
bool has_tc = false;
bool has_tc_scale = false;
for (int i = 0; i < 8; i++)
{
has_tc |= tc[i] != 0;
has_tc_scale |= !!m_VtxAttr.texCoord[i].Frac;
}
bool need_scale =
(m_VtxAttr.ByteDequant && m_VtxAttr.PosFrac) || (has_tc && has_tc_scale) || m_VtxDesc.Normal;
AlignCode16();
if (m_VtxDesc.Position & MASK_INDEXED)
MOV(skipped_reg, WZR);
MOV(saved_count, count_reg);
MOVP2R(stride_reg, g_main_cp_state.array_strides);
MOVP2R(arraybase_reg, VertexLoaderManager::cached_arraybases);
if (need_scale)
MOVP2R(scale_reg, scale_factors);
const u8* loop_start = GetCodePtr();
if (m_VtxDesc.PosMatIdx)
{
LDRB(IndexType::Unsigned, scratch1_reg, src_reg, m_src_ofs);
AND(scratch1_reg, scratch1_reg, 0, 5);
STR(IndexType::Unsigned, scratch1_reg, dst_reg, m_dst_ofs);
// Z-Freeze
CMP(count_reg, 3);
FixupBranch dont_store = B(CC_GT);
MOVP2R(EncodeRegTo64(scratch2_reg), VertexLoaderManager::position_matrix_index);
STR(IndexType::Unsigned, scratch1_reg, EncodeRegTo64(scratch2_reg), 0);
SetJumpTarget(dont_store);
m_native_components |= VB_HAS_POSMTXIDX;
m_native_vtx_decl.posmtx.components = 4;
m_native_vtx_decl.posmtx.enable = true;
m_native_vtx_decl.posmtx.offset = m_dst_ofs;
m_native_vtx_decl.posmtx.type = VAR_UNSIGNED_BYTE;
m_native_vtx_decl.posmtx.integer = true;
m_src_ofs += sizeof(u8);
m_dst_ofs += sizeof(u32);
}
u32 texmatidx_ofs[8];
const u64 tm[8] = {
m_VtxDesc.Tex0MatIdx, m_VtxDesc.Tex1MatIdx, m_VtxDesc.Tex2MatIdx, m_VtxDesc.Tex3MatIdx,
m_VtxDesc.Tex4MatIdx, m_VtxDesc.Tex5MatIdx, m_VtxDesc.Tex6MatIdx, m_VtxDesc.Tex7MatIdx,
};
for (int i = 0; i < 8; i++)
{
if (tm[i])
texmatidx_ofs[i] = m_src_ofs++;
}
// Position
{
int elem_size = 1 << (m_VtxAttr.PosFormat / 2);
int load_bytes = elem_size * (m_VtxAttr.PosElements + 2);
int load_size =
load_bytes == 1 ? 1 : load_bytes <= 2 ? 2 : load_bytes <= 4 ? 4 : load_bytes <= 8 ? 8 : 16;
load_size <<= 3;
s32 offset =
GetAddressImm(ARRAY_POSITION, m_VtxDesc.Position, EncodeRegTo64(scratch1_reg), load_size);
int pos_elements = m_VtxAttr.PosElements + 2;
ReadVertex(m_VtxDesc.Position, m_VtxAttr.PosFormat, pos_elements, pos_elements,
m_VtxAttr.ByteDequant, m_VtxAttr.PosFrac, &m_native_vtx_decl.position, offset);
}
if (m_VtxDesc.Normal)
{
static const u8 map[8] = {7, 6, 15, 14};
u8 scaling_exponent = map[m_VtxAttr.NormalFormat];
s32 offset = -1;
for (int i = 0; i < (m_VtxAttr.NormalElements ? 3 : 1); i++)
{
if (!i || m_VtxAttr.NormalIndex3)
{
int elem_size = 1 << (m_VtxAttr.NormalFormat / 2);
int load_bytes = elem_size * 3;
int load_size = load_bytes == 1 ?
1 :
load_bytes <= 2 ? 2 : load_bytes <= 4 ? 4 : load_bytes <= 8 ? 8 : 16;
offset = GetAddressImm(ARRAY_NORMAL, m_VtxDesc.Normal, EncodeRegTo64(scratch1_reg),
load_size << 3);
if (offset == -1)
ADD(EncodeRegTo64(scratch1_reg), EncodeRegTo64(scratch1_reg), i * elem_size * 3);
else
offset += i * elem_size * 3;
}
int bytes_read = ReadVertex(m_VtxDesc.Normal, m_VtxAttr.NormalFormat, 3, 3, true,
scaling_exponent, &m_native_vtx_decl.normals[i], offset);
if (offset == -1)
ADD(EncodeRegTo64(scratch1_reg), EncodeRegTo64(scratch1_reg), bytes_read);
else
offset += bytes_read;
}
m_native_components |= VB_HAS_NRM0;
if (m_VtxAttr.NormalElements)
m_native_components |= VB_HAS_NRM1 | VB_HAS_NRM2;
}
const u64 col[2] = {m_VtxDesc.Color0, m_VtxDesc.Color1};
for (int i = 0; i < 2; i++)
{
m_native_vtx_decl.colors[i].components = 4;
m_native_vtx_decl.colors[i].type = VAR_UNSIGNED_BYTE;
m_native_vtx_decl.colors[i].integer = false;
if (col[i])
{
u32 align = 4;
if (m_VtxAttr.color[i].Comp == FORMAT_16B_565 || m_VtxAttr.color[i].Comp == FORMAT_16B_4444)
align = 2;
s32 offset = GetAddressImm(ARRAY_COLOR + i, col[i], EncodeRegTo64(scratch1_reg), align);
ReadColor(col[i], m_VtxAttr.color[i].Comp, offset);
m_native_components |= VB_HAS_COL0 << i;
m_native_vtx_decl.colors[i].components = 4;
m_native_vtx_decl.colors[i].enable = true;
m_native_vtx_decl.colors[i].offset = m_dst_ofs;
m_native_vtx_decl.colors[i].type = VAR_UNSIGNED_BYTE;
m_native_vtx_decl.colors[i].integer = false;
m_dst_ofs += 4;
}
}
for (int i = 0; i < 8; i++)
{
m_native_vtx_decl.texcoords[i].offset = m_dst_ofs;
m_native_vtx_decl.texcoords[i].type = VAR_FLOAT;
m_native_vtx_decl.texcoords[i].integer = false;
int elements = m_VtxAttr.texCoord[i].Elements + 1;
if (tc[i])
{
m_native_components |= VB_HAS_UV0 << i;
int elem_size = 1 << (m_VtxAttr.texCoord[i].Format / 2);
int load_bytes = elem_size * (elements + 2);
int load_size = load_bytes == 1 ?
1 :
load_bytes <= 2 ? 2 : load_bytes <= 4 ? 4 : load_bytes <= 8 ? 8 : 16;
load_size <<= 3;
s32 offset =
GetAddressImm(ARRAY_TEXCOORD0 + i, tc[i], EncodeRegTo64(scratch1_reg), load_size);
u8 scaling_exponent = m_VtxAttr.texCoord[i].Frac;
ReadVertex(tc[i], m_VtxAttr.texCoord[i].Format, elements, tm[i] ? 2 : elements,
m_VtxAttr.ByteDequant, scaling_exponent, &m_native_vtx_decl.texcoords[i], offset);
}
if (tm[i])
{
m_native_components |= VB_HAS_TEXMTXIDX0 << i;
m_native_vtx_decl.texcoords[i].components = 3;
m_native_vtx_decl.texcoords[i].enable = true;
m_native_vtx_decl.texcoords[i].type = VAR_FLOAT;
m_native_vtx_decl.texcoords[i].integer = false;
LDRB(IndexType::Unsigned, scratch2_reg, src_reg, texmatidx_ofs[i]);
m_float_emit.UCVTF(S31, scratch2_reg);
if (tc[i])
{
m_float_emit.STR(32, IndexType::Unsigned, D31, dst_reg, m_dst_ofs);
m_dst_ofs += sizeof(float);
}
else
{
m_native_vtx_decl.texcoords[i].offset = m_dst_ofs;
if (m_dst_ofs < 256)
{
STUR(SP, dst_reg, m_dst_ofs);
}
else if (!(m_dst_ofs & 7))
{
// If m_dst_ofs isn't 8byte aligned we can't store an 8byte zero register
// So store two 4byte zero registers
// The destination is always 4byte aligned
STR(IndexType::Unsigned, WSP, dst_reg, m_dst_ofs);
STR(IndexType::Unsigned, WSP, dst_reg, m_dst_ofs + 4);
}
else
{
STR(IndexType::Unsigned, SP, dst_reg, m_dst_ofs);
}
m_float_emit.STR(32, IndexType::Unsigned, D31, dst_reg, m_dst_ofs + 8);
m_dst_ofs += sizeof(float) * 3;
}
}
}
// Prepare for the next vertex.
ADD(dst_reg, dst_reg, m_dst_ofs);
const u8* cont = GetCodePtr();
ADD(src_reg, src_reg, m_src_ofs);
SUB(count_reg, count_reg, 1);
CBNZ(count_reg, loop_start);
if (m_VtxDesc.Position & MASK_INDEXED)
{
SUB(W0, saved_count, skipped_reg);
RET(X30);
SetJumpTarget(m_skip_vertex);
ADD(skipped_reg, skipped_reg, 1);
B(cont);
}
else
{
MOV(W0, saved_count);
RET(X30);
}
FlushIcache();
m_VertexSize = m_src_ofs;
m_native_vtx_decl.stride = m_dst_ofs;
}
int VertexLoaderARM64::RunVertices(DataReader src, DataReader dst, int count)
{
m_numLoadedVertices += count;
return ((int (*)(u8 * src, u8 * dst, int count)) region)(src.GetPointer(), dst.GetPointer(),
count);
}