mirror of
https://github.com/dolphin-emu/dolphin.git
synced 2025-01-15 10:39:13 +01:00
a48e284317
There were some fixes back on March 13th, 2014 for fixing compiling on MIPS64. Also some fixes on June 25th, 2014 for SPARC64 fixes. Probably more things, but those are what I care about.
2030 lines
57 KiB
C
2030 lines
57 KiB
C
/*
|
|
* Elliptic curves over GF(p): generic functions
|
|
*
|
|
* Copyright (C) 2006-2014, Brainspark B.V.
|
|
*
|
|
* This file is part of PolarSSL (http://www.polarssl.org)
|
|
* Lead Maintainer: Paul Bakker <polarssl_maintainer at polarssl.org>
|
|
*
|
|
* All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*/
|
|
|
|
/*
|
|
* References:
|
|
*
|
|
* SEC1 http://www.secg.org/index.php?action=secg,docs_secg
|
|
* GECC = Guide to Elliptic Curve Cryptography - Hankerson, Menezes, Vanstone
|
|
* FIPS 186-3 http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
|
|
* RFC 4492 for the related TLS structures and constants
|
|
*
|
|
* [M255] http://cr.yp.to/ecdh/curve25519-20060209.pdf
|
|
*
|
|
* [2] CORON, Jean-Sébastien. Resistance against differential power analysis
|
|
* for elliptic curve cryptosystems. In : Cryptographic Hardware and
|
|
* Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302.
|
|
* <http://link.springer.com/chapter/10.1007/3-540-48059-5_25>
|
|
*
|
|
* [3] HEDABOU, Mustapha, PINEL, Pierre, et BÉNÉTEAU, Lucien. A comb method to
|
|
* render ECC resistant against Side Channel Attacks. IACR Cryptology
|
|
* ePrint Archive, 2004, vol. 2004, p. 342.
|
|
* <http://eprint.iacr.org/2004/342.pdf>
|
|
*/
|
|
|
|
#if !defined(POLARSSL_CONFIG_FILE)
|
|
#include "polarssl/config.h"
|
|
#else
|
|
#include POLARSSL_CONFIG_FILE
|
|
#endif
|
|
|
|
#if defined(POLARSSL_ECP_C)
|
|
|
|
#include "polarssl/ecp.h"
|
|
|
|
#if defined(POLARSSL_PLATFORM_C)
|
|
#include "polarssl/platform.h"
|
|
#else
|
|
#define polarssl_printf printf
|
|
#define polarssl_malloc malloc
|
|
#define polarssl_free free
|
|
#endif
|
|
|
|
#include <stdlib.h>
|
|
|
|
#if defined(_MSC_VER) && !defined strcasecmp && !defined(EFIX64) && \
|
|
!defined(EFI32)
|
|
#define strcasecmp _stricmp
|
|
#endif
|
|
|
|
#if defined(_MSC_VER) && !defined(inline)
|
|
#define inline _inline
|
|
#else
|
|
#if defined(__ARMCC_VERSION) && !defined(inline)
|
|
#define inline __inline
|
|
#endif /* __ARMCC_VERSION */
|
|
#endif /*_MSC_VER */
|
|
|
|
/* Implementation that should never be optimized out by the compiler */
|
|
static void polarssl_zeroize( void *v, size_t n ) {
|
|
volatile unsigned char *p = v; while( n-- ) *p++ = 0;
|
|
}
|
|
|
|
#if defined(POLARSSL_SELF_TEST)
|
|
/*
|
|
* Counts of point addition and doubling, and field multiplications.
|
|
* Used to test resistance of point multiplication to simple timing attacks.
|
|
*/
|
|
static unsigned long add_count, dbl_count, mul_count;
|
|
#endif
|
|
|
|
#if defined(POLARSSL_ECP_DP_SECP192R1_ENABLED) || \
|
|
defined(POLARSSL_ECP_DP_SECP224R1_ENABLED) || \
|
|
defined(POLARSSL_ECP_DP_SECP256R1_ENABLED) || \
|
|
defined(POLARSSL_ECP_DP_SECP384R1_ENABLED) || \
|
|
defined(POLARSSL_ECP_DP_SECP521R1_ENABLED) || \
|
|
defined(POLARSSL_ECP_DP_BP256R1_ENABLED) || \
|
|
defined(POLARSSL_ECP_DP_BP384R1_ENABLED) || \
|
|
defined(POLARSSL_ECP_DP_BP512R1_ENABLED) || \
|
|
defined(POLARSSL_ECP_DP_SECP192K1_ENABLED) || \
|
|
defined(POLARSSL_ECP_DP_SECP224K1_ENABLED) || \
|
|
defined(POLARSSL_ECP_DP_SECP256K1_ENABLED)
|
|
#define POLARSSL_ECP_SHORT_WEIERSTRASS
|
|
#endif
|
|
|
|
#if defined(POLARSSL_ECP_DP_M221_ENABLED) || \
|
|
defined(POLARSSL_ECP_DP_M255_ENABLED) || \
|
|
defined(POLARSSL_ECP_DP_M383_ENABLED) || \
|
|
defined(POLARSSL_ECP_DP_M511_ENABLED)
|
|
#define POLARSSL_ECP_MONTGOMERY
|
|
#endif
|
|
|
|
/*
|
|
* Curve types: internal for now, might be exposed later
|
|
*/
|
|
typedef enum
|
|
{
|
|
POLARSSL_ECP_TYPE_NONE = 0,
|
|
POLARSSL_ECP_TYPE_SHORT_WEIERSTRASS, /* y^2 = x^3 + a x + b */
|
|
POLARSSL_ECP_TYPE_MONTGOMERY, /* y^2 = x^3 + a x^2 + x */
|
|
} ecp_curve_type;
|
|
|
|
/*
|
|
* List of supported curves:
|
|
* - internal ID
|
|
* - TLS NamedCurve ID (RFC 4492 sec. 5.1.1, RFC 7071 sec. 2)
|
|
* - size in bits
|
|
* - readable name
|
|
*
|
|
* Curves are listed in order: largest curves first, and for a given size,
|
|
* fastest curves first. This provides the default order for the SSL module.
|
|
*/
|
|
static const ecp_curve_info ecp_supported_curves[] =
|
|
{
|
|
#if defined(POLARSSL_ECP_DP_SECP521R1_ENABLED)
|
|
{ POLARSSL_ECP_DP_SECP521R1, 25, 521, "secp521r1" },
|
|
#endif
|
|
#if defined(POLARSSL_ECP_DP_BP512R1_ENABLED)
|
|
{ POLARSSL_ECP_DP_BP512R1, 28, 512, "brainpoolP512r1" },
|
|
#endif
|
|
#if defined(POLARSSL_ECP_DP_SECP384R1_ENABLED)
|
|
{ POLARSSL_ECP_DP_SECP384R1, 24, 384, "secp384r1" },
|
|
#endif
|
|
#if defined(POLARSSL_ECP_DP_BP384R1_ENABLED)
|
|
{ POLARSSL_ECP_DP_BP384R1, 27, 384, "brainpoolP384r1" },
|
|
#endif
|
|
#if defined(POLARSSL_ECP_DP_SECP256R1_ENABLED)
|
|
{ POLARSSL_ECP_DP_SECP256R1, 23, 256, "secp256r1" },
|
|
#endif
|
|
#if defined(POLARSSL_ECP_DP_SECP256K1_ENABLED)
|
|
{ POLARSSL_ECP_DP_SECP256K1, 22, 256, "secp256k1" },
|
|
#endif
|
|
#if defined(POLARSSL_ECP_DP_BP256R1_ENABLED)
|
|
{ POLARSSL_ECP_DP_BP256R1, 26, 256, "brainpoolP256r1" },
|
|
#endif
|
|
#if defined(POLARSSL_ECP_DP_SECP224R1_ENABLED)
|
|
{ POLARSSL_ECP_DP_SECP224R1, 21, 224, "secp224r1" },
|
|
#endif
|
|
#if defined(POLARSSL_ECP_DP_SECP224K1_ENABLED)
|
|
{ POLARSSL_ECP_DP_SECP224K1, 20, 224, "secp224k1" },
|
|
#endif
|
|
#if defined(POLARSSL_ECP_DP_SECP192R1_ENABLED)
|
|
{ POLARSSL_ECP_DP_SECP192R1, 19, 192, "secp192r1" },
|
|
#endif
|
|
#if defined(POLARSSL_ECP_DP_SECP192K1_ENABLED)
|
|
{ POLARSSL_ECP_DP_SECP192K1, 18, 192, "secp192k1" },
|
|
#endif
|
|
{ POLARSSL_ECP_DP_NONE, 0, 0, NULL },
|
|
};
|
|
|
|
#define ECP_NB_CURVES sizeof( ecp_supported_curves ) / \
|
|
sizeof( ecp_supported_curves[0] )
|
|
|
|
static ecp_group_id ecp_supported_grp_id[ECP_NB_CURVES];
|
|
|
|
/*
|
|
* List of supported curves and associated info
|
|
*/
|
|
const ecp_curve_info *ecp_curve_list( void )
|
|
{
|
|
return( ecp_supported_curves );
|
|
}
|
|
|
|
/*
|
|
* List of supported curves, group ID only
|
|
*/
|
|
const ecp_group_id *ecp_grp_id_list( void )
|
|
{
|
|
static int init_done = 0;
|
|
|
|
if( ! init_done )
|
|
{
|
|
size_t i = 0;
|
|
const ecp_curve_info *curve_info;
|
|
|
|
for( curve_info = ecp_curve_list();
|
|
curve_info->grp_id != POLARSSL_ECP_DP_NONE;
|
|
curve_info++ )
|
|
{
|
|
ecp_supported_grp_id[i++] = curve_info->grp_id;
|
|
}
|
|
ecp_supported_grp_id[i] = POLARSSL_ECP_DP_NONE;
|
|
|
|
init_done = 1;
|
|
}
|
|
|
|
return( ecp_supported_grp_id );
|
|
}
|
|
|
|
/*
|
|
* Get the curve info for the internal identifier
|
|
*/
|
|
const ecp_curve_info *ecp_curve_info_from_grp_id( ecp_group_id grp_id )
|
|
{
|
|
const ecp_curve_info *curve_info;
|
|
|
|
for( curve_info = ecp_curve_list();
|
|
curve_info->grp_id != POLARSSL_ECP_DP_NONE;
|
|
curve_info++ )
|
|
{
|
|
if( curve_info->grp_id == grp_id )
|
|
return( curve_info );
|
|
}
|
|
|
|
return( NULL );
|
|
}
|
|
|
|
/*
|
|
* Get the curve info from the TLS identifier
|
|
*/
|
|
const ecp_curve_info *ecp_curve_info_from_tls_id( uint16_t tls_id )
|
|
{
|
|
const ecp_curve_info *curve_info;
|
|
|
|
for( curve_info = ecp_curve_list();
|
|
curve_info->grp_id != POLARSSL_ECP_DP_NONE;
|
|
curve_info++ )
|
|
{
|
|
if( curve_info->tls_id == tls_id )
|
|
return( curve_info );
|
|
}
|
|
|
|
return( NULL );
|
|
}
|
|
|
|
/*
|
|
* Get the curve info from the name
|
|
*/
|
|
const ecp_curve_info *ecp_curve_info_from_name( const char *name )
|
|
{
|
|
const ecp_curve_info *curve_info;
|
|
|
|
for( curve_info = ecp_curve_list();
|
|
curve_info->grp_id != POLARSSL_ECP_DP_NONE;
|
|
curve_info++ )
|
|
{
|
|
if( strcasecmp( curve_info->name, name ) == 0 )
|
|
return( curve_info );
|
|
}
|
|
|
|
return( NULL );
|
|
}
|
|
|
|
/*
|
|
* Get the type of a curve
|
|
*/
|
|
static inline ecp_curve_type ecp_get_type( const ecp_group *grp )
|
|
{
|
|
if( grp->G.X.p == NULL )
|
|
return( POLARSSL_ECP_TYPE_NONE );
|
|
|
|
if( grp->G.Y.p == NULL )
|
|
return( POLARSSL_ECP_TYPE_MONTGOMERY );
|
|
else
|
|
return( POLARSSL_ECP_TYPE_SHORT_WEIERSTRASS );
|
|
}
|
|
|
|
/*
|
|
* Initialize (the components of) a point
|
|
*/
|
|
void ecp_point_init( ecp_point *pt )
|
|
{
|
|
if( pt == NULL )
|
|
return;
|
|
|
|
mpi_init( &pt->X );
|
|
mpi_init( &pt->Y );
|
|
mpi_init( &pt->Z );
|
|
}
|
|
|
|
/*
|
|
* Initialize (the components of) a group
|
|
*/
|
|
void ecp_group_init( ecp_group *grp )
|
|
{
|
|
if( grp == NULL )
|
|
return;
|
|
|
|
memset( grp, 0, sizeof( ecp_group ) );
|
|
}
|
|
|
|
/*
|
|
* Initialize (the components of) a key pair
|
|
*/
|
|
void ecp_keypair_init( ecp_keypair *key )
|
|
{
|
|
if( key == NULL )
|
|
return;
|
|
|
|
ecp_group_init( &key->grp );
|
|
mpi_init( &key->d );
|
|
ecp_point_init( &key->Q );
|
|
}
|
|
|
|
/*
|
|
* Unallocate (the components of) a point
|
|
*/
|
|
void ecp_point_free( ecp_point *pt )
|
|
{
|
|
if( pt == NULL )
|
|
return;
|
|
|
|
mpi_free( &( pt->X ) );
|
|
mpi_free( &( pt->Y ) );
|
|
mpi_free( &( pt->Z ) );
|
|
}
|
|
|
|
/*
|
|
* Unallocate (the components of) a group
|
|
*/
|
|
void ecp_group_free( ecp_group *grp )
|
|
{
|
|
size_t i;
|
|
|
|
if( grp == NULL )
|
|
return;
|
|
|
|
if( grp->h != 1 )
|
|
{
|
|
mpi_free( &grp->P );
|
|
mpi_free( &grp->A );
|
|
mpi_free( &grp->B );
|
|
ecp_point_free( &grp->G );
|
|
mpi_free( &grp->N );
|
|
}
|
|
|
|
if( grp->T != NULL )
|
|
{
|
|
for( i = 0; i < grp->T_size; i++ )
|
|
ecp_point_free( &grp->T[i] );
|
|
polarssl_free( grp->T );
|
|
}
|
|
|
|
polarssl_zeroize( grp, sizeof( ecp_group ) );
|
|
}
|
|
|
|
/*
|
|
* Unallocate (the components of) a key pair
|
|
*/
|
|
void ecp_keypair_free( ecp_keypair *key )
|
|
{
|
|
if( key == NULL )
|
|
return;
|
|
|
|
ecp_group_free( &key->grp );
|
|
mpi_free( &key->d );
|
|
ecp_point_free( &key->Q );
|
|
}
|
|
|
|
/*
|
|
* Copy the contents of a point
|
|
*/
|
|
int ecp_copy( ecp_point *P, const ecp_point *Q )
|
|
{
|
|
int ret;
|
|
|
|
MPI_CHK( mpi_copy( &P->X, &Q->X ) );
|
|
MPI_CHK( mpi_copy( &P->Y, &Q->Y ) );
|
|
MPI_CHK( mpi_copy( &P->Z, &Q->Z ) );
|
|
|
|
cleanup:
|
|
return( ret );
|
|
}
|
|
|
|
/*
|
|
* Copy the contents of a group object
|
|
*/
|
|
int ecp_group_copy( ecp_group *dst, const ecp_group *src )
|
|
{
|
|
return ecp_use_known_dp( dst, src->id );
|
|
}
|
|
|
|
/*
|
|
* Set point to zero
|
|
*/
|
|
int ecp_set_zero( ecp_point *pt )
|
|
{
|
|
int ret;
|
|
|
|
MPI_CHK( mpi_lset( &pt->X , 1 ) );
|
|
MPI_CHK( mpi_lset( &pt->Y , 1 ) );
|
|
MPI_CHK( mpi_lset( &pt->Z , 0 ) );
|
|
|
|
cleanup:
|
|
return( ret );
|
|
}
|
|
|
|
/*
|
|
* Tell if a point is zero
|
|
*/
|
|
int ecp_is_zero( ecp_point *pt )
|
|
{
|
|
return( mpi_cmp_int( &pt->Z, 0 ) == 0 );
|
|
}
|
|
|
|
/*
|
|
* Import a non-zero point from ASCII strings
|
|
*/
|
|
int ecp_point_read_string( ecp_point *P, int radix,
|
|
const char *x, const char *y )
|
|
{
|
|
int ret;
|
|
|
|
MPI_CHK( mpi_read_string( &P->X, radix, x ) );
|
|
MPI_CHK( mpi_read_string( &P->Y, radix, y ) );
|
|
MPI_CHK( mpi_lset( &P->Z, 1 ) );
|
|
|
|
cleanup:
|
|
return( ret );
|
|
}
|
|
|
|
/*
|
|
* Export a point into unsigned binary data (SEC1 2.3.3)
|
|
*/
|
|
int ecp_point_write_binary( const ecp_group *grp, const ecp_point *P,
|
|
int format, size_t *olen,
|
|
unsigned char *buf, size_t buflen )
|
|
{
|
|
int ret = 0;
|
|
size_t plen;
|
|
|
|
if( format != POLARSSL_ECP_PF_UNCOMPRESSED &&
|
|
format != POLARSSL_ECP_PF_COMPRESSED )
|
|
return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
|
|
|
|
/*
|
|
* Common case: P == 0
|
|
*/
|
|
if( mpi_cmp_int( &P->Z, 0 ) == 0 )
|
|
{
|
|
if( buflen < 1 )
|
|
return( POLARSSL_ERR_ECP_BUFFER_TOO_SMALL );
|
|
|
|
buf[0] = 0x00;
|
|
*olen = 1;
|
|
|
|
return( 0 );
|
|
}
|
|
|
|
plen = mpi_size( &grp->P );
|
|
|
|
if( format == POLARSSL_ECP_PF_UNCOMPRESSED )
|
|
{
|
|
*olen = 2 * plen + 1;
|
|
|
|
if( buflen < *olen )
|
|
return( POLARSSL_ERR_ECP_BUFFER_TOO_SMALL );
|
|
|
|
buf[0] = 0x04;
|
|
MPI_CHK( mpi_write_binary( &P->X, buf + 1, plen ) );
|
|
MPI_CHK( mpi_write_binary( &P->Y, buf + 1 + plen, plen ) );
|
|
}
|
|
else if( format == POLARSSL_ECP_PF_COMPRESSED )
|
|
{
|
|
*olen = plen + 1;
|
|
|
|
if( buflen < *olen )
|
|
return( POLARSSL_ERR_ECP_BUFFER_TOO_SMALL );
|
|
|
|
buf[0] = 0x02 + mpi_get_bit( &P->Y, 0 );
|
|
MPI_CHK( mpi_write_binary( &P->X, buf + 1, plen ) );
|
|
}
|
|
|
|
cleanup:
|
|
return( ret );
|
|
}
|
|
|
|
/*
|
|
* Import a point from unsigned binary data (SEC1 2.3.4)
|
|
*/
|
|
int ecp_point_read_binary( const ecp_group *grp, ecp_point *pt,
|
|
const unsigned char *buf, size_t ilen )
|
|
{
|
|
int ret;
|
|
size_t plen;
|
|
|
|
if ( ilen < 1 )
|
|
return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
|
|
|
|
if( buf[0] == 0x00 )
|
|
{
|
|
if( ilen == 1 )
|
|
return( ecp_set_zero( pt ) );
|
|
else
|
|
return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
|
|
}
|
|
|
|
plen = mpi_size( &grp->P );
|
|
|
|
if( buf[0] != 0x04 )
|
|
return( POLARSSL_ERR_ECP_FEATURE_UNAVAILABLE );
|
|
|
|
if( ilen != 2 * plen + 1 )
|
|
return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
|
|
|
|
MPI_CHK( mpi_read_binary( &pt->X, buf + 1, plen ) );
|
|
MPI_CHK( mpi_read_binary( &pt->Y, buf + 1 + plen, plen ) );
|
|
MPI_CHK( mpi_lset( &pt->Z, 1 ) );
|
|
|
|
cleanup:
|
|
return( ret );
|
|
}
|
|
|
|
/*
|
|
* Import a point from a TLS ECPoint record (RFC 4492)
|
|
* struct {
|
|
* opaque point <1..2^8-1>;
|
|
* } ECPoint;
|
|
*/
|
|
int ecp_tls_read_point( const ecp_group *grp, ecp_point *pt,
|
|
const unsigned char **buf, size_t buf_len )
|
|
{
|
|
unsigned char data_len;
|
|
const unsigned char *buf_start;
|
|
|
|
/*
|
|
* We must have at least two bytes (1 for length, at least one for data)
|
|
*/
|
|
if( buf_len < 2 )
|
|
return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
|
|
|
|
data_len = *(*buf)++;
|
|
if( data_len < 1 || data_len > buf_len - 1 )
|
|
return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
|
|
|
|
/*
|
|
* Save buffer start for read_binary and update buf
|
|
*/
|
|
buf_start = *buf;
|
|
*buf += data_len;
|
|
|
|
return ecp_point_read_binary( grp, pt, buf_start, data_len );
|
|
}
|
|
|
|
/*
|
|
* Export a point as a TLS ECPoint record (RFC 4492)
|
|
* struct {
|
|
* opaque point <1..2^8-1>;
|
|
* } ECPoint;
|
|
*/
|
|
int ecp_tls_write_point( const ecp_group *grp, const ecp_point *pt,
|
|
int format, size_t *olen,
|
|
unsigned char *buf, size_t blen )
|
|
{
|
|
int ret;
|
|
|
|
/*
|
|
* buffer length must be at least one, for our length byte
|
|
*/
|
|
if( blen < 1 )
|
|
return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
|
|
|
|
if( ( ret = ecp_point_write_binary( grp, pt, format,
|
|
olen, buf + 1, blen - 1) ) != 0 )
|
|
return( ret );
|
|
|
|
/*
|
|
* write length to the first byte and update total length
|
|
*/
|
|
buf[0] = (unsigned char) *olen;
|
|
++*olen;
|
|
|
|
return( 0 );
|
|
}
|
|
|
|
/*
|
|
* Import an ECP group from ASCII strings, case A == -3
|
|
*/
|
|
int ecp_group_read_string( ecp_group *grp, int radix,
|
|
const char *p, const char *b,
|
|
const char *gx, const char *gy, const char *n)
|
|
{
|
|
int ret;
|
|
|
|
MPI_CHK( mpi_read_string( &grp->P, radix, p ) );
|
|
MPI_CHK( mpi_read_string( &grp->B, radix, b ) );
|
|
MPI_CHK( ecp_point_read_string( &grp->G, radix, gx, gy ) );
|
|
MPI_CHK( mpi_read_string( &grp->N, radix, n ) );
|
|
|
|
grp->pbits = mpi_msb( &grp->P );
|
|
grp->nbits = mpi_msb( &grp->N );
|
|
|
|
cleanup:
|
|
if( ret != 0 )
|
|
ecp_group_free( grp );
|
|
|
|
return( ret );
|
|
}
|
|
|
|
/*
|
|
* Set a group from an ECParameters record (RFC 4492)
|
|
*/
|
|
int ecp_tls_read_group( ecp_group *grp, const unsigned char **buf, size_t len )
|
|
{
|
|
uint16_t tls_id;
|
|
const ecp_curve_info *curve_info;
|
|
|
|
/*
|
|
* We expect at least three bytes (see below)
|
|
*/
|
|
if( len < 3 )
|
|
return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
|
|
|
|
/*
|
|
* First byte is curve_type; only named_curve is handled
|
|
*/
|
|
if( *(*buf)++ != POLARSSL_ECP_TLS_NAMED_CURVE )
|
|
return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
|
|
|
|
/*
|
|
* Next two bytes are the namedcurve value
|
|
*/
|
|
tls_id = *(*buf)++;
|
|
tls_id <<= 8;
|
|
tls_id |= *(*buf)++;
|
|
|
|
if( ( curve_info = ecp_curve_info_from_tls_id( tls_id ) ) == NULL )
|
|
return( POLARSSL_ERR_ECP_FEATURE_UNAVAILABLE );
|
|
|
|
return ecp_use_known_dp( grp, curve_info->grp_id );
|
|
}
|
|
|
|
/*
|
|
* Write the ECParameters record corresponding to a group (RFC 4492)
|
|
*/
|
|
int ecp_tls_write_group( const ecp_group *grp, size_t *olen,
|
|
unsigned char *buf, size_t blen )
|
|
{
|
|
const ecp_curve_info *curve_info;
|
|
|
|
if( ( curve_info = ecp_curve_info_from_grp_id( grp->id ) ) == NULL )
|
|
return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
|
|
|
|
/*
|
|
* We are going to write 3 bytes (see below)
|
|
*/
|
|
*olen = 3;
|
|
if( blen < *olen )
|
|
return( POLARSSL_ERR_ECP_BUFFER_TOO_SMALL );
|
|
|
|
/*
|
|
* First byte is curve_type, always named_curve
|
|
*/
|
|
*buf++ = POLARSSL_ECP_TLS_NAMED_CURVE;
|
|
|
|
/*
|
|
* Next two bytes are the namedcurve value
|
|
*/
|
|
buf[0] = curve_info->tls_id >> 8;
|
|
buf[1] = curve_info->tls_id & 0xFF;
|
|
|
|
return( 0 );
|
|
}
|
|
|
|
/*
|
|
* Wrapper around fast quasi-modp functions, with fall-back to mpi_mod_mpi.
|
|
* See the documentation of struct ecp_group.
|
|
*
|
|
* This function is in the critial loop for ecp_mul, so pay attention to perf.
|
|
*/
|
|
static int ecp_modp( mpi *N, const ecp_group *grp )
|
|
{
|
|
int ret;
|
|
|
|
if( grp->modp == NULL )
|
|
return( mpi_mod_mpi( N, N, &grp->P ) );
|
|
|
|
/* N->s < 0 is a much faster test, which fails only if N is 0 */
|
|
if( ( N->s < 0 && mpi_cmp_int( N, 0 ) != 0 ) ||
|
|
mpi_msb( N ) > 2 * grp->pbits )
|
|
{
|
|
return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
|
|
}
|
|
|
|
MPI_CHK( grp->modp( N ) );
|
|
|
|
/* N->s < 0 is a much faster test, which fails only if N is 0 */
|
|
while( N->s < 0 && mpi_cmp_int( N, 0 ) != 0 )
|
|
MPI_CHK( mpi_add_mpi( N, N, &grp->P ) );
|
|
|
|
while( mpi_cmp_mpi( N, &grp->P ) >= 0 )
|
|
/* we known P, N and the result are positive */
|
|
MPI_CHK( mpi_sub_abs( N, N, &grp->P ) );
|
|
|
|
cleanup:
|
|
return( ret );
|
|
}
|
|
|
|
/*
|
|
* Fast mod-p functions expect their argument to be in the 0..p^2 range.
|
|
*
|
|
* In order to guarantee that, we need to ensure that operands of
|
|
* mpi_mul_mpi are in the 0..p range. So, after each operation we will
|
|
* bring the result back to this range.
|
|
*
|
|
* The following macros are shortcuts for doing that.
|
|
*/
|
|
|
|
/*
|
|
* Reduce a mpi mod p in-place, general case, to use after mpi_mul_mpi
|
|
*/
|
|
#if defined(POLARSSL_SELF_TEST)
|
|
#define INC_MUL_COUNT mul_count++;
|
|
#else
|
|
#define INC_MUL_COUNT
|
|
#endif
|
|
|
|
#define MOD_MUL( N ) do { MPI_CHK( ecp_modp( &N, grp ) ); INC_MUL_COUNT } \
|
|
while( 0 )
|
|
|
|
/*
|
|
* Reduce a mpi mod p in-place, to use after mpi_sub_mpi
|
|
* N->s < 0 is a very fast test, which fails only if N is 0
|
|
*/
|
|
#define MOD_SUB( N ) \
|
|
while( N.s < 0 && mpi_cmp_int( &N, 0 ) != 0 ) \
|
|
MPI_CHK( mpi_add_mpi( &N, &N, &grp->P ) )
|
|
|
|
/*
|
|
* Reduce a mpi mod p in-place, to use after mpi_add_mpi and mpi_mul_int.
|
|
* We known P, N and the result are positive, so sub_abs is correct, and
|
|
* a bit faster.
|
|
*/
|
|
#define MOD_ADD( N ) \
|
|
while( mpi_cmp_mpi( &N, &grp->P ) >= 0 ) \
|
|
MPI_CHK( mpi_sub_abs( &N, &N, &grp->P ) )
|
|
|
|
#if defined(POLARSSL_ECP_SHORT_WEIERSTRASS)
|
|
/*
|
|
* For curves in short Weierstrass form, we do all the internal operations in
|
|
* Jacobian coordinates.
|
|
*
|
|
* For multiplication, we'll use a comb method with coutermeasueres against
|
|
* SPA, hence timing attacks.
|
|
*/
|
|
|
|
/*
|
|
* Normalize jacobian coordinates so that Z == 0 || Z == 1 (GECC 3.2.1)
|
|
* Cost: 1N := 1I + 3M + 1S
|
|
*/
|
|
static int ecp_normalize_jac( const ecp_group *grp, ecp_point *pt )
|
|
{
|
|
int ret;
|
|
mpi Zi, ZZi;
|
|
|
|
if( mpi_cmp_int( &pt->Z, 0 ) == 0 )
|
|
return( 0 );
|
|
|
|
mpi_init( &Zi ); mpi_init( &ZZi );
|
|
|
|
/*
|
|
* X = X / Z^2 mod p
|
|
*/
|
|
MPI_CHK( mpi_inv_mod( &Zi, &pt->Z, &grp->P ) );
|
|
MPI_CHK( mpi_mul_mpi( &ZZi, &Zi, &Zi ) ); MOD_MUL( ZZi );
|
|
MPI_CHK( mpi_mul_mpi( &pt->X, &pt->X, &ZZi ) ); MOD_MUL( pt->X );
|
|
|
|
/*
|
|
* Y = Y / Z^3 mod p
|
|
*/
|
|
MPI_CHK( mpi_mul_mpi( &pt->Y, &pt->Y, &ZZi ) ); MOD_MUL( pt->Y );
|
|
MPI_CHK( mpi_mul_mpi( &pt->Y, &pt->Y, &Zi ) ); MOD_MUL( pt->Y );
|
|
|
|
/*
|
|
* Z = 1
|
|
*/
|
|
MPI_CHK( mpi_lset( &pt->Z, 1 ) );
|
|
|
|
cleanup:
|
|
|
|
mpi_free( &Zi ); mpi_free( &ZZi );
|
|
|
|
return( ret );
|
|
}
|
|
|
|
/*
|
|
* Normalize jacobian coordinates of an array of (pointers to) points,
|
|
* using Montgomery's trick to perform only one inversion mod P.
|
|
* (See for example Cohen's "A Course in Computational Algebraic Number
|
|
* Theory", Algorithm 10.3.4.)
|
|
*
|
|
* Warning: fails (returning an error) if one of the points is zero!
|
|
* This should never happen, see choice of w in ecp_mul_comb().
|
|
*
|
|
* Cost: 1N(t) := 1I + (6t - 3)M + 1S
|
|
*/
|
|
static int ecp_normalize_jac_many( const ecp_group *grp,
|
|
ecp_point *T[], size_t t_len )
|
|
{
|
|
int ret;
|
|
size_t i;
|
|
mpi *c, u, Zi, ZZi;
|
|
|
|
if( t_len < 2 )
|
|
return( ecp_normalize_jac( grp, *T ) );
|
|
|
|
if( ( c = (mpi *) polarssl_malloc( t_len * sizeof( mpi ) ) ) == NULL )
|
|
return( POLARSSL_ERR_ECP_MALLOC_FAILED );
|
|
|
|
mpi_init( &u ); mpi_init( &Zi ); mpi_init( &ZZi );
|
|
for( i = 0; i < t_len; i++ )
|
|
mpi_init( &c[i] );
|
|
|
|
/*
|
|
* c[i] = Z_0 * ... * Z_i
|
|
*/
|
|
MPI_CHK( mpi_copy( &c[0], &T[0]->Z ) );
|
|
for( i = 1; i < t_len; i++ )
|
|
{
|
|
MPI_CHK( mpi_mul_mpi( &c[i], &c[i-1], &T[i]->Z ) );
|
|
MOD_MUL( c[i] );
|
|
}
|
|
|
|
/*
|
|
* u = 1 / (Z_0 * ... * Z_n) mod P
|
|
*/
|
|
MPI_CHK( mpi_inv_mod( &u, &c[t_len-1], &grp->P ) );
|
|
|
|
for( i = t_len - 1; ; i-- )
|
|
{
|
|
/*
|
|
* Zi = 1 / Z_i mod p
|
|
* u = 1 / (Z_0 * ... * Z_i) mod P
|
|
*/
|
|
if( i == 0 ) {
|
|
MPI_CHK( mpi_copy( &Zi, &u ) );
|
|
}
|
|
else
|
|
{
|
|
MPI_CHK( mpi_mul_mpi( &Zi, &u, &c[i-1] ) ); MOD_MUL( Zi );
|
|
MPI_CHK( mpi_mul_mpi( &u, &u, &T[i]->Z ) ); MOD_MUL( u );
|
|
}
|
|
|
|
/*
|
|
* proceed as in normalize()
|
|
*/
|
|
MPI_CHK( mpi_mul_mpi( &ZZi, &Zi, &Zi ) ); MOD_MUL( ZZi );
|
|
MPI_CHK( mpi_mul_mpi( &T[i]->X, &T[i]->X, &ZZi ) ); MOD_MUL( T[i]->X );
|
|
MPI_CHK( mpi_mul_mpi( &T[i]->Y, &T[i]->Y, &ZZi ) ); MOD_MUL( T[i]->Y );
|
|
MPI_CHK( mpi_mul_mpi( &T[i]->Y, &T[i]->Y, &Zi ) ); MOD_MUL( T[i]->Y );
|
|
|
|
/*
|
|
* Post-precessing: reclaim some memory by shrinking coordinates
|
|
* - not storing Z (always 1)
|
|
* - shrinking other coordinates, but still keeping the same number of
|
|
* limbs as P, as otherwise it will too likely be regrown too fast.
|
|
*/
|
|
MPI_CHK( mpi_shrink( &T[i]->X, grp->P.n ) );
|
|
MPI_CHK( mpi_shrink( &T[i]->Y, grp->P.n ) );
|
|
mpi_free( &T[i]->Z );
|
|
|
|
if( i == 0 )
|
|
break;
|
|
}
|
|
|
|
cleanup:
|
|
|
|
mpi_free( &u ); mpi_free( &Zi ); mpi_free( &ZZi );
|
|
for( i = 0; i < t_len; i++ )
|
|
mpi_free( &c[i] );
|
|
polarssl_free( c );
|
|
|
|
return( ret );
|
|
}
|
|
|
|
/*
|
|
* Conditional point inversion: Q -> -Q = (Q.X, -Q.Y, Q.Z) without leak.
|
|
* "inv" must be 0 (don't invert) or 1 (invert) or the result will be invalid
|
|
*/
|
|
static int ecp_safe_invert_jac( const ecp_group *grp,
|
|
ecp_point *Q,
|
|
unsigned char inv )
|
|
{
|
|
int ret;
|
|
unsigned char nonzero;
|
|
mpi mQY;
|
|
|
|
mpi_init( &mQY );
|
|
|
|
/* Use the fact that -Q.Y mod P = P - Q.Y unless Q.Y == 0 */
|
|
MPI_CHK( mpi_sub_mpi( &mQY, &grp->P, &Q->Y ) );
|
|
nonzero = mpi_cmp_int( &Q->Y, 0 ) != 0;
|
|
MPI_CHK( mpi_safe_cond_assign( &Q->Y, &mQY, inv & nonzero ) );
|
|
|
|
cleanup:
|
|
mpi_free( &mQY );
|
|
|
|
return( ret );
|
|
}
|
|
|
|
/*
|
|
* Point doubling R = 2 P, Jacobian coordinates
|
|
*
|
|
* http://www.hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian/doubling/dbl-2007-bl.op3
|
|
* with heavy variable renaming, some reordering and one minor modification
|
|
* (a = 2 * b, c = d - 2a replaced with c = d, c = c - b, c = c - b)
|
|
* in order to use a lot less intermediate variables (6 vs 25).
|
|
*
|
|
* Cost: 1D := 2M + 8S
|
|
*/
|
|
static int ecp_double_jac( const ecp_group *grp, ecp_point *R,
|
|
const ecp_point *P )
|
|
{
|
|
int ret;
|
|
mpi T1, T2, T3, X3, Y3, Z3;
|
|
|
|
#if defined(POLARSSL_SELF_TEST)
|
|
dbl_count++;
|
|
#endif
|
|
|
|
mpi_init( &T1 ); mpi_init( &T2 ); mpi_init( &T3 );
|
|
mpi_init( &X3 ); mpi_init( &Y3 ); mpi_init( &Z3 );
|
|
|
|
MPI_CHK( mpi_mul_mpi( &T3, &P->X, &P->X ) ); MOD_MUL( T3 );
|
|
MPI_CHK( mpi_mul_mpi( &T2, &P->Y, &P->Y ) ); MOD_MUL( T2 );
|
|
MPI_CHK( mpi_mul_mpi( &Y3, &T2, &T2 ) ); MOD_MUL( Y3 );
|
|
MPI_CHK( mpi_add_mpi( &X3, &P->X, &T2 ) ); MOD_ADD( X3 );
|
|
MPI_CHK( mpi_mul_mpi( &X3, &X3, &X3 ) ); MOD_MUL( X3 );
|
|
MPI_CHK( mpi_sub_mpi( &X3, &X3, &Y3 ) ); MOD_SUB( X3 );
|
|
MPI_CHK( mpi_sub_mpi( &X3, &X3, &T3 ) ); MOD_SUB( X3 );
|
|
MPI_CHK( mpi_mul_int( &T1, &X3, 2 ) ); MOD_ADD( T1 );
|
|
MPI_CHK( mpi_mul_mpi( &Z3, &P->Z, &P->Z ) ); MOD_MUL( Z3 );
|
|
MPI_CHK( mpi_mul_mpi( &X3, &Z3, &Z3 ) ); MOD_MUL( X3 );
|
|
MPI_CHK( mpi_mul_int( &T3, &T3, 3 ) ); MOD_ADD( T3 );
|
|
|
|
/* Special case for A = -3 */
|
|
if( grp->A.p == NULL )
|
|
{
|
|
MPI_CHK( mpi_mul_int( &X3, &X3, 3 ) );
|
|
X3.s = -1; /* mpi_mul_int doesn't handle negative numbers */
|
|
MOD_SUB( X3 );
|
|
}
|
|
else
|
|
MPI_CHK( mpi_mul_mpi( &X3, &X3, &grp->A ) ); MOD_MUL( X3 );
|
|
|
|
MPI_CHK( mpi_add_mpi( &T3, &T3, &X3 ) ); MOD_ADD( T3 );
|
|
MPI_CHK( mpi_mul_mpi( &X3, &T3, &T3 ) ); MOD_MUL( X3 );
|
|
MPI_CHK( mpi_sub_mpi( &X3, &X3, &T1 ) ); MOD_SUB( X3 );
|
|
MPI_CHK( mpi_sub_mpi( &X3, &X3, &T1 ) ); MOD_SUB( X3 );
|
|
MPI_CHK( mpi_sub_mpi( &T1, &T1, &X3 ) ); MOD_SUB( T1 );
|
|
MPI_CHK( mpi_mul_mpi( &T1, &T3, &T1 ) ); MOD_MUL( T1 );
|
|
MPI_CHK( mpi_mul_int( &T3, &Y3, 8 ) ); MOD_ADD( T3 );
|
|
MPI_CHK( mpi_sub_mpi( &Y3, &T1, &T3 ) ); MOD_SUB( Y3 );
|
|
MPI_CHK( mpi_add_mpi( &T1, &P->Y, &P->Z ) ); MOD_ADD( T1 );
|
|
MPI_CHK( mpi_mul_mpi( &T1, &T1, &T1 ) ); MOD_MUL( T1 );
|
|
MPI_CHK( mpi_sub_mpi( &T1, &T1, &T2 ) ); MOD_SUB( T1 );
|
|
MPI_CHK( mpi_sub_mpi( &Z3, &T1, &Z3 ) ); MOD_SUB( Z3 );
|
|
|
|
MPI_CHK( mpi_copy( &R->X, &X3 ) );
|
|
MPI_CHK( mpi_copy( &R->Y, &Y3 ) );
|
|
MPI_CHK( mpi_copy( &R->Z, &Z3 ) );
|
|
|
|
cleanup:
|
|
mpi_free( &T1 ); mpi_free( &T2 ); mpi_free( &T3 );
|
|
mpi_free( &X3 ); mpi_free( &Y3 ); mpi_free( &Z3 );
|
|
|
|
return( ret );
|
|
}
|
|
|
|
/*
|
|
* Addition: R = P + Q, mixed affine-Jacobian coordinates (GECC 3.22)
|
|
*
|
|
* The coordinates of Q must be normalized (= affine),
|
|
* but those of P don't need to. R is not normalized.
|
|
*
|
|
* Special cases: (1) P or Q is zero, (2) R is zero, (3) P == Q.
|
|
* None of these cases can happen as intermediate step in ecp_mul_comb():
|
|
* - at each step, P, Q and R are multiples of the base point, the factor
|
|
* being less than its order, so none of them is zero;
|
|
* - Q is an odd multiple of the base point, P an even multiple,
|
|
* due to the choice of precomputed points in the modified comb method.
|
|
* So branches for these cases do not leak secret information.
|
|
*
|
|
* We accept Q->Z being unset (saving memory in tables) as meaning 1.
|
|
*
|
|
* Cost: 1A := 8M + 3S
|
|
*/
|
|
static int ecp_add_mixed( const ecp_group *grp, ecp_point *R,
|
|
const ecp_point *P, const ecp_point *Q )
|
|
{
|
|
int ret;
|
|
mpi T1, T2, T3, T4, X, Y, Z;
|
|
|
|
#if defined(POLARSSL_SELF_TEST)
|
|
add_count++;
|
|
#endif
|
|
|
|
/*
|
|
* Trivial cases: P == 0 or Q == 0 (case 1)
|
|
*/
|
|
if( mpi_cmp_int( &P->Z, 0 ) == 0 )
|
|
return( ecp_copy( R, Q ) );
|
|
|
|
if( Q->Z.p != NULL && mpi_cmp_int( &Q->Z, 0 ) == 0 )
|
|
return( ecp_copy( R, P ) );
|
|
|
|
/*
|
|
* Make sure Q coordinates are normalized
|
|
*/
|
|
if( Q->Z.p != NULL && mpi_cmp_int( &Q->Z, 1 ) != 0 )
|
|
return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
|
|
|
|
mpi_init( &T1 ); mpi_init( &T2 ); mpi_init( &T3 ); mpi_init( &T4 );
|
|
mpi_init( &X ); mpi_init( &Y ); mpi_init( &Z );
|
|
|
|
MPI_CHK( mpi_mul_mpi( &T1, &P->Z, &P->Z ) ); MOD_MUL( T1 );
|
|
MPI_CHK( mpi_mul_mpi( &T2, &T1, &P->Z ) ); MOD_MUL( T2 );
|
|
MPI_CHK( mpi_mul_mpi( &T1, &T1, &Q->X ) ); MOD_MUL( T1 );
|
|
MPI_CHK( mpi_mul_mpi( &T2, &T2, &Q->Y ) ); MOD_MUL( T2 );
|
|
MPI_CHK( mpi_sub_mpi( &T1, &T1, &P->X ) ); MOD_SUB( T1 );
|
|
MPI_CHK( mpi_sub_mpi( &T2, &T2, &P->Y ) ); MOD_SUB( T2 );
|
|
|
|
/* Special cases (2) and (3) */
|
|
if( mpi_cmp_int( &T1, 0 ) == 0 )
|
|
{
|
|
if( mpi_cmp_int( &T2, 0 ) == 0 )
|
|
{
|
|
ret = ecp_double_jac( grp, R, P );
|
|
goto cleanup;
|
|
}
|
|
else
|
|
{
|
|
ret = ecp_set_zero( R );
|
|
goto cleanup;
|
|
}
|
|
}
|
|
|
|
MPI_CHK( mpi_mul_mpi( &Z, &P->Z, &T1 ) ); MOD_MUL( Z );
|
|
MPI_CHK( mpi_mul_mpi( &T3, &T1, &T1 ) ); MOD_MUL( T3 );
|
|
MPI_CHK( mpi_mul_mpi( &T4, &T3, &T1 ) ); MOD_MUL( T4 );
|
|
MPI_CHK( mpi_mul_mpi( &T3, &T3, &P->X ) ); MOD_MUL( T3 );
|
|
MPI_CHK( mpi_mul_int( &T1, &T3, 2 ) ); MOD_ADD( T1 );
|
|
MPI_CHK( mpi_mul_mpi( &X, &T2, &T2 ) ); MOD_MUL( X );
|
|
MPI_CHK( mpi_sub_mpi( &X, &X, &T1 ) ); MOD_SUB( X );
|
|
MPI_CHK( mpi_sub_mpi( &X, &X, &T4 ) ); MOD_SUB( X );
|
|
MPI_CHK( mpi_sub_mpi( &T3, &T3, &X ) ); MOD_SUB( T3 );
|
|
MPI_CHK( mpi_mul_mpi( &T3, &T3, &T2 ) ); MOD_MUL( T3 );
|
|
MPI_CHK( mpi_mul_mpi( &T4, &T4, &P->Y ) ); MOD_MUL( T4 );
|
|
MPI_CHK( mpi_sub_mpi( &Y, &T3, &T4 ) ); MOD_SUB( Y );
|
|
|
|
MPI_CHK( mpi_copy( &R->X, &X ) );
|
|
MPI_CHK( mpi_copy( &R->Y, &Y ) );
|
|
MPI_CHK( mpi_copy( &R->Z, &Z ) );
|
|
|
|
cleanup:
|
|
|
|
mpi_free( &T1 ); mpi_free( &T2 ); mpi_free( &T3 ); mpi_free( &T4 );
|
|
mpi_free( &X ); mpi_free( &Y ); mpi_free( &Z );
|
|
|
|
return( ret );
|
|
}
|
|
|
|
/*
|
|
* Addition: R = P + Q, result's coordinates normalized
|
|
*/
|
|
int ecp_add( const ecp_group *grp, ecp_point *R,
|
|
const ecp_point *P, const ecp_point *Q )
|
|
{
|
|
int ret;
|
|
|
|
if( ecp_get_type( grp ) != POLARSSL_ECP_TYPE_SHORT_WEIERSTRASS )
|
|
return( POLARSSL_ERR_ECP_FEATURE_UNAVAILABLE );
|
|
|
|
MPI_CHK( ecp_add_mixed( grp, R, P, Q ) );
|
|
MPI_CHK( ecp_normalize_jac( grp, R ) );
|
|
|
|
cleanup:
|
|
return( ret );
|
|
}
|
|
|
|
/*
|
|
* Subtraction: R = P - Q, result's coordinates normalized
|
|
*/
|
|
int ecp_sub( const ecp_group *grp, ecp_point *R,
|
|
const ecp_point *P, const ecp_point *Q )
|
|
{
|
|
int ret;
|
|
ecp_point mQ;
|
|
|
|
ecp_point_init( &mQ );
|
|
|
|
if( ecp_get_type( grp ) != POLARSSL_ECP_TYPE_SHORT_WEIERSTRASS )
|
|
return( POLARSSL_ERR_ECP_FEATURE_UNAVAILABLE );
|
|
|
|
/* mQ = - Q */
|
|
MPI_CHK( ecp_copy( &mQ, Q ) );
|
|
if( mpi_cmp_int( &mQ.Y, 0 ) != 0 )
|
|
MPI_CHK( mpi_sub_mpi( &mQ.Y, &grp->P, &mQ.Y ) );
|
|
|
|
MPI_CHK( ecp_add_mixed( grp, R, P, &mQ ) );
|
|
MPI_CHK( ecp_normalize_jac( grp, R ) );
|
|
|
|
cleanup:
|
|
ecp_point_free( &mQ );
|
|
|
|
return( ret );
|
|
}
|
|
|
|
/*
|
|
* Randomize jacobian coordinates:
|
|
* (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l
|
|
* This is sort of the reverse operation of ecp_normalize_jac().
|
|
*
|
|
* This countermeasure was first suggested in [2].
|
|
*/
|
|
static int ecp_randomize_jac( const ecp_group *grp, ecp_point *pt,
|
|
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
|
|
{
|
|
int ret;
|
|
mpi l, ll;
|
|
size_t p_size = ( grp->pbits + 7 ) / 8;
|
|
int count = 0;
|
|
|
|
mpi_init( &l ); mpi_init( &ll );
|
|
|
|
/* Generate l such that 1 < l < p */
|
|
do
|
|
{
|
|
mpi_fill_random( &l, p_size, f_rng, p_rng );
|
|
|
|
while( mpi_cmp_mpi( &l, &grp->P ) >= 0 )
|
|
MPI_CHK( mpi_shift_r( &l, 1 ) );
|
|
|
|
if( count++ > 10 )
|
|
return( POLARSSL_ERR_ECP_RANDOM_FAILED );
|
|
}
|
|
while( mpi_cmp_int( &l, 1 ) <= 0 );
|
|
|
|
/* Z = l * Z */
|
|
MPI_CHK( mpi_mul_mpi( &pt->Z, &pt->Z, &l ) ); MOD_MUL( pt->Z );
|
|
|
|
/* X = l^2 * X */
|
|
MPI_CHK( mpi_mul_mpi( &ll, &l, &l ) ); MOD_MUL( ll );
|
|
MPI_CHK( mpi_mul_mpi( &pt->X, &pt->X, &ll ) ); MOD_MUL( pt->X );
|
|
|
|
/* Y = l^3 * Y */
|
|
MPI_CHK( mpi_mul_mpi( &ll, &ll, &l ) ); MOD_MUL( ll );
|
|
MPI_CHK( mpi_mul_mpi( &pt->Y, &pt->Y, &ll ) ); MOD_MUL( pt->Y );
|
|
|
|
cleanup:
|
|
mpi_free( &l ); mpi_free( &ll );
|
|
|
|
return( ret );
|
|
}
|
|
|
|
/*
|
|
* Check and define parameters used by the comb method (see below for details)
|
|
*/
|
|
#if POLARSSL_ECP_WINDOW_SIZE < 2 || POLARSSL_ECP_WINDOW_SIZE > 7
|
|
#error "POLARSSL_ECP_WINDOW_SIZE out of bounds"
|
|
#endif
|
|
|
|
/* d = ceil( n / w ) */
|
|
#define COMB_MAX_D ( POLARSSL_ECP_MAX_BITS + 1 ) / 2
|
|
|
|
/* number of precomputed points */
|
|
#define COMB_MAX_PRE ( 1 << ( POLARSSL_ECP_WINDOW_SIZE - 1 ) )
|
|
|
|
/*
|
|
* Compute the representation of m that will be used with our comb method.
|
|
*
|
|
* The basic comb method is described in GECC 3.44 for example. We use a
|
|
* modified version that provides resistance to SPA by avoiding zero
|
|
* digits in the representation as in [3]. We modify the method further by
|
|
* requiring that all K_i be odd, which has the small cost that our
|
|
* representation uses one more K_i, due to carries.
|
|
*
|
|
* Also, for the sake of compactness, only the seven low-order bits of x[i]
|
|
* are used to represent K_i, and the msb of x[i] encodes the the sign (s_i in
|
|
* the paper): it is set if and only if if s_i == -1;
|
|
*
|
|
* Calling conventions:
|
|
* - x is an array of size d + 1
|
|
* - w is the size, ie number of teeth, of the comb, and must be between
|
|
* 2 and 7 (in practice, between 2 and POLARSSL_ECP_WINDOW_SIZE)
|
|
* - m is the MPI, expected to be odd and such that bitlength(m) <= w * d
|
|
* (the result will be incorrect if these assumptions are not satisfied)
|
|
*/
|
|
static void ecp_comb_fixed( unsigned char x[], size_t d,
|
|
unsigned char w, const mpi *m )
|
|
{
|
|
size_t i, j;
|
|
unsigned char c, cc, adjust;
|
|
|
|
memset( x, 0, d+1 );
|
|
|
|
/* First get the classical comb values (except for x_d = 0) */
|
|
for( i = 0; i < d; i++ )
|
|
for( j = 0; j < w; j++ )
|
|
x[i] |= mpi_get_bit( m, i + d * j ) << j;
|
|
|
|
/* Now make sure x_1 .. x_d are odd */
|
|
c = 0;
|
|
for( i = 1; i <= d; i++ )
|
|
{
|
|
/* Add carry and update it */
|
|
cc = x[i] & c;
|
|
x[i] = x[i] ^ c;
|
|
c = cc;
|
|
|
|
/* Adjust if needed, avoiding branches */
|
|
adjust = 1 - ( x[i] & 0x01 );
|
|
c |= x[i] & ( x[i-1] * adjust );
|
|
x[i] = x[i] ^ ( x[i-1] * adjust );
|
|
x[i-1] |= adjust << 7;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Precompute points for the comb method
|
|
*
|
|
* If i = i_{w-1} ... i_1 is the binary representation of i, then
|
|
* T[i] = i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + P
|
|
*
|
|
* T must be able to hold 2^{w - 1} elements
|
|
*
|
|
* Cost: d(w-1) D + (2^{w-1} - 1) A + 1 N(w-1) + 1 N(2^{w-1} - 1)
|
|
*/
|
|
static int ecp_precompute_comb( const ecp_group *grp,
|
|
ecp_point T[], const ecp_point *P,
|
|
unsigned char w, size_t d )
|
|
{
|
|
int ret;
|
|
unsigned char i, k;
|
|
size_t j;
|
|
ecp_point *cur, *TT[COMB_MAX_PRE - 1];
|
|
|
|
/*
|
|
* Set T[0] = P and
|
|
* T[2^{l-1}] = 2^{dl} P for l = 1 .. w-1 (this is not the final value)
|
|
*/
|
|
MPI_CHK( ecp_copy( &T[0], P ) );
|
|
|
|
k = 0;
|
|
for( i = 1; i < ( 1U << ( w - 1 ) ); i <<= 1 )
|
|
{
|
|
cur = T + i;
|
|
MPI_CHK( ecp_copy( cur, T + ( i >> 1 ) ) );
|
|
for( j = 0; j < d; j++ )
|
|
MPI_CHK( ecp_double_jac( grp, cur, cur ) );
|
|
|
|
TT[k++] = cur;
|
|
}
|
|
|
|
MPI_CHK( ecp_normalize_jac_many( grp, TT, k ) );
|
|
|
|
/*
|
|
* Compute the remaining ones using the minimal number of additions
|
|
* Be careful to update T[2^l] only after using it!
|
|
*/
|
|
k = 0;
|
|
for( i = 1; i < ( 1U << ( w - 1 ) ); i <<= 1 )
|
|
{
|
|
j = i;
|
|
while( j-- )
|
|
{
|
|
MPI_CHK( ecp_add_mixed( grp, &T[i + j], &T[j], &T[i] ) );
|
|
TT[k++] = &T[i + j];
|
|
}
|
|
}
|
|
|
|
MPI_CHK( ecp_normalize_jac_many( grp, TT, k ) );
|
|
|
|
cleanup:
|
|
return( ret );
|
|
}
|
|
|
|
/*
|
|
* Select precomputed point: R = sign(i) * T[ abs(i) / 2 ]
|
|
*/
|
|
static int ecp_select_comb( const ecp_group *grp, ecp_point *R,
|
|
const ecp_point T[], unsigned char t_len,
|
|
unsigned char i )
|
|
{
|
|
int ret;
|
|
unsigned char ii, j;
|
|
|
|
/* Ignore the "sign" bit and scale down */
|
|
ii = ( i & 0x7Fu ) >> 1;
|
|
|
|
/* Read the whole table to thwart cache-based timing attacks */
|
|
for( j = 0; j < t_len; j++ )
|
|
{
|
|
MPI_CHK( mpi_safe_cond_assign( &R->X, &T[j].X, j == ii ) );
|
|
MPI_CHK( mpi_safe_cond_assign( &R->Y, &T[j].Y, j == ii ) );
|
|
}
|
|
|
|
/* Safely invert result if i is "negative" */
|
|
MPI_CHK( ecp_safe_invert_jac( grp, R, i >> 7 ) );
|
|
|
|
cleanup:
|
|
return( ret );
|
|
}
|
|
|
|
/*
|
|
* Core multiplication algorithm for the (modified) comb method.
|
|
* This part is actually common with the basic comb method (GECC 3.44)
|
|
*
|
|
* Cost: d A + d D + 1 R
|
|
*/
|
|
static int ecp_mul_comb_core( const ecp_group *grp, ecp_point *R,
|
|
const ecp_point T[], unsigned char t_len,
|
|
const unsigned char x[], size_t d,
|
|
int (*f_rng)(void *, unsigned char *, size_t),
|
|
void *p_rng )
|
|
{
|
|
int ret;
|
|
ecp_point Txi;
|
|
size_t i;
|
|
|
|
ecp_point_init( &Txi );
|
|
|
|
/* Start with a non-zero point and randomize its coordinates */
|
|
i = d;
|
|
MPI_CHK( ecp_select_comb( grp, R, T, t_len, x[i] ) );
|
|
MPI_CHK( mpi_lset( &R->Z, 1 ) );
|
|
if( f_rng != 0 )
|
|
MPI_CHK( ecp_randomize_jac( grp, R, f_rng, p_rng ) );
|
|
|
|
while( i-- != 0 )
|
|
{
|
|
MPI_CHK( ecp_double_jac( grp, R, R ) );
|
|
MPI_CHK( ecp_select_comb( grp, &Txi, T, t_len, x[i] ) );
|
|
MPI_CHK( ecp_add_mixed( grp, R, R, &Txi ) );
|
|
}
|
|
|
|
cleanup:
|
|
ecp_point_free( &Txi );
|
|
|
|
return( ret );
|
|
}
|
|
|
|
/*
|
|
* Multiplication using the comb method,
|
|
* for curves in short Weierstrass form
|
|
*/
|
|
static int ecp_mul_comb( ecp_group *grp, ecp_point *R,
|
|
const mpi *m, const ecp_point *P,
|
|
int (*f_rng)(void *, unsigned char *, size_t),
|
|
void *p_rng )
|
|
{
|
|
int ret;
|
|
unsigned char w, m_is_odd, p_eq_g, pre_len, i;
|
|
size_t d;
|
|
unsigned char k[COMB_MAX_D + 1];
|
|
ecp_point *T;
|
|
mpi M, mm;
|
|
|
|
mpi_init( &M );
|
|
mpi_init( &mm );
|
|
|
|
/* we need N to be odd to trnaform m in an odd number, check now */
|
|
if( mpi_get_bit( &grp->N, 0 ) != 1 )
|
|
return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
|
|
|
|
/*
|
|
* Minimize the number of multiplications, that is minimize
|
|
* 10 * d * w + 18 * 2^(w-1) + 11 * d + 7 * w, with d = ceil( nbits / w )
|
|
* (see costs of the various parts, with 1S = 1M)
|
|
*/
|
|
w = grp->nbits >= 384 ? 5 : 4;
|
|
|
|
/*
|
|
* If P == G, pre-compute a bit more, since this may be re-used later.
|
|
* Just adding one avoids upping the cost of the first mul too much,
|
|
* and the memory cost too.
|
|
*/
|
|
#if POLARSSL_ECP_FIXED_POINT_OPTIM == 1
|
|
p_eq_g = ( mpi_cmp_mpi( &P->Y, &grp->G.Y ) == 0 &&
|
|
mpi_cmp_mpi( &P->X, &grp->G.X ) == 0 );
|
|
if( p_eq_g )
|
|
w++;
|
|
#else
|
|
p_eq_g = 0;
|
|
#endif
|
|
|
|
/*
|
|
* Make sure w is within bounds.
|
|
* (The last test is useful only for very small curves in the test suite.)
|
|
*/
|
|
if( w > POLARSSL_ECP_WINDOW_SIZE )
|
|
w = POLARSSL_ECP_WINDOW_SIZE;
|
|
if( w >= grp->nbits )
|
|
w = 2;
|
|
|
|
/* Other sizes that depend on w */
|
|
pre_len = 1U << ( w - 1 );
|
|
d = ( grp->nbits + w - 1 ) / w;
|
|
|
|
/*
|
|
* Prepare precomputed points: if P == G we want to
|
|
* use grp->T if already initialized, or initialize it.
|
|
*/
|
|
T = p_eq_g ? grp->T : NULL;
|
|
|
|
if( T == NULL )
|
|
{
|
|
T = (ecp_point *) polarssl_malloc( pre_len * sizeof( ecp_point ) );
|
|
if( T == NULL )
|
|
{
|
|
ret = POLARSSL_ERR_ECP_MALLOC_FAILED;
|
|
goto cleanup;
|
|
}
|
|
|
|
for( i = 0; i < pre_len; i++ )
|
|
ecp_point_init( &T[i] );
|
|
|
|
MPI_CHK( ecp_precompute_comb( grp, T, P, w, d ) );
|
|
|
|
if( p_eq_g )
|
|
{
|
|
grp->T = T;
|
|
grp->T_size = pre_len;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Make sure M is odd (M = m or M = N - m, since N is odd)
|
|
* using the fact that m * P = - (N - m) * P
|
|
*/
|
|
m_is_odd = ( mpi_get_bit( m, 0 ) == 1 );
|
|
MPI_CHK( mpi_copy( &M, m ) );
|
|
MPI_CHK( mpi_sub_mpi( &mm, &grp->N, m ) );
|
|
MPI_CHK( mpi_safe_cond_assign( &M, &mm, ! m_is_odd ) );
|
|
|
|
/*
|
|
* Go for comb multiplication, R = M * P
|
|
*/
|
|
ecp_comb_fixed( k, d, w, &M );
|
|
MPI_CHK( ecp_mul_comb_core( grp, R, T, pre_len, k, d, f_rng, p_rng ) );
|
|
|
|
/*
|
|
* Now get m * P from M * P and normalize it
|
|
*/
|
|
MPI_CHK( ecp_safe_invert_jac( grp, R, ! m_is_odd ) );
|
|
MPI_CHK( ecp_normalize_jac( grp, R ) );
|
|
|
|
cleanup:
|
|
|
|
if( T != NULL && ! p_eq_g )
|
|
{
|
|
for( i = 0; i < pre_len; i++ )
|
|
ecp_point_free( &T[i] );
|
|
polarssl_free( T );
|
|
}
|
|
|
|
mpi_free( &M );
|
|
mpi_free( &mm );
|
|
|
|
if( ret != 0 )
|
|
ecp_point_free( R );
|
|
|
|
return( ret );
|
|
}
|
|
|
|
#endif /* POLARSSL_ECP_SHORT_WEIERSTRASS */
|
|
|
|
#if defined(POLARSSL_ECP_MONTGOMERY)
|
|
/*
|
|
* For Montgomery curves, we do all the internal arithmetic in projective
|
|
* coordinates. Import/export of points uses only the x coordinates, which is
|
|
* internaly represented as X / Z.
|
|
*
|
|
* For scalar multiplication, we'll use a Montgomery ladder.
|
|
*/
|
|
|
|
/*
|
|
* Normalize Montgomery x/z coordinates: X = X/Z, Z = 1
|
|
* Cost: 1M + 1I
|
|
*/
|
|
static int ecp_normalize_mxz( const ecp_group *grp, ecp_point *P )
|
|
{
|
|
int ret;
|
|
|
|
MPI_CHK( mpi_inv_mod( &P->Z, &P->Z, &grp->P ) );
|
|
MPI_CHK( mpi_mul_mpi( &P->X, &P->X, &P->Z ) ); MOD_MUL( P->X );
|
|
MPI_CHK( mpi_lset( &P->Z, 1 ) );
|
|
|
|
cleanup:
|
|
return( ret );
|
|
}
|
|
|
|
/*
|
|
* Randomize projective x/z coordinates:
|
|
* (X, Z) -> (l X, l Z) for random l
|
|
* This is sort of the reverse operation of ecp_normalize_mxz().
|
|
*
|
|
* This countermeasure was first suggested in [2].
|
|
* Cost: 2M
|
|
*/
|
|
static int ecp_randomize_mxz( const ecp_group *grp, ecp_point *P,
|
|
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
|
|
{
|
|
int ret;
|
|
mpi l;
|
|
size_t p_size = ( grp->pbits + 7 ) / 8;
|
|
int count = 0;
|
|
|
|
mpi_init( &l );
|
|
|
|
/* Generate l such that 1 < l < p */
|
|
do
|
|
{
|
|
mpi_fill_random( &l, p_size, f_rng, p_rng );
|
|
|
|
while( mpi_cmp_mpi( &l, &grp->P ) >= 0 )
|
|
MPI_CHK( mpi_shift_r( &l, 1 ) );
|
|
|
|
if( count++ > 10 )
|
|
return( POLARSSL_ERR_ECP_RANDOM_FAILED );
|
|
}
|
|
while( mpi_cmp_int( &l, 1 ) <= 0 );
|
|
|
|
MPI_CHK( mpi_mul_mpi( &P->X, &P->X, &l ) ); MOD_MUL( P->X );
|
|
MPI_CHK( mpi_mul_mpi( &P->Z, &P->Z, &l ) ); MOD_MUL( P->Z );
|
|
|
|
cleanup:
|
|
mpi_free( &l );
|
|
|
|
return( ret );
|
|
}
|
|
|
|
/*
|
|
* Double-and-add: R = 2P, S = P + Q, with d = X(P - Q),
|
|
* for Montgomery curves in x/z coordinates.
|
|
*
|
|
* http://www.hyperelliptic.org/EFD/g1p/auto-code/montgom/xz/ladder/mladd-1987-m.op3
|
|
* with
|
|
* d = X1
|
|
* P = (X2, Z2)
|
|
* Q = (X3, Z3)
|
|
* R = (X4, Z4)
|
|
* S = (X5, Z5)
|
|
* and eliminating temporary variables tO, ..., t4.
|
|
*
|
|
* Cost: 5M + 4S
|
|
*/
|
|
static int ecp_double_add_mxz( const ecp_group *grp,
|
|
ecp_point *R, ecp_point *S,
|
|
const ecp_point *P, const ecp_point *Q,
|
|
const mpi *d )
|
|
{
|
|
int ret;
|
|
mpi A, AA, B, BB, E, C, D, DA, CB;
|
|
|
|
mpi_init( &A ); mpi_init( &AA ); mpi_init( &B );
|
|
mpi_init( &BB ); mpi_init( &E ); mpi_init( &C );
|
|
mpi_init( &D ); mpi_init( &DA ); mpi_init( &CB );
|
|
|
|
MPI_CHK( mpi_add_mpi( &A, &P->X, &P->Z ) ); MOD_ADD( A );
|
|
MPI_CHK( mpi_mul_mpi( &AA, &A, &A ) ); MOD_MUL( AA );
|
|
MPI_CHK( mpi_sub_mpi( &B, &P->X, &P->Z ) ); MOD_SUB( B );
|
|
MPI_CHK( mpi_mul_mpi( &BB, &B, &B ) ); MOD_MUL( BB );
|
|
MPI_CHK( mpi_sub_mpi( &E, &AA, &BB ) ); MOD_SUB( E );
|
|
MPI_CHK( mpi_add_mpi( &C, &Q->X, &Q->Z ) ); MOD_ADD( C );
|
|
MPI_CHK( mpi_sub_mpi( &D, &Q->X, &Q->Z ) ); MOD_SUB( D );
|
|
MPI_CHK( mpi_mul_mpi( &DA, &D, &A ) ); MOD_MUL( DA );
|
|
MPI_CHK( mpi_mul_mpi( &CB, &C, &B ) ); MOD_MUL( CB );
|
|
MPI_CHK( mpi_add_mpi( &S->X, &DA, &CB ) ); MOD_MUL( S->X );
|
|
MPI_CHK( mpi_mul_mpi( &S->X, &S->X, &S->X ) ); MOD_MUL( S->X );
|
|
MPI_CHK( mpi_sub_mpi( &S->Z, &DA, &CB ) ); MOD_SUB( S->Z );
|
|
MPI_CHK( mpi_mul_mpi( &S->Z, &S->Z, &S->Z ) ); MOD_MUL( S->Z );
|
|
MPI_CHK( mpi_mul_mpi( &S->Z, d, &S->Z ) ); MOD_MUL( S->Z );
|
|
MPI_CHK( mpi_mul_mpi( &R->X, &AA, &BB ) ); MOD_MUL( R->X );
|
|
MPI_CHK( mpi_mul_mpi( &R->Z, &grp->A, &E ) ); MOD_MUL( R->Z );
|
|
MPI_CHK( mpi_add_mpi( &R->Z, &BB, &R->Z ) ); MOD_ADD( R->Z );
|
|
MPI_CHK( mpi_mul_mpi( &R->Z, &E, &R->Z ) ); MOD_MUL( R->Z );
|
|
|
|
cleanup:
|
|
mpi_free( &A ); mpi_free( &AA ); mpi_free( &B );
|
|
mpi_free( &BB ); mpi_free( &E ); mpi_free( &C );
|
|
mpi_free( &D ); mpi_free( &DA ); mpi_free( &CB );
|
|
|
|
return( ret );
|
|
}
|
|
|
|
/*
|
|
* Multiplication with Montgomery ladder in x/z coordinates,
|
|
* for curves in Montgomery form
|
|
*/
|
|
static int ecp_mul_mxz( ecp_group *grp, ecp_point *R,
|
|
const mpi *m, const ecp_point *P,
|
|
int (*f_rng)(void *, unsigned char *, size_t),
|
|
void *p_rng )
|
|
{
|
|
int ret;
|
|
size_t i;
|
|
unsigned char b;
|
|
ecp_point RP;
|
|
mpi PX;
|
|
|
|
ecp_point_init( &RP ); mpi_init( &PX );
|
|
|
|
/* Save PX and read from P before writing to R, in case P == R */
|
|
MPI_CHK( mpi_copy( &PX, &P->X ) );
|
|
MPI_CHK( ecp_copy( &RP, P ) );
|
|
|
|
/* Set R to zero in modified x/z coordinates */
|
|
MPI_CHK( mpi_lset( &R->X, 1 ) );
|
|
MPI_CHK( mpi_lset( &R->Z, 0 ) );
|
|
mpi_free( &R->Y );
|
|
|
|
/* RP.X might be sligtly larger than P, so reduce it */
|
|
MOD_ADD( RP.X );
|
|
|
|
/* Randomize coordinates of the starting point */
|
|
if( f_rng != NULL )
|
|
MPI_CHK( ecp_randomize_mxz( grp, &RP, f_rng, p_rng ) );
|
|
|
|
/* Loop invariant: R = result so far, RP = R + P */
|
|
i = mpi_msb( m ); /* one past the (zero-based) most significant bit */
|
|
while( i-- > 0 )
|
|
{
|
|
b = mpi_get_bit( m, i );
|
|
/*
|
|
* if (b) R = 2R + P else R = 2R,
|
|
* which is:
|
|
* if (b) double_add( RP, R, RP, R )
|
|
* else double_add( R, RP, R, RP )
|
|
* but using safe conditional swaps to avoid leaks
|
|
*/
|
|
MPI_CHK( mpi_safe_cond_swap( &R->X, &RP.X, b ) );
|
|
MPI_CHK( mpi_safe_cond_swap( &R->Z, &RP.Z, b ) );
|
|
MPI_CHK( ecp_double_add_mxz( grp, R, &RP, R, &RP, &PX ) );
|
|
MPI_CHK( mpi_safe_cond_swap( &R->X, &RP.X, b ) );
|
|
MPI_CHK( mpi_safe_cond_swap( &R->Z, &RP.Z, b ) );
|
|
}
|
|
|
|
MPI_CHK( ecp_normalize_mxz( grp, R ) );
|
|
|
|
cleanup:
|
|
ecp_point_free( &RP ); mpi_free( &PX );
|
|
|
|
return( ret );
|
|
}
|
|
|
|
#endif /* POLARSSL_ECP_MONTGOMERY */
|
|
|
|
/*
|
|
* Multiplication R = m * P
|
|
*/
|
|
int ecp_mul( ecp_group *grp, ecp_point *R,
|
|
const mpi *m, const ecp_point *P,
|
|
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
|
|
{
|
|
int ret;
|
|
|
|
/* Common sanity checks */
|
|
if( mpi_cmp_int( &P->Z, 1 ) != 0 )
|
|
return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
|
|
|
|
if( ( ret = ecp_check_privkey( grp, m ) ) != 0 ||
|
|
( ret = ecp_check_pubkey( grp, P ) ) != 0 )
|
|
return( ret );
|
|
|
|
#if defined(POLARSSL_ECP_MONTGOMERY)
|
|
if( ecp_get_type( grp ) == POLARSSL_ECP_TYPE_MONTGOMERY )
|
|
return( ecp_mul_mxz( grp, R, m, P, f_rng, p_rng ) );
|
|
#endif
|
|
#if defined(POLARSSL_ECP_SHORT_WEIERSTRASS)
|
|
if( ecp_get_type( grp ) == POLARSSL_ECP_TYPE_SHORT_WEIERSTRASS )
|
|
return( ecp_mul_comb( grp, R, m, P, f_rng, p_rng ) );
|
|
#endif
|
|
return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
|
|
}
|
|
|
|
#if defined(POLARSSL_ECP_SHORT_WEIERSTRASS)
|
|
/*
|
|
* Check that an affine point is valid as a public key,
|
|
* short weierstrass curves (SEC1 3.2.3.1)
|
|
*/
|
|
static int ecp_check_pubkey_sw( const ecp_group *grp, const ecp_point *pt )
|
|
{
|
|
int ret;
|
|
mpi YY, RHS;
|
|
|
|
/* pt coordinates must be normalized for our checks */
|
|
if( mpi_cmp_int( &pt->X, 0 ) < 0 ||
|
|
mpi_cmp_int( &pt->Y, 0 ) < 0 ||
|
|
mpi_cmp_mpi( &pt->X, &grp->P ) >= 0 ||
|
|
mpi_cmp_mpi( &pt->Y, &grp->P ) >= 0 )
|
|
return( POLARSSL_ERR_ECP_INVALID_KEY );
|
|
|
|
mpi_init( &YY ); mpi_init( &RHS );
|
|
|
|
/*
|
|
* YY = Y^2
|
|
* RHS = X (X^2 + A) + B = X^3 + A X + B
|
|
*/
|
|
MPI_CHK( mpi_mul_mpi( &YY, &pt->Y, &pt->Y ) ); MOD_MUL( YY );
|
|
MPI_CHK( mpi_mul_mpi( &RHS, &pt->X, &pt->X ) ); MOD_MUL( RHS );
|
|
|
|
/* Special case for A = -3 */
|
|
if( grp->A.p == NULL )
|
|
{
|
|
MPI_CHK( mpi_sub_int( &RHS, &RHS, 3 ) ); MOD_SUB( RHS );
|
|
}
|
|
else
|
|
{
|
|
MPI_CHK( mpi_add_mpi( &RHS, &RHS, &grp->A ) ); MOD_ADD( RHS );
|
|
}
|
|
|
|
MPI_CHK( mpi_mul_mpi( &RHS, &RHS, &pt->X ) ); MOD_MUL( RHS );
|
|
MPI_CHK( mpi_add_mpi( &RHS, &RHS, &grp->B ) ); MOD_ADD( RHS );
|
|
|
|
if( mpi_cmp_mpi( &YY, &RHS ) != 0 )
|
|
ret = POLARSSL_ERR_ECP_INVALID_KEY;
|
|
|
|
cleanup:
|
|
|
|
mpi_free( &YY ); mpi_free( &RHS );
|
|
|
|
return( ret );
|
|
}
|
|
#endif /* POLARSSL_ECP_SHORT_WEIERSTRASS */
|
|
|
|
|
|
#if defined(POLARSSL_ECP_MONTGOMERY)
|
|
/*
|
|
* Check validity of a public key for Montgomery curves with x-only schemes
|
|
*/
|
|
static int ecp_check_pubkey_mx( const ecp_group *grp, const ecp_point *pt )
|
|
{
|
|
/* [M255 p. 5] Just check X is the correct number of bytes */
|
|
if( mpi_size( &pt->X ) > ( grp->nbits + 7 ) / 8 )
|
|
return( POLARSSL_ERR_ECP_INVALID_KEY );
|
|
|
|
return( 0 );
|
|
}
|
|
#endif /* POLARSSL_ECP_MONTGOMERY */
|
|
|
|
/*
|
|
* Check that a point is valid as a public key
|
|
*/
|
|
int ecp_check_pubkey( const ecp_group *grp, const ecp_point *pt )
|
|
{
|
|
/* Must use affine coordinates */
|
|
if( mpi_cmp_int( &pt->Z, 1 ) != 0 )
|
|
return( POLARSSL_ERR_ECP_INVALID_KEY );
|
|
|
|
#if defined(POLARSSL_ECP_MONTGOMERY)
|
|
if( ecp_get_type( grp ) == POLARSSL_ECP_TYPE_MONTGOMERY )
|
|
return( ecp_check_pubkey_mx( grp, pt ) );
|
|
#endif
|
|
#if defined(POLARSSL_ECP_SHORT_WEIERSTRASS)
|
|
if( ecp_get_type( grp ) == POLARSSL_ECP_TYPE_SHORT_WEIERSTRASS )
|
|
return( ecp_check_pubkey_sw( grp, pt ) );
|
|
#endif
|
|
return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
|
|
}
|
|
|
|
/*
|
|
* Check that an mpi is valid as a private key
|
|
*/
|
|
int ecp_check_privkey( const ecp_group *grp, const mpi *d )
|
|
{
|
|
#if defined(POLARSSL_ECP_MONTGOMERY)
|
|
if( ecp_get_type( grp ) == POLARSSL_ECP_TYPE_MONTGOMERY )
|
|
{
|
|
/* see [M255] page 5 */
|
|
if( mpi_get_bit( d, 0 ) != 0 ||
|
|
mpi_get_bit( d, 1 ) != 0 ||
|
|
mpi_get_bit( d, 2 ) != 0 ||
|
|
mpi_msb( d ) - 1 != grp->nbits ) /* mpi_msb is one-based! */
|
|
return( POLARSSL_ERR_ECP_INVALID_KEY );
|
|
else
|
|
return( 0 );
|
|
}
|
|
#endif /* POLARSSL_ECP_MONTGOMERY */
|
|
#if defined(POLARSSL_ECP_SHORT_WEIERSTRASS)
|
|
if( ecp_get_type( grp ) == POLARSSL_ECP_TYPE_SHORT_WEIERSTRASS )
|
|
{
|
|
/* see SEC1 3.2 */
|
|
if( mpi_cmp_int( d, 1 ) < 0 ||
|
|
mpi_cmp_mpi( d, &grp->N ) >= 0 )
|
|
return( POLARSSL_ERR_ECP_INVALID_KEY );
|
|
else
|
|
return( 0 );
|
|
}
|
|
#endif /* POLARSSL_ECP_SHORT_WEIERSTRASS */
|
|
|
|
return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
|
|
}
|
|
|
|
/*
|
|
* Generate a keypair
|
|
*/
|
|
int ecp_gen_keypair( ecp_group *grp, mpi *d, ecp_point *Q,
|
|
int (*f_rng)(void *, unsigned char *, size_t),
|
|
void *p_rng )
|
|
{
|
|
int ret;
|
|
size_t n_size = ( grp->nbits + 7 ) / 8;
|
|
|
|
#if defined(POLARSSL_ECP_MONTGOMERY)
|
|
if( ecp_get_type( grp ) == POLARSSL_ECP_TYPE_MONTGOMERY )
|
|
{
|
|
/* [M225] page 5 */
|
|
size_t b;
|
|
|
|
MPI_CHK( mpi_fill_random( d, n_size, f_rng, p_rng ) );
|
|
|
|
/* Make sure the most significant bit is nbits */
|
|
b = mpi_msb( d ) - 1; /* mpi_msb is one-based */
|
|
if( b > grp->nbits )
|
|
MPI_CHK( mpi_shift_r( d, b - grp->nbits ) );
|
|
else
|
|
MPI_CHK( mpi_set_bit( d, grp->nbits, 1 ) );
|
|
|
|
/* Make sure the last three bits are unset */
|
|
MPI_CHK( mpi_set_bit( d, 0, 0 ) );
|
|
MPI_CHK( mpi_set_bit( d, 1, 0 ) );
|
|
MPI_CHK( mpi_set_bit( d, 2, 0 ) );
|
|
}
|
|
else
|
|
#endif /* POLARSSL_ECP_MONTGOMERY */
|
|
#if defined(POLARSSL_ECP_SHORT_WEIERSTRASS)
|
|
if( ecp_get_type( grp ) == POLARSSL_ECP_TYPE_SHORT_WEIERSTRASS )
|
|
{
|
|
/* SEC1 3.2.1: Generate d such that 1 <= n < N */
|
|
int count = 0;
|
|
unsigned char rnd[POLARSSL_ECP_MAX_BYTES];
|
|
|
|
/*
|
|
* Match the procedure given in RFC 6979 (deterministic ECDSA):
|
|
* - use the same byte ordering;
|
|
* - keep the leftmost nbits bits of the generated octet string;
|
|
* - try until result is in the desired range.
|
|
* This also avoids any biais, which is especially important for ECDSA.
|
|
*/
|
|
do
|
|
{
|
|
MPI_CHK( f_rng( p_rng, rnd, n_size ) );
|
|
MPI_CHK( mpi_read_binary( d, rnd, n_size ) );
|
|
MPI_CHK( mpi_shift_r( d, 8 * n_size - grp->nbits ) );
|
|
|
|
/*
|
|
* Each try has at worst a probability 1/2 of failing (the msb has
|
|
* a probability 1/2 of being 0, and then the result will be < N),
|
|
* so after 30 tries failure probability is a most 2**(-30).
|
|
*
|
|
* For most curves, 1 try is enough with overwhelming probability,
|
|
* since N starts with a lot of 1s in binary, but some curves
|
|
* such as secp224k1 are actually very close to the worst case.
|
|
*/
|
|
if( ++count > 30 )
|
|
return( POLARSSL_ERR_ECP_RANDOM_FAILED );
|
|
}
|
|
while( mpi_cmp_int( d, 1 ) < 0 ||
|
|
mpi_cmp_mpi( d, &grp->N ) >= 0 );
|
|
}
|
|
else
|
|
#endif /* POLARSSL_ECP_SHORT_WEIERSTRASS */
|
|
return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
|
|
|
|
cleanup:
|
|
if( ret != 0 )
|
|
return( ret );
|
|
|
|
return( ecp_mul( grp, Q, d, &grp->G, f_rng, p_rng ) );
|
|
}
|
|
|
|
/*
|
|
* Generate a keypair, prettier wrapper
|
|
*/
|
|
int ecp_gen_key( ecp_group_id grp_id, ecp_keypair *key,
|
|
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
|
|
{
|
|
int ret;
|
|
|
|
if( ( ret = ecp_use_known_dp( &key->grp, grp_id ) ) != 0 )
|
|
return( ret );
|
|
|
|
return( ecp_gen_keypair( &key->grp, &key->d, &key->Q, f_rng, p_rng ) );
|
|
}
|
|
|
|
#if defined(POLARSSL_SELF_TEST)
|
|
|
|
/*
|
|
* Checkup routine
|
|
*/
|
|
int ecp_self_test( int verbose )
|
|
{
|
|
int ret;
|
|
size_t i;
|
|
ecp_group grp;
|
|
ecp_point R, P;
|
|
mpi m;
|
|
unsigned long add_c_prev, dbl_c_prev, mul_c_prev;
|
|
/* exponents especially adapted for secp192r1 */
|
|
const char *exponents[] =
|
|
{
|
|
"000000000000000000000000000000000000000000000001", /* one */
|
|
"FFFFFFFFFFFFFFFFFFFFFFFF99DEF836146BC9B1B4D22830", /* N - 1 */
|
|
"5EA6F389A38B8BC81E767753B15AA5569E1782E30ABE7D25", /* random */
|
|
"400000000000000000000000000000000000000000000000", /* one and zeros */
|
|
"7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", /* all ones */
|
|
"555555555555555555555555555555555555555555555555", /* 101010... */
|
|
};
|
|
|
|
ecp_group_init( &grp );
|
|
ecp_point_init( &R );
|
|
ecp_point_init( &P );
|
|
mpi_init( &m );
|
|
|
|
/* Use secp192r1 if available, or any available curve */
|
|
#if defined(POLARSSL_ECP_DP_SECP192R1_ENABLED)
|
|
MPI_CHK( ecp_use_known_dp( &grp, POLARSSL_ECP_DP_SECP192R1 ) );
|
|
#else
|
|
MPI_CHK( ecp_use_known_dp( &grp, ecp_curve_list()->grp_id ) );
|
|
#endif
|
|
|
|
if( verbose != 0 )
|
|
polarssl_printf( " ECP test #1 (constant op_count, base point G): " );
|
|
|
|
/* Do a dummy multiplication first to trigger precomputation */
|
|
MPI_CHK( mpi_lset( &m, 2 ) );
|
|
MPI_CHK( ecp_mul( &grp, &P, &m, &grp.G, NULL, NULL ) );
|
|
|
|
add_count = 0;
|
|
dbl_count = 0;
|
|
mul_count = 0;
|
|
MPI_CHK( mpi_read_string( &m, 16, exponents[0] ) );
|
|
MPI_CHK( ecp_mul( &grp, &R, &m, &grp.G, NULL, NULL ) );
|
|
|
|
for( i = 1; i < sizeof( exponents ) / sizeof( exponents[0] ); i++ )
|
|
{
|
|
add_c_prev = add_count;
|
|
dbl_c_prev = dbl_count;
|
|
mul_c_prev = mul_count;
|
|
add_count = 0;
|
|
dbl_count = 0;
|
|
mul_count = 0;
|
|
|
|
MPI_CHK( mpi_read_string( &m, 16, exponents[i] ) );
|
|
MPI_CHK( ecp_mul( &grp, &R, &m, &grp.G, NULL, NULL ) );
|
|
|
|
if( add_count != add_c_prev ||
|
|
dbl_count != dbl_c_prev ||
|
|
mul_count != mul_c_prev )
|
|
{
|
|
if( verbose != 0 )
|
|
polarssl_printf( "failed (%u)\n", (unsigned int) i );
|
|
|
|
ret = 1;
|
|
goto cleanup;
|
|
}
|
|
}
|
|
|
|
if( verbose != 0 )
|
|
polarssl_printf( "passed\n" );
|
|
|
|
if( verbose != 0 )
|
|
polarssl_printf( " ECP test #2 (constant op_count, other point): " );
|
|
/* We computed P = 2G last time, use it */
|
|
|
|
add_count = 0;
|
|
dbl_count = 0;
|
|
mul_count = 0;
|
|
MPI_CHK( mpi_read_string( &m, 16, exponents[0] ) );
|
|
MPI_CHK( ecp_mul( &grp, &R, &m, &P, NULL, NULL ) );
|
|
|
|
for( i = 1; i < sizeof( exponents ) / sizeof( exponents[0] ); i++ )
|
|
{
|
|
add_c_prev = add_count;
|
|
dbl_c_prev = dbl_count;
|
|
mul_c_prev = mul_count;
|
|
add_count = 0;
|
|
dbl_count = 0;
|
|
mul_count = 0;
|
|
|
|
MPI_CHK( mpi_read_string( &m, 16, exponents[i] ) );
|
|
MPI_CHK( ecp_mul( &grp, &R, &m, &P, NULL, NULL ) );
|
|
|
|
if( add_count != add_c_prev ||
|
|
dbl_count != dbl_c_prev ||
|
|
mul_count != mul_c_prev )
|
|
{
|
|
if( verbose != 0 )
|
|
polarssl_printf( "failed (%u)\n", (unsigned int) i );
|
|
|
|
ret = 1;
|
|
goto cleanup;
|
|
}
|
|
}
|
|
|
|
if( verbose != 0 )
|
|
polarssl_printf( "passed\n" );
|
|
|
|
cleanup:
|
|
|
|
if( ret < 0 && verbose != 0 )
|
|
polarssl_printf( "Unexpected error, return code = %08X\n", ret );
|
|
|
|
ecp_group_free( &grp );
|
|
ecp_point_free( &R );
|
|
ecp_point_free( &P );
|
|
mpi_free( &m );
|
|
|
|
if( verbose != 0 )
|
|
polarssl_printf( "\n" );
|
|
|
|
return( ret );
|
|
}
|
|
|
|
#endif /* POLARSSL_SELF_TEST */
|
|
|
|
#endif /* POLARSSL_ECP_C */
|