mirror of
https://github.com/dolphin-emu/dolphin.git
synced 2025-01-18 20:11:16 +01:00
cb86db7b68
Mostly small changes, like capitalization and spelling
707 lines
21 KiB
C++
707 lines
21 KiB
C++
// Copyright 2014 Dolphin Emulator Project
|
|
// Licensed under GPLv2
|
|
// Refer to the license.txt file included.
|
|
|
|
// WARNING - THIS LIBRARY IS NOT THREAD SAFE!!!
|
|
|
|
#pragma once
|
|
|
|
#include <vector>
|
|
|
|
#include "Common/ArmCommon.h"
|
|
#include "Common/CodeBlock.h"
|
|
#include "Common/CommonTypes.h"
|
|
|
|
#if defined(__SYMBIAN32__) || defined(PANDORA)
|
|
#include <signal.h>
|
|
#endif
|
|
|
|
#undef _IP
|
|
#undef R0
|
|
#undef _SP
|
|
#undef _LR
|
|
#undef _PC
|
|
|
|
// VCVT flags
|
|
#define TO_FLOAT 0
|
|
#define TO_INT 1 << 0
|
|
#define IS_SIGNED 1 << 1
|
|
#define ROUND_TO_ZERO 1 << 2
|
|
|
|
namespace ArmGen
|
|
{
|
|
enum ARMReg
|
|
{
|
|
// GPRs
|
|
R0 = 0, R1, R2, R3, R4, R5,
|
|
R6, R7, R8, R9, R10, R11,
|
|
|
|
// SPRs
|
|
// R13 - R15 are SP, LR, and PC.
|
|
// Almost always referred to by name instead of register number
|
|
R12 = 12, R13 = 13, R14 = 14, R15 = 15,
|
|
_IP = 12, _SP = 13, _LR = 14, _PC = 15,
|
|
|
|
|
|
// VFP single precision registers
|
|
S0, S1, S2, S3, S4, S5, S6,
|
|
S7, S8, S9, S10, S11, S12, S13,
|
|
S14, S15, S16, S17, S18, S19, S20,
|
|
S21, S22, S23, S24, S25, S26, S27,
|
|
S28, S29, S30, S31,
|
|
|
|
// VFP Double Precision registers
|
|
D0, D1, D2, D3, D4, D5, D6, D7,
|
|
D8, D9, D10, D11, D12, D13, D14, D15,
|
|
D16, D17, D18, D19, D20, D21, D22, D23,
|
|
D24, D25, D26, D27, D28, D29, D30, D31,
|
|
|
|
// ASIMD Quad-Word registers
|
|
Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7,
|
|
Q8, Q9, Q10, Q11, Q12, Q13, Q14, Q15,
|
|
INVALID_REG = 0xFFFFFFFF
|
|
};
|
|
|
|
enum ShiftType
|
|
{
|
|
ST_LSL = 0,
|
|
ST_ASL = 0,
|
|
ST_LSR = 1,
|
|
ST_ASR = 2,
|
|
ST_ROR = 3,
|
|
ST_RRX = 4
|
|
};
|
|
|
|
enum
|
|
{
|
|
NUMGPRs = 13,
|
|
};
|
|
|
|
class ARMXEmitter;
|
|
|
|
enum OpType
|
|
{
|
|
TYPE_IMM = 0,
|
|
TYPE_REG,
|
|
TYPE_IMMSREG,
|
|
TYPE_RSR,
|
|
TYPE_MEM
|
|
};
|
|
|
|
// This is no longer a proper operand2 class. Need to split up.
|
|
class Operand2
|
|
{
|
|
friend class ARMXEmitter;
|
|
protected:
|
|
u32 Value;
|
|
|
|
private:
|
|
OpType Type;
|
|
|
|
// IMM types
|
|
u8 Rotation; // Only for u8 values
|
|
|
|
// Register types
|
|
u8 IndexOrShift;
|
|
ShiftType Shift;
|
|
public:
|
|
OpType GetType()
|
|
{
|
|
return Type;
|
|
}
|
|
Operand2() {}
|
|
Operand2(u32 imm, OpType type = TYPE_IMM)
|
|
{
|
|
Type = type;
|
|
Value = imm;
|
|
Rotation = 0;
|
|
}
|
|
|
|
Operand2(ARMReg Reg)
|
|
{
|
|
Type = TYPE_REG;
|
|
Value = Reg;
|
|
Rotation = 0;
|
|
}
|
|
Operand2(u8 imm, u8 rotation)
|
|
{
|
|
Type = TYPE_IMM;
|
|
Value = imm;
|
|
Rotation = rotation;
|
|
}
|
|
Operand2(ARMReg base, ShiftType type, ARMReg shift) // RSR
|
|
{
|
|
Type = TYPE_RSR;
|
|
_assert_msg_(DYNA_REC, type != ST_RRX, "Invalid Operand2: RRX does not take a register shift amount");
|
|
IndexOrShift = shift;
|
|
Shift = type;
|
|
Value = base;
|
|
}
|
|
|
|
Operand2(ARMReg base, ShiftType type, u8 shift)// For IMM shifted register
|
|
{
|
|
if (shift == 32) shift = 0;
|
|
switch (type)
|
|
{
|
|
case ST_LSL:
|
|
_assert_msg_(DYNA_REC, shift < 32, "Invalid Operand2: LSL %u", shift);
|
|
break;
|
|
case ST_LSR:
|
|
_assert_msg_(DYNA_REC, shift <= 32, "Invalid Operand2: LSR %u", shift);
|
|
if (!shift)
|
|
type = ST_LSL;
|
|
if (shift == 32)
|
|
shift = 0;
|
|
break;
|
|
case ST_ASR:
|
|
_assert_msg_(DYNA_REC, shift < 32, "Invalid Operand2: LSR %u", shift);
|
|
if (!shift)
|
|
type = ST_LSL;
|
|
if (shift == 32)
|
|
shift = 0;
|
|
break;
|
|
case ST_ROR:
|
|
_assert_msg_(DYNA_REC, shift < 32, "Invalid Operand2: ROR %u", shift);
|
|
if (!shift)
|
|
type = ST_LSL;
|
|
break;
|
|
case ST_RRX:
|
|
_assert_msg_(DYNA_REC, shift == 0, "Invalid Operand2: RRX does not take an immediate shift amount");
|
|
type = ST_ROR;
|
|
break;
|
|
}
|
|
IndexOrShift = shift;
|
|
Shift = type;
|
|
Value = base;
|
|
Type = TYPE_IMMSREG;
|
|
}
|
|
u32 GetData()
|
|
{
|
|
switch (Type)
|
|
{
|
|
case TYPE_IMM:
|
|
return Imm12Mod(); // This'll need to be changed later
|
|
case TYPE_REG:
|
|
return Rm();
|
|
case TYPE_IMMSREG:
|
|
return IMMSR();
|
|
case TYPE_RSR:
|
|
return RSR();
|
|
default:
|
|
_assert_msg_(DYNA_REC, false, "GetData with Invalid Type");
|
|
return 0;
|
|
}
|
|
}
|
|
u32 IMMSR() // IMM shifted register
|
|
{
|
|
_assert_msg_(DYNA_REC, Type == TYPE_IMMSREG, "IMMSR must be imm shifted register");
|
|
return ((IndexOrShift & 0x1f) << 7 | (Shift << 5) | Value);
|
|
}
|
|
u32 RSR() // Register shifted register
|
|
{
|
|
_assert_msg_(DYNA_REC, Type == TYPE_RSR, "RSR must be RSR Of Course");
|
|
return (IndexOrShift << 8) | (Shift << 5) | 0x10 | Value;
|
|
}
|
|
u32 Rm()
|
|
{
|
|
_assert_msg_(DYNA_REC, Type == TYPE_REG, "Rm must be with Reg");
|
|
return Value;
|
|
}
|
|
|
|
u32 Imm5()
|
|
{
|
|
_assert_msg_(DYNA_REC, (Type == TYPE_IMM), "Imm5 not IMM value");
|
|
return ((Value & 0x0000001F) << 7);
|
|
}
|
|
u32 Imm8()
|
|
{
|
|
_assert_msg_(DYNA_REC, (Type == TYPE_IMM), "Imm8Rot not IMM value");
|
|
return Value & 0xFF;
|
|
}
|
|
u32 Imm8Rot() // IMM8 with Rotation
|
|
{
|
|
_assert_msg_(DYNA_REC, (Type == TYPE_IMM), "Imm8Rot not IMM value");
|
|
_assert_msg_(DYNA_REC, (Rotation & 0xE1) != 0, "Invalid Operand2: immediate rotation %u", Rotation);
|
|
return (1 << 25) | (Rotation << 7) | (Value & 0x000000FF);
|
|
}
|
|
u32 Imm12()
|
|
{
|
|
_assert_msg_(DYNA_REC, (Type == TYPE_IMM), "Imm12 not IMM");
|
|
return (Value & 0x00000FFF);
|
|
}
|
|
|
|
u32 Imm12Mod()
|
|
{
|
|
// This is a IMM12 with the top four bits being rotation and the
|
|
// bottom eight being a IMM. This is for instructions that need to
|
|
// expand a 8bit IMM to a 32bit value and gives you some rotation as
|
|
// well.
|
|
// Each rotation rotates to the right by 2 bits
|
|
_assert_msg_(DYNA_REC, (Type == TYPE_IMM), "Imm12Mod not IMM");
|
|
return ((Rotation & 0xF) << 8) | (Value & 0xFF);
|
|
}
|
|
u32 Imm16()
|
|
{
|
|
_assert_msg_(DYNA_REC, (Type == TYPE_IMM), "Imm16 not IMM");
|
|
return ( (Value & 0xF000) << 4) | (Value & 0x0FFF);
|
|
}
|
|
u32 Imm16Low()
|
|
{
|
|
return Imm16();
|
|
}
|
|
u32 Imm16High() // Returns high 16bits
|
|
{
|
|
_assert_msg_(DYNA_REC, (Type == TYPE_IMM), "Imm16 not IMM");
|
|
return ( ((Value >> 16) & 0xF000) << 4) | ((Value >> 16) & 0x0FFF);
|
|
}
|
|
u32 Imm24()
|
|
{
|
|
_assert_msg_(DYNA_REC, (Type == TYPE_IMM), "Imm16 not IMM");
|
|
return (Value & 0x0FFFFFFF);
|
|
}
|
|
// NEON and ASIMD specific
|
|
u32 Imm8ASIMD()
|
|
{
|
|
_assert_msg_(DYNA_REC, (Type == TYPE_IMM), "Imm8ASIMD not IMM");
|
|
return ((Value & 0x80) << 17) | ((Value & 0x70) << 12) | (Value & 0xF);
|
|
}
|
|
u32 Imm8VFP()
|
|
{
|
|
_assert_msg_(DYNA_REC, (Type == TYPE_IMM), "Imm8VFP not IMM");
|
|
return ((Value & 0xF0) << 12) | (Value & 0xF);
|
|
}
|
|
};
|
|
|
|
// Use these when you don't know if an imm can be represented as an operand2.
|
|
// This lets you generate both an optimal and a fallback solution by checking
|
|
// the return value, which will be false if these fail to find a Operand2 that
|
|
// represents your 32-bit imm value.
|
|
bool TryMakeOperand2(u32 imm, Operand2 &op2);
|
|
bool TryMakeOperand2_AllowInverse(u32 imm, Operand2 &op2, bool *inverse);
|
|
bool TryMakeOperand2_AllowNegation(s32 imm, Operand2 &op2, bool *negated);
|
|
|
|
// Use this only when you know imm can be made into an Operand2.
|
|
Operand2 AssumeMakeOperand2(u32 imm);
|
|
|
|
inline Operand2 R(ARMReg Reg) { return Operand2(Reg, TYPE_REG); }
|
|
inline Operand2 IMM(u32 Imm) { return Operand2(Imm, TYPE_IMM); }
|
|
inline Operand2 Mem(void *ptr) { return Operand2((u32)ptr, TYPE_IMM); }
|
|
//usage: struct {int e;} s; STRUCT_OFFSET(s,e)
|
|
#define STRUCT_OFF(str,elem) ((u32)((u32)&(str).elem-(u32)&(str)))
|
|
|
|
|
|
struct FixupBranch
|
|
{
|
|
u8 *ptr;
|
|
u32 condition; // Remembers our codition at the time
|
|
int type; //0 = B 1 = BL
|
|
};
|
|
|
|
struct LiteralPool
|
|
{
|
|
s32 loc;
|
|
u8* ldr_address;
|
|
u32 val;
|
|
};
|
|
|
|
typedef const u8* JumpTarget;
|
|
// XXX: Stop polluting the global namespace
|
|
const u32 I_8 = (1 << 0);
|
|
const u32 I_16 = (1 << 1);
|
|
const u32 I_32 = (1 << 2);
|
|
const u32 I_64 = (1 << 3);
|
|
const u32 I_SIGNED = (1 << 4);
|
|
const u32 I_UNSIGNED = (1 << 5);
|
|
const u32 F_32 = (1 << 6);
|
|
const u32 I_POLYNOMIAL = (1 << 7); // Only used in VMUL/VMULL
|
|
|
|
u32 EncodeVd(ARMReg Vd);
|
|
u32 EncodeVn(ARMReg Vn);
|
|
u32 EncodeVm(ARMReg Vm);
|
|
// Subtracts the base from the register to give us the real one
|
|
ARMReg SubBase(ARMReg Reg);
|
|
|
|
class ARMXEmitter
|
|
{
|
|
friend struct OpArg; // for Write8 etc
|
|
friend class NEONXEmitter;
|
|
private:
|
|
u8 *code, *startcode;
|
|
u8 *lastCacheFlushEnd;
|
|
u32 condition;
|
|
std::vector<LiteralPool> currentLitPool;
|
|
|
|
void WriteStoreOp(u32 Op, ARMReg Rt, ARMReg Rn, Operand2 op2, bool RegAdd);
|
|
void WriteRegStoreOp(u32 op, ARMReg dest, bool WriteBack, u16 RegList);
|
|
void WriteShiftedDataOp(u32 op, bool SetFlags, ARMReg dest, ARMReg src, Operand2 op2);
|
|
void WriteSignedMultiply(u32 Op, u32 Op2, u32 Op3, ARMReg dest, ARMReg r1, ARMReg r2);
|
|
|
|
void WriteVFPDataOp(u32 Op, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void WriteVFPDataOp6bit(u32 Op, ARMReg Vd, ARMReg Vn, ARMReg Vm, u32 bit6);
|
|
|
|
void Write4OpMultiply(u32 op, ARMReg destLo, ARMReg destHi, ARMReg rn, ARMReg rm);
|
|
|
|
// New Ops
|
|
void WriteInstruction(u32 op, ARMReg Rd, ARMReg Rn, Operand2 Rm, bool SetFlags = false);
|
|
|
|
protected:
|
|
inline void Write32(u32 value) {*(u32*)code = value; code+=4;}
|
|
|
|
public:
|
|
ARMXEmitter() : code(nullptr), startcode(nullptr), lastCacheFlushEnd(nullptr) {
|
|
condition = CC_AL << 28;
|
|
}
|
|
ARMXEmitter(u8* code_ptr) {
|
|
code = code_ptr;
|
|
lastCacheFlushEnd = code_ptr;
|
|
startcode = code_ptr;
|
|
condition = CC_AL << 28;
|
|
}
|
|
virtual ~ARMXEmitter() {}
|
|
|
|
void SetCodePtr(u8 *ptr);
|
|
void ReserveCodeSpace(u32 bytes);
|
|
const u8 *AlignCode16();
|
|
const u8 *AlignCodePage();
|
|
const u8 *GetCodePtr() const;
|
|
void FlushIcache();
|
|
void FlushIcacheSection(u8 *start, u8 *end);
|
|
u8 *GetWritableCodePtr();
|
|
|
|
void FlushLitPool();
|
|
void AddNewLit(u32 val);
|
|
bool TrySetValue_TwoOp(ARMReg reg, u32 val);
|
|
|
|
CCFlags GetCC() { return CCFlags(condition >> 28); }
|
|
void SetCC(CCFlags cond = CC_AL);
|
|
|
|
// Special purpose instructions
|
|
|
|
// Dynamic Endian Switching
|
|
void SETEND(bool BE);
|
|
// Debug Breakpoint
|
|
void BKPT(u16 arg);
|
|
|
|
// Hint instruction
|
|
void YIELD();
|
|
|
|
// System
|
|
void MRC(u32 coproc, u32 opc1, ARMReg Rt, u32 CRn, u32 CRm, u32 opc2 = 0);
|
|
void MCR(u32 coproc, u32 opc1, ARMReg Rt, u32 CRn, u32 CRm, u32 opc2 = 0);
|
|
|
|
// Do nothing
|
|
void NOP(int count = 1); //nop padding - TODO: fast nop slides, for AMD and Intel (check their manuals)
|
|
|
|
#ifdef CALL
|
|
#undef CALL
|
|
#endif
|
|
|
|
// Branching
|
|
FixupBranch B();
|
|
FixupBranch B_CC(CCFlags Cond);
|
|
void B_CC(CCFlags Cond, const void *fnptr);
|
|
FixupBranch BL();
|
|
FixupBranch BL_CC(CCFlags Cond);
|
|
void SetJumpTarget(FixupBranch const &branch);
|
|
|
|
void B (const void *fnptr);
|
|
void B (ARMReg src);
|
|
void BL(const void *fnptr);
|
|
void BL(ARMReg src);
|
|
bool BLInRange(const void *fnptr);
|
|
|
|
void PUSH(const int num, ...);
|
|
void POP(const int num, ...);
|
|
|
|
// New Data Ops
|
|
void AND (ARMReg Rd, ARMReg Rn, Operand2 Rm);
|
|
void ANDS(ARMReg Rd, ARMReg Rn, Operand2 Rm);
|
|
void EOR (ARMReg dest, ARMReg src, Operand2 op2);
|
|
void EORS(ARMReg dest, ARMReg src, Operand2 op2);
|
|
void SUB (ARMReg dest, ARMReg src, Operand2 op2);
|
|
void SUBS(ARMReg dest, ARMReg src, Operand2 op2);
|
|
void RSB (ARMReg dest, ARMReg src, Operand2 op2);
|
|
void RSBS(ARMReg dest, ARMReg src, Operand2 op2);
|
|
void ADD (ARMReg dest, ARMReg src, Operand2 op2);
|
|
void ADDS(ARMReg dest, ARMReg src, Operand2 op2);
|
|
void ADC (ARMReg dest, ARMReg src, Operand2 op2);
|
|
void ADCS(ARMReg dest, ARMReg src, Operand2 op2);
|
|
void LSL (ARMReg dest, ARMReg src, Operand2 op2);
|
|
void LSLS(ARMReg dest, ARMReg src, Operand2 op2);
|
|
void LSR (ARMReg dest, ARMReg src, Operand2 op2);
|
|
void LSRS(ARMReg dest, ARMReg src, Operand2 op2);
|
|
void ASR (ARMReg dest, ARMReg src, Operand2 op2);
|
|
void ASRS(ARMReg dest, ARMReg src, Operand2 op2);
|
|
void SBC (ARMReg dest, ARMReg src, Operand2 op2);
|
|
void SBCS(ARMReg dest, ARMReg src, Operand2 op2);
|
|
void RBIT(ARMReg dest, ARMReg src);
|
|
void REV (ARMReg dest, ARMReg src);
|
|
void REV16 (ARMReg dest, ARMReg src);
|
|
void RSC (ARMReg dest, ARMReg src, Operand2 op2);
|
|
void RSCS(ARMReg dest, ARMReg src, Operand2 op2);
|
|
void TST ( ARMReg src, Operand2 op2);
|
|
void TEQ ( ARMReg src, Operand2 op2);
|
|
void CMP ( ARMReg src, Operand2 op2);
|
|
void CMN ( ARMReg src, Operand2 op2);
|
|
void ORR (ARMReg dest, ARMReg src, Operand2 op2);
|
|
void ORRS(ARMReg dest, ARMReg src, Operand2 op2);
|
|
void MOV (ARMReg dest, Operand2 op2);
|
|
void MOVS(ARMReg dest, Operand2 op2);
|
|
void BIC (ARMReg dest, ARMReg src, Operand2 op2); // BIC = ANDN
|
|
void BICS(ARMReg dest, ARMReg src, Operand2 op2);
|
|
void MVN (ARMReg dest, Operand2 op2);
|
|
void MVNS(ARMReg dest, Operand2 op2);
|
|
void MOVW(ARMReg dest, Operand2 op2);
|
|
void MOVT(ARMReg dest, Operand2 op2, bool TopBits = false);
|
|
|
|
// UDIV and SDIV are only available on CPUs that have
|
|
// the idiva hardare capacity
|
|
void UDIV(ARMReg dest, ARMReg dividend, ARMReg divisor);
|
|
void SDIV(ARMReg dest, ARMReg dividend, ARMReg divisor);
|
|
|
|
void MUL (ARMReg dest, ARMReg src, ARMReg op2);
|
|
void MULS(ARMReg dest, ARMReg src, ARMReg op2);
|
|
|
|
void UMULL(ARMReg destLo, ARMReg destHi, ARMReg rn, ARMReg rm);
|
|
void UMULLS(ARMReg destLo, ARMReg destHi, ARMReg rn, ARMReg rm);
|
|
void SMULL(ARMReg destLo, ARMReg destHi, ARMReg rn, ARMReg rm);
|
|
|
|
void UMLAL(ARMReg destLo, ARMReg destHi, ARMReg rn, ARMReg rm);
|
|
void SMLAL(ARMReg destLo, ARMReg destHi, ARMReg rn, ARMReg rm);
|
|
|
|
void SXTB(ARMReg dest, ARMReg op2);
|
|
void SXTH(ARMReg dest, ARMReg op2, u8 rotation = 0);
|
|
void SXTAH(ARMReg dest, ARMReg src, ARMReg op2, u8 rotation = 0);
|
|
void BFI(ARMReg rd, ARMReg rn, u8 lsb, u8 width);
|
|
void UBFX(ARMReg dest, ARMReg op2, u8 lsb, u8 width);
|
|
void CLZ(ARMReg rd, ARMReg rm);
|
|
|
|
// Using just MSR here messes with our defines on the PPC side of stuff (when this code was in Dolphin...)
|
|
// Just need to put an underscore here, bit annoying.
|
|
void _MSR (bool nzcvq, bool g, Operand2 op2);
|
|
void _MSR (bool nzcvq, bool g, ARMReg src);
|
|
void MRS (ARMReg dest);
|
|
|
|
// Memory load/store operations
|
|
void LDR (ARMReg dest, ARMReg base, Operand2 op2 = 0, bool RegAdd = true);
|
|
void LDRB (ARMReg dest, ARMReg base, Operand2 op2 = 0, bool RegAdd = true);
|
|
void LDRH (ARMReg dest, ARMReg base, Operand2 op2 = 0, bool RegAdd = true);
|
|
void LDRSB(ARMReg dest, ARMReg base, Operand2 op2 = 0, bool RegAdd = true);
|
|
void LDRSH(ARMReg dest, ARMReg base, Operand2 op2 = 0, bool RegAdd = true);
|
|
void STR (ARMReg result, ARMReg base, Operand2 op2 = 0, bool RegAdd = true);
|
|
void STRB (ARMReg result, ARMReg base, Operand2 op2 = 0, bool RegAdd = true);
|
|
void STRH (ARMReg result, ARMReg base, Operand2 op2 = 0, bool RegAdd = true);
|
|
|
|
void STMFD(ARMReg dest, bool WriteBack, const int Regnum, ...);
|
|
void LDMFD(ARMReg dest, bool WriteBack, const int Regnum, ...);
|
|
|
|
// Exclusive Access operations
|
|
void LDREX(ARMReg dest, ARMReg base);
|
|
// result contains the result if the instruction managed to store the value
|
|
void STREX(ARMReg result, ARMReg base, ARMReg op);
|
|
void DMB ();
|
|
void SVC(Operand2 op);
|
|
|
|
// NEON and ASIMD instructions
|
|
// None of these will be created with conditional since ARM
|
|
// is deprecating conditional execution of ASIMD instructions.
|
|
// ASIMD instructions don't even have a conditional encoding.
|
|
|
|
// VFP Only
|
|
void VLDR(ARMReg Dest, ARMReg Base, s16 offset);
|
|
void VSTR(ARMReg Src, ARMReg Base, s16 offset);
|
|
void VCMP(ARMReg Vd, ARMReg Vm);
|
|
void VCMPE(ARMReg Vd, ARMReg Vm);
|
|
// Compares against zero
|
|
void VCMP(ARMReg Vd);
|
|
void VCMPE(ARMReg Vd);
|
|
|
|
void VNMLA(ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VNMLS(ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VNMUL(ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VDIV(ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VSQRT(ARMReg Vd, ARMReg Vm);
|
|
|
|
// NEON and VFP
|
|
void VADD(ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VSUB(ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VABS(ARMReg Vd, ARMReg Vm);
|
|
void VNEG(ARMReg Vd, ARMReg Vm);
|
|
void VMUL(ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VMLA(ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VMLS(ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VMOV(ARMReg Dest, Operand2 op2);
|
|
void VMOV(ARMReg Dest, ARMReg Src, bool high);
|
|
void VMOV(ARMReg Dest, ARMReg Src);
|
|
void VCVT(ARMReg Dest, ARMReg Src, int flags);
|
|
|
|
void VMRS(ARMReg Rt);
|
|
void VMSR(ARMReg Rt);
|
|
|
|
void QuickCallFunction(ARMReg scratchreg, void *func);
|
|
|
|
// Wrapper around MOVT/MOVW with fallbacks.
|
|
void MOVI2R(ARMReg reg, u32 val, bool optimize = true);
|
|
void MOVI2F(ARMReg dest, float val, ARMReg tempReg, bool negate = false);
|
|
|
|
void ADDI2R(ARMReg rd, ARMReg rs, u32 val, ARMReg scratch);
|
|
void ANDI2R(ARMReg rd, ARMReg rs, u32 val, ARMReg scratch);
|
|
void CMPI2R(ARMReg rs, u32 val, ARMReg scratch);
|
|
void ORI2R(ARMReg rd, ARMReg rs, u32 val, ARMReg scratch);
|
|
|
|
|
|
}; // class ARMXEmitter
|
|
|
|
enum NEONAlignment
|
|
{
|
|
ALIGN_NONE = 0,
|
|
ALIGN_64 = 1,
|
|
ALIGN_128 = 2,
|
|
ALIGN_256 = 3
|
|
};
|
|
|
|
|
|
class NEONXEmitter
|
|
{
|
|
private:
|
|
ARMXEmitter *_emit;
|
|
inline void Write32(u32 value) { _emit->Write32(value); }
|
|
|
|
inline u32 encodedSize(u32 value)
|
|
{
|
|
if (value & I_8)
|
|
return 0;
|
|
else if (value & I_16)
|
|
return 1;
|
|
else if ((value & I_32) || (value & F_32))
|
|
return 2;
|
|
else if (value & I_64)
|
|
return 3;
|
|
else
|
|
_dbg_assert_msg_(DYNA_REC, false, "Passed invalid size to integer NEON instruction");
|
|
return 0;
|
|
}
|
|
|
|
void VREVX(u32 size, u32 Size, ARMReg Vd, ARMReg Vm);
|
|
|
|
public:
|
|
NEONXEmitter(ARMXEmitter *emit)
|
|
: _emit(emit)
|
|
{}
|
|
|
|
void VABA(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VABAL(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VABD(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VABDL(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VABS(u32 Size, ARMReg Vd, ARMReg Vm);
|
|
void VACGE(ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VACGT(ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VACLE(ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VACLT(ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VADD(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VADDHN(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VADDL(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VADDW(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VAND(ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VBIC(ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VBIF(ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VBIT(ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VBSL(ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VCEQ(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VCEQ(u32 Size, ARMReg Vd, ARMReg Vm);
|
|
void VCGE(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VCGE(u32 Size, ARMReg Vd, ARMReg Vm);
|
|
void VCGT(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VCGT(u32 Size, ARMReg Vd, ARMReg Vm);
|
|
void VCLE(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VCLE(u32 Size, ARMReg Vd, ARMReg Vm);
|
|
void VCLS(u32 Size, ARMReg Vd, ARMReg Vm);
|
|
void VCLT(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VCLT(u32 Size, ARMReg Vd, ARMReg Vm);
|
|
void VCLZ(u32 Size, ARMReg Vd, ARMReg Vm);
|
|
void VCNT(u32 Size, ARMReg Vd, ARMReg Vm);
|
|
void VDUP(u32 Size, ARMReg Vd, ARMReg Vm, u8 index);
|
|
void VDUP(u32 Size, ARMReg Vd, ARMReg Rt);
|
|
void VEOR(ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VEXT(ARMReg Vd, ARMReg Vn, ARMReg Vm, u8 index);
|
|
void VFMA(ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VFMS(ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VHADD(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VHSUB(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VMAX(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VMIN(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VMLA(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VMLS(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VMLAL(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VMLSL(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VMUL(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VMULL(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VNEG(u32 Size, ARMReg Vd, ARMReg Vm);
|
|
void VORN(ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VORR(ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VPADAL(u32 Size, ARMReg Vd, ARMReg Vm);
|
|
void VPADD(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VPADDL(u32 Size, ARMReg Vd, ARMReg Vm);
|
|
void VPMAX(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VPMIN(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VQABS(u32 Size, ARMReg Vd, ARMReg Vm);
|
|
void VQADD(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VQDMLAL(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VQDMLSL(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VQDMULH(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VQDMULL(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VQNEG(u32 Size, ARMReg Vd, ARMReg Vm);
|
|
void VQRDMULH(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VQRSHL(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VQSHL(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VQSUB(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VRADDHN(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VRECPE(u32 Size, ARMReg Vd, ARMReg Vm);
|
|
void VRECPS(ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VRHADD(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VRSHL(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VRSQRTE(u32 Size, ARMReg Vd, ARMReg Vm);
|
|
void VRSQRTS(ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VRSUBHN(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VSHL(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VSUB(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VSUBHN(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VSUBL(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VSUBW(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VSWP(ARMReg Vd, ARMReg Vm);
|
|
void VTRN(u32 Size, ARMReg Vd, ARMReg Vm);
|
|
void VTST(u32 Size, ARMReg Vd, ARMReg Vn, ARMReg Vm);
|
|
void VUZP(u32 Size, ARMReg Vd, ARMReg Vm);
|
|
void VZIP(u32 Size, ARMReg Vd, ARMReg Vm);
|
|
void VREV64(u32 Size, ARMReg Vd, ARMReg Vm);
|
|
void VREV32(u32 Size, ARMReg Vd, ARMReg Vm);
|
|
void VREV16(u32 Size, ARMReg Vd, ARMReg Vm);
|
|
|
|
void VLD1(u32 Size, ARMReg Vd, ARMReg Rn, NEONAlignment align = ALIGN_NONE, ARMReg Rm = _PC);
|
|
void VLD2(u32 Size, ARMReg Vd, ARMReg Rn, NEONAlignment align = ALIGN_NONE, ARMReg Rm = _PC);
|
|
|
|
void VST1(u32 Size, ARMReg Vd, ARMReg Rn, NEONAlignment align = ALIGN_NONE, ARMReg Rm = _PC);
|
|
};
|
|
|
|
class ARMCodeBlock : public CodeBlock<ARMXEmitter>
|
|
{
|
|
private:
|
|
void PoisonMemory() override
|
|
{
|
|
u32* ptr = (u32*)region;
|
|
u32* maxptr = (u32*)region + region_size;
|
|
// If our memory isn't a multiple of u32 then this won't write the last remaining bytes with anything
|
|
// Less than optimal, but there would be nothing we could do but throw a runtime warning anyway.
|
|
// ARM: 0x01200070 = BKPT 0
|
|
while (ptr < maxptr)
|
|
*ptr++ = 0x01200070;
|
|
}
|
|
};
|
|
|
|
// VFP Specific
|
|
struct VFPEnc {
|
|
s16 opc1;
|
|
s16 opc2;
|
|
};
|
|
} // namespace
|