mirror of
https://github.com/dolphin-emu/dolphin.git
synced 2025-01-13 01:29:11 +01:00
3b9020dc9b
This fixes issue 6563: https://code.google.com/p/dolphin-emu/issues/detail?id=6563 This PR adds a 2nd map to texture cache, which uses the hash as key. Cache entries from this new map are used only if the address matches or if the texture was fully hashed. This restriction avoids false positive cache hits. This results in a possible situation where safe texture cache accuracy could be faster than the fast one. Small textures means up to 1KB for fast texture cache accuracy, 4KB for medium, and all textures for safe accuracy. Since this adds a small overhead to all texture cache handling, some regression testing would be nice. Games, which use a lot of textures the same time, should be affected the most.
957 lines
30 KiB
C++
957 lines
30 KiB
C++
// Copyright 2010 Dolphin Emulator Project
|
|
// Licensed under GPLv2+
|
|
// Refer to the license.txt file included.
|
|
|
|
#include <algorithm>
|
|
#include <string>
|
|
|
|
#include "Common/FileUtil.h"
|
|
#include "Common/MemoryUtil.h"
|
|
#include "Common/StringUtil.h"
|
|
|
|
#include "Core/ConfigManager.h"
|
|
#include "Core/HW/Memmap.h"
|
|
|
|
#include "VideoCommon/Debugger.h"
|
|
#include "VideoCommon/FramebufferManagerBase.h"
|
|
#include "VideoCommon/HiresTextures.h"
|
|
#include "VideoCommon/RenderBase.h"
|
|
#include "VideoCommon/Statistics.h"
|
|
#include "VideoCommon/TextureCacheBase.h"
|
|
#include "VideoCommon/VideoConfig.h"
|
|
|
|
static const u64 TEXHASH_INVALID = 0;
|
|
static const int TEXTURE_KILL_THRESHOLD = 60;
|
|
static const int TEXTURE_POOL_KILL_THRESHOLD = 3;
|
|
static const int FRAMECOUNT_INVALID = 0;
|
|
|
|
TextureCache *g_texture_cache;
|
|
|
|
GC_ALIGNED16(u8 *TextureCache::temp) = nullptr;
|
|
size_t TextureCache::temp_size;
|
|
|
|
TextureCache::TexCache TextureCache::textures_by_address;
|
|
TextureCache::TexCache TextureCache::textures_by_hash;
|
|
TextureCache::TexPool TextureCache::texture_pool;
|
|
TextureCache::TCacheEntryBase* TextureCache::bound_textures[8];
|
|
|
|
TextureCache::BackupConfig TextureCache::backup_config;
|
|
|
|
static bool invalidate_texture_cache_requested;
|
|
|
|
TextureCache::TCacheEntryBase::~TCacheEntryBase()
|
|
{
|
|
}
|
|
|
|
void TextureCache::CheckTempSize(size_t required_size)
|
|
{
|
|
if (required_size <= temp_size)
|
|
return;
|
|
|
|
temp_size = required_size;
|
|
FreeAlignedMemory(temp);
|
|
temp = (u8*)AllocateAlignedMemory(temp_size, 16);
|
|
}
|
|
|
|
TextureCache::TextureCache()
|
|
{
|
|
temp_size = 2048 * 2048 * 4;
|
|
if (!temp)
|
|
temp = (u8*)AllocateAlignedMemory(temp_size, 16);
|
|
|
|
TexDecoder_SetTexFmtOverlayOptions(g_ActiveConfig.bTexFmtOverlayEnable, g_ActiveConfig.bTexFmtOverlayCenter);
|
|
|
|
HiresTexture::Init();
|
|
|
|
SetHash64Function();
|
|
|
|
invalidate_texture_cache_requested = false;
|
|
}
|
|
|
|
void TextureCache::RequestInvalidateTextureCache()
|
|
{
|
|
invalidate_texture_cache_requested = true;
|
|
}
|
|
|
|
void TextureCache::Invalidate()
|
|
{
|
|
UnbindTextures();
|
|
|
|
for (auto& tex : textures_by_address)
|
|
{
|
|
delete tex.second;
|
|
}
|
|
textures_by_address.clear();
|
|
textures_by_hash.clear();
|
|
|
|
for (auto& rt : texture_pool)
|
|
{
|
|
delete rt.second;
|
|
}
|
|
texture_pool.clear();
|
|
}
|
|
|
|
TextureCache::~TextureCache()
|
|
{
|
|
HiresTexture::Shutdown();
|
|
Invalidate();
|
|
FreeAlignedMemory(temp);
|
|
temp = nullptr;
|
|
}
|
|
|
|
void TextureCache::OnConfigChanged(VideoConfig& config)
|
|
{
|
|
if (g_texture_cache)
|
|
{
|
|
if (config.bHiresTextures != backup_config.s_hires_textures ||
|
|
config.bCacheHiresTextures != backup_config.s_cache_hires_textures)
|
|
{
|
|
HiresTexture::Update();
|
|
}
|
|
|
|
// TODO: Invalidating texcache is really stupid in some of these cases
|
|
if (config.iSafeTextureCache_ColorSamples != backup_config.s_colorsamples ||
|
|
config.bTexFmtOverlayEnable != backup_config.s_texfmt_overlay ||
|
|
config.bTexFmtOverlayCenter != backup_config.s_texfmt_overlay_center ||
|
|
config.bHiresTextures != backup_config.s_hires_textures ||
|
|
invalidate_texture_cache_requested)
|
|
{
|
|
g_texture_cache->Invalidate();
|
|
|
|
TexDecoder_SetTexFmtOverlayOptions(g_ActiveConfig.bTexFmtOverlayEnable, g_ActiveConfig.bTexFmtOverlayCenter);
|
|
|
|
invalidate_texture_cache_requested = false;
|
|
}
|
|
|
|
if ((config.iStereoMode > 0) != backup_config.s_stereo_3d ||
|
|
config.bStereoEFBMonoDepth != backup_config.s_efb_mono_depth)
|
|
{
|
|
g_texture_cache->DeleteShaders();
|
|
g_texture_cache->CompileShaders();
|
|
}
|
|
}
|
|
|
|
backup_config.s_colorsamples = config.iSafeTextureCache_ColorSamples;
|
|
backup_config.s_texfmt_overlay = config.bTexFmtOverlayEnable;
|
|
backup_config.s_texfmt_overlay_center = config.bTexFmtOverlayCenter;
|
|
backup_config.s_hires_textures = config.bHiresTextures;
|
|
backup_config.s_cache_hires_textures = config.bCacheHiresTextures;
|
|
backup_config.s_stereo_3d = config.iStereoMode > 0;
|
|
backup_config.s_efb_mono_depth = config.bStereoEFBMonoDepth;
|
|
}
|
|
|
|
void TextureCache::Cleanup(int _frameCount)
|
|
{
|
|
TexCache::iterator iter = textures_by_address.begin();
|
|
TexCache::iterator tcend = textures_by_address.end();
|
|
while (iter != tcend)
|
|
{
|
|
if (iter->second->frameCount == FRAMECOUNT_INVALID)
|
|
{
|
|
iter->second->frameCount = _frameCount;
|
|
}
|
|
if (_frameCount > TEXTURE_KILL_THRESHOLD + iter->second->frameCount &&
|
|
// EFB copies living on the host GPU are unrecoverable and thus shouldn't be deleted
|
|
!iter->second->IsEfbCopy())
|
|
{
|
|
iter = RemoveTextureFromCache(iter);
|
|
}
|
|
else
|
|
{
|
|
++iter;
|
|
}
|
|
}
|
|
|
|
TexPool::iterator iter2 = texture_pool.begin();
|
|
TexPool::iterator tcend2 = texture_pool.end();
|
|
while (iter2 != tcend2)
|
|
{
|
|
if (iter2->second->frameCount == FRAMECOUNT_INVALID)
|
|
{
|
|
iter2->second->frameCount = _frameCount;
|
|
}
|
|
if (_frameCount > TEXTURE_POOL_KILL_THRESHOLD + iter2->second->frameCount)
|
|
{
|
|
delete iter2->second;
|
|
iter2 = texture_pool.erase(iter2);
|
|
}
|
|
else
|
|
{
|
|
++iter2;
|
|
}
|
|
}
|
|
}
|
|
|
|
void TextureCache::MakeRangeDynamic(u32 start_address, u32 size)
|
|
{
|
|
TexCache::iterator
|
|
iter = textures_by_address.begin();
|
|
|
|
while (iter != textures_by_address.end())
|
|
{
|
|
if (iter->second->OverlapsMemoryRange(start_address, size))
|
|
{
|
|
iter = RemoveTextureFromCache(iter);
|
|
}
|
|
else
|
|
{
|
|
++iter;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool TextureCache::TCacheEntryBase::OverlapsMemoryRange(u32 range_address, u32 range_size) const
|
|
{
|
|
if (addr + size_in_bytes <= range_address)
|
|
return false;
|
|
|
|
if (addr >= range_address + range_size)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
void TextureCache::DumpTexture(TCacheEntryBase* entry, std::string basename, unsigned int level)
|
|
{
|
|
std::string szDir = File::GetUserPath(D_DUMPTEXTURES_IDX) +
|
|
SConfig::GetInstance().m_LocalCoreStartupParameter.m_strUniqueID;
|
|
|
|
// make sure that the directory exists
|
|
if (!File::Exists(szDir) || !File::IsDirectory(szDir))
|
|
File::CreateDir(szDir);
|
|
|
|
if (level > 0)
|
|
{
|
|
basename += StringFromFormat("_mip%i", level);
|
|
}
|
|
std::string filename = szDir + "/" + basename + ".png";
|
|
|
|
if (!File::Exists(filename))
|
|
entry->Save(filename, level);
|
|
}
|
|
|
|
static u32 CalculateLevelSize(u32 level_0_size, u32 level)
|
|
{
|
|
return (level_0_size + ((1 << level) - 1)) >> level;
|
|
}
|
|
|
|
// Used by TextureCache::Load
|
|
TextureCache::TCacheEntryBase* TextureCache::ReturnEntry(unsigned int stage, TCacheEntryBase* entry)
|
|
{
|
|
entry->frameCount = FRAMECOUNT_INVALID;
|
|
bound_textures[stage] = entry;
|
|
|
|
GFX_DEBUGGER_PAUSE_AT(NEXT_TEXTURE_CHANGE, true);
|
|
|
|
return entry;
|
|
}
|
|
|
|
void TextureCache::BindTextures()
|
|
{
|
|
for (int i = 0; i < 8; ++i)
|
|
{
|
|
if (bound_textures[i])
|
|
bound_textures[i]->Bind(i);
|
|
}
|
|
}
|
|
|
|
void TextureCache::UnbindTextures()
|
|
{
|
|
std::fill(std::begin(bound_textures), std::end(bound_textures), nullptr);
|
|
}
|
|
|
|
TextureCache::TCacheEntryBase* TextureCache::Load(const u32 stage)
|
|
{
|
|
const FourTexUnits &tex = bpmem.tex[stage >> 2];
|
|
const u32 id = stage & 3;
|
|
const u32 address = (tex.texImage3[id].image_base/* & 0x1FFFFF*/) << 5;
|
|
u32 width = tex.texImage0[id].width + 1;
|
|
u32 height = tex.texImage0[id].height + 1;
|
|
const int texformat = tex.texImage0[id].format;
|
|
const u32 tlutaddr = tex.texTlut[id].tmem_offset << 9;
|
|
const u32 tlutfmt = tex.texTlut[id].tlut_format;
|
|
const bool use_mipmaps = (tex.texMode0[id].min_filter & 3) != 0;
|
|
u32 tex_levels = use_mipmaps ? ((tex.texMode1[id].max_lod + 0xf) / 0x10 + 1) : 1;
|
|
const bool from_tmem = tex.texImage1[id].image_type != 0;
|
|
|
|
if (0 == address)
|
|
return nullptr;
|
|
|
|
// TexelSizeInNibbles(format) * width * height / 16;
|
|
const unsigned int bsw = TexDecoder_GetBlockWidthInTexels(texformat) - 1;
|
|
const unsigned int bsh = TexDecoder_GetBlockHeightInTexels(texformat) - 1;
|
|
|
|
unsigned int expandedWidth = (width + bsw) & (~bsw);
|
|
unsigned int expandedHeight = (height + bsh) & (~bsh);
|
|
const unsigned int nativeW = width;
|
|
const unsigned int nativeH = height;
|
|
|
|
// Hash assigned to texcache entry (also used to generate filenames used for texture dumping and custom texture lookup)
|
|
u64 tex_hash = TEXHASH_INVALID;
|
|
u64 full_hash = TEXHASH_INVALID;
|
|
|
|
u32 full_format = texformat;
|
|
|
|
const bool isPaletteTexture = (texformat == GX_TF_C4 || texformat == GX_TF_C8 || texformat == GX_TF_C14X2);
|
|
|
|
// Reject invalid tlut format.
|
|
if (isPaletteTexture && tlutfmt > GX_TL_RGB5A3)
|
|
return nullptr;
|
|
|
|
if (isPaletteTexture)
|
|
full_format = texformat | (tlutfmt << 16);
|
|
|
|
const u32 texture_size = TexDecoder_GetTextureSizeInBytes(expandedWidth, expandedHeight, texformat);
|
|
|
|
const u8* src_data;
|
|
if (from_tmem)
|
|
src_data = &texMem[bpmem.tex[stage / 4].texImage1[stage % 4].tmem_even * TMEM_LINE_SIZE];
|
|
else
|
|
src_data = Memory::GetPointer(address);
|
|
|
|
// TODO: This doesn't hash GB tiles for preloaded RGBA8 textures (instead, it's hashing more data from the low tmem bank than it should)
|
|
tex_hash = GetHash64(src_data, texture_size, g_ActiveConfig.iSafeTextureCache_ColorSamples);
|
|
u32 palette_size = 0;
|
|
if (isPaletteTexture)
|
|
{
|
|
palette_size = TexDecoder_GetPaletteSize(texformat);
|
|
full_hash = tex_hash ^ GetHash64(&texMem[tlutaddr], palette_size, g_ActiveConfig.iSafeTextureCache_ColorSamples);
|
|
}
|
|
else
|
|
{
|
|
full_hash = tex_hash;
|
|
}
|
|
|
|
// GPUs don't like when the specified mipmap count would require more than one 1x1-sized LOD in the mipmap chain
|
|
// e.g. 64x64 with 7 LODs would have the mipmap chain 64x64,32x32,16x16,8x8,4x4,2x2,1x1,0x0, so we limit the mipmap count to 6 there
|
|
tex_levels = std::min<u32>(IntLog2(std::max(width, height)) + 1, tex_levels);
|
|
|
|
// Search the texture cache for textures by address
|
|
//
|
|
// Find all texture cache entries for the current texture address, and decide whether to use one of
|
|
// them, or to create a new one
|
|
//
|
|
// In most cases, the fastest way is to use only one texture cache entry for the same address. Usually,
|
|
// when a texture changes, the old version of the texture is unlikely to be used again. If there were
|
|
// new cache entries created for normal texture updates, there would be a slowdown due to a huge amount
|
|
// of unused cache entries. Also thanks to texture pooling, overwriting an existing cache entry is
|
|
// faster than creating a new one from scratch.
|
|
//
|
|
// Some games use the same address for different textures though. If the same cache entry was used in
|
|
// this case, it would be constantly overwritten, and effectively there wouldn't be any caching for
|
|
// those textures. Examples for this are Metroid Prime and Castlevania 3. Metroid Prime has multiple
|
|
// sets of fonts on each other stored in a single texture and uses the palette to make different
|
|
// characters visible or invisible. In Castlevania 3 some textures are used for 2 different things or
|
|
// at least in 2 different ways(size 1024x1024 vs 1024x256).
|
|
//
|
|
// To determine whether to use multiple cache entries or a single entry, use the following heuristic:
|
|
// If the same texture address is used several times during the same frame, assume the address is used
|
|
// for different purposes and allow creating an additional cache entry. If there's at least one entry
|
|
// that hasn't been used for the same frame, then overwrite it, in order to keep the cache as small as
|
|
// possible. If the current texture is found in the cache, use that entry.
|
|
//
|
|
// For efb copies, the entry created in CopyRenderTargetToTexture always has to be used, or else it was
|
|
// done in vain.
|
|
std::pair<TexCache::iterator, TexCache::iterator> iter_range = textures_by_address.equal_range((u64)address);
|
|
TexCache::iterator iter = iter_range.first;
|
|
TexCache::iterator oldest_entry = iter;
|
|
int temp_frameCount = 0x7fffffff;
|
|
TexCache::iterator unconverted_copy = textures_by_address.end();
|
|
|
|
while (iter != iter_range.second)
|
|
{
|
|
TCacheEntryBase* entry = iter->second;
|
|
if (entry->IsEfbCopy())
|
|
{
|
|
// EFB copies have slightly different rules: the hash doesn't need to match
|
|
// in EFB2Tex mode, and EFB copy formats have different meanings from texture
|
|
// formats.
|
|
if (g_ActiveConfig.bSkipEFBCopyToRam ||
|
|
(tex_hash == entry->hash && (!isPaletteTexture || g_Config.backend_info.bSupportsPaletteConversion)))
|
|
{
|
|
// TODO: We should check format/width/height/levels for EFB copies. Checking
|
|
// format is complicated because EFB copy formats don't exactly match
|
|
// texture formats. I'm not sure what effect checking width/height/levels
|
|
// would have.
|
|
if (!isPaletteTexture || !g_Config.backend_info.bSupportsPaletteConversion)
|
|
return ReturnEntry(stage, entry);
|
|
|
|
// Note that we found an unconverted EFB copy, then continue. We'll
|
|
// perform the conversion later. Currently, we only convert EFB copies to
|
|
// palette textures; we could do other conversions if it proved to be
|
|
// beneficial.
|
|
unconverted_copy = iter;
|
|
}
|
|
else
|
|
{
|
|
// Aggressively prune EFB copies: if it isn't useful here, it will probably
|
|
// never be useful again. It's theoretically possible for a game to do
|
|
// something weird where the copy could become useful in the future, but in
|
|
// practice it doesn't happen.
|
|
FreeTexture(entry);
|
|
iter = textures_by_address.erase(iter);
|
|
continue;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// For normal textures, all texture parameters need to match
|
|
if (entry->hash == full_hash && entry->format == full_format && entry->native_levels >= tex_levels &&
|
|
entry->native_width == nativeW && entry->native_height == nativeH)
|
|
{
|
|
return ReturnEntry(stage, entry);
|
|
}
|
|
}
|
|
|
|
// Find the entry which hasn't been used for the longest time
|
|
if (entry->frameCount != FRAMECOUNT_INVALID && entry->frameCount < temp_frameCount)
|
|
{
|
|
temp_frameCount = entry->frameCount;
|
|
oldest_entry = iter;
|
|
}
|
|
++iter;
|
|
}
|
|
|
|
if (unconverted_copy != textures_by_address.end())
|
|
{
|
|
// Perform palette decoding.
|
|
TCacheEntryBase *entry = unconverted_copy->second;
|
|
|
|
TCacheEntryConfig config;
|
|
config.rendertarget = true;
|
|
config.width = entry->config.width;
|
|
config.height = entry->config.height;
|
|
config.layers = FramebufferManagerBase::GetEFBLayers();
|
|
TCacheEntryBase *decoded_entry = AllocateTexture(config);
|
|
|
|
decoded_entry->SetGeneralParameters(address, texture_size, full_format);
|
|
decoded_entry->SetDimensions(entry->native_width, entry->native_height, 1);
|
|
decoded_entry->SetHashes(full_hash);
|
|
decoded_entry->frameCount = FRAMECOUNT_INVALID;
|
|
decoded_entry->is_efb_copy = false;
|
|
|
|
g_texture_cache->ConvertTexture(decoded_entry, entry, &texMem[tlutaddr], (TlutFormat)tlutfmt);
|
|
textures_by_address.insert(TexCache::value_type((u64)address, decoded_entry));
|
|
return ReturnEntry(stage, decoded_entry);
|
|
}
|
|
|
|
// Search the texture cache for normal textures by hash
|
|
//
|
|
// If the texture was fully hashed, the address does not need to match. Identical duplicate textures cause unnecessary slowdowns
|
|
// Example: Tales of Symphonia (GC) uses over 500 small textures in menus, but only around 70 different ones
|
|
if (g_ActiveConfig.iSafeTextureCache_ColorSamples == 0 ||
|
|
std::max(texture_size, palette_size) <= (u32)g_ActiveConfig.iSafeTextureCache_ColorSamples * 8)
|
|
{
|
|
iter_range = textures_by_hash.equal_range(full_hash);
|
|
iter = iter_range.first;
|
|
while (iter != iter_range.second)
|
|
{
|
|
TCacheEntryBase* entry = iter->second;
|
|
// All parameters, except the address, need to match here
|
|
if (entry->format == full_format && entry->native_levels >= tex_levels &&
|
|
entry->native_width == nativeW && entry->native_height == nativeH)
|
|
{
|
|
return ReturnEntry(stage, entry);
|
|
}
|
|
++iter;
|
|
}
|
|
}
|
|
|
|
// If at least one entry was not used for the same frame, overwrite the oldest one
|
|
if (temp_frameCount != 0x7fffffff)
|
|
{
|
|
// pool this texture and make a new one later
|
|
RemoveTextureFromCache(oldest_entry);
|
|
}
|
|
|
|
std::shared_ptr<HiresTexture> hires_tex;
|
|
if (g_ActiveConfig.bHiresTextures)
|
|
{
|
|
hires_tex = HiresTexture::Search(
|
|
src_data, texture_size,
|
|
&texMem[tlutaddr], palette_size,
|
|
width, height,
|
|
texformat, use_mipmaps
|
|
);
|
|
|
|
if (hires_tex)
|
|
{
|
|
auto& l = hires_tex->m_levels[0];
|
|
if (l.width != width || l.height != height)
|
|
{
|
|
width = l.width;
|
|
height = l.height;
|
|
}
|
|
expandedWidth = l.width;
|
|
expandedHeight = l.height;
|
|
CheckTempSize(l.data_size);
|
|
memcpy(temp, l.data, l.data_size);
|
|
}
|
|
}
|
|
|
|
if (!hires_tex)
|
|
{
|
|
if (!(texformat == GX_TF_RGBA8 && from_tmem))
|
|
{
|
|
const u8* tlut = &texMem[tlutaddr];
|
|
TexDecoder_Decode(temp, src_data, expandedWidth, expandedHeight, texformat, tlut, (TlutFormat) tlutfmt);
|
|
}
|
|
else
|
|
{
|
|
u8* src_data_gb = &texMem[bpmem.tex[stage / 4].texImage2[stage % 4].tmem_odd * TMEM_LINE_SIZE];
|
|
TexDecoder_DecodeRGBA8FromTmem(temp, src_data, src_data_gb, expandedWidth, expandedHeight);
|
|
}
|
|
}
|
|
|
|
// how many levels the allocated texture shall have
|
|
const u32 texLevels = hires_tex ? (u32)hires_tex->m_levels.size() : tex_levels;
|
|
|
|
// create the entry/texture
|
|
TCacheEntryConfig config;
|
|
config.width = width;
|
|
config.height = height;
|
|
config.levels = texLevels;
|
|
|
|
TCacheEntryBase* entry = AllocateTexture(config);
|
|
GFX_DEBUGGER_PAUSE_AT(NEXT_NEW_TEXTURE, true);
|
|
|
|
textures_by_address.insert(TexCache::value_type((u64)address, entry));
|
|
if (g_ActiveConfig.iSafeTextureCache_ColorSamples == 0 ||
|
|
std::max(texture_size, palette_size) <= (u32)g_ActiveConfig.iSafeTextureCache_ColorSamples * 8)
|
|
{
|
|
entry->textures_by_hash_iter = textures_by_hash.insert(TexCache::value_type(full_hash, entry));
|
|
}
|
|
|
|
entry->SetGeneralParameters(address, texture_size, full_format);
|
|
entry->SetDimensions(nativeW, nativeH, tex_levels);
|
|
entry->hash = full_hash;
|
|
entry->is_efb_copy = false;
|
|
entry->is_custom_tex = hires_tex != nullptr;
|
|
|
|
// load texture
|
|
entry->Load(width, height, expandedWidth, 0);
|
|
|
|
std::string basename = "";
|
|
if (g_ActiveConfig.bDumpTextures && !hires_tex)
|
|
{
|
|
basename = HiresTexture::GenBaseName(
|
|
src_data, texture_size,
|
|
&texMem[tlutaddr], palette_size,
|
|
width, height,
|
|
texformat, use_mipmaps,
|
|
true
|
|
);
|
|
DumpTexture(entry, basename, 0);
|
|
}
|
|
|
|
if (hires_tex)
|
|
{
|
|
for (u32 level = 1; level != texLevels; ++level)
|
|
{
|
|
auto& l = hires_tex->m_levels[level];
|
|
CheckTempSize(l.data_size);
|
|
memcpy(temp, l.data, l.data_size);
|
|
entry->Load(l.width, l.height, l.width, level);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// load mips - TODO: Loading mipmaps from tmem is untested!
|
|
src_data += texture_size;
|
|
|
|
const u8* ptr_even = nullptr;
|
|
const u8* ptr_odd = nullptr;
|
|
if (from_tmem)
|
|
{
|
|
ptr_even = &texMem[bpmem.tex[stage / 4].texImage1[stage % 4].tmem_even * TMEM_LINE_SIZE + texture_size];
|
|
ptr_odd = &texMem[bpmem.tex[stage / 4].texImage2[stage % 4].tmem_odd * TMEM_LINE_SIZE];
|
|
}
|
|
|
|
for (u32 level = 1; level != texLevels; ++level)
|
|
{
|
|
const u32 mip_width = CalculateLevelSize(width, level);
|
|
const u32 mip_height = CalculateLevelSize(height, level);
|
|
const u32 expanded_mip_width = (mip_width + bsw) & (~bsw);
|
|
const u32 expanded_mip_height = (mip_height + bsh) & (~bsh);
|
|
|
|
const u8*& mip_src_data = from_tmem
|
|
? ((level % 2) ? ptr_odd : ptr_even)
|
|
: src_data;
|
|
const u8* tlut = &texMem[tlutaddr];
|
|
TexDecoder_Decode(temp, mip_src_data, expanded_mip_width, expanded_mip_height, texformat, tlut, (TlutFormat)tlutfmt);
|
|
mip_src_data += TexDecoder_GetTextureSizeInBytes(expanded_mip_width, expanded_mip_height, texformat);
|
|
|
|
entry->Load(mip_width, mip_height, expanded_mip_width, level);
|
|
|
|
if (g_ActiveConfig.bDumpTextures)
|
|
DumpTexture(entry, basename, level);
|
|
}
|
|
}
|
|
|
|
INCSTAT(stats.numTexturesUploaded);
|
|
SETSTAT(stats.numTexturesAlive, textures_by_address.size());
|
|
|
|
return ReturnEntry(stage, entry);
|
|
}
|
|
|
|
void TextureCache::CopyRenderTargetToTexture(u32 dstAddr, unsigned int dstFormat, PEControl::PixelFormat srcFormat,
|
|
const EFBRectangle& srcRect, bool isIntensity, bool scaleByHalf)
|
|
{
|
|
// Emulation methods:
|
|
//
|
|
// - EFB to RAM:
|
|
// Encodes the requested EFB data at its native resolution to the emulated RAM using shaders.
|
|
// Load() decodes the data from there again (using TextureDecoder) if the EFB copy is being used as a texture again.
|
|
// Advantage: CPU can read data from the EFB copy and we don't lose any important updates to the texture
|
|
// Disadvantage: Encoding+decoding steps often are redundant because only some games read or modify EFB copies before using them as textures.
|
|
//
|
|
// - EFB to texture:
|
|
// Copies the requested EFB data to a texture object in VRAM, performing any color conversion using shaders.
|
|
// Advantage: Works for many games, since in most cases EFB copies aren't read or modified at all before being used as a texture again.
|
|
// Since we don't do any further encoding or decoding here, this method is much faster.
|
|
// It also allows enhancing the visual quality by doing scaled EFB copies.
|
|
//
|
|
// - Hybrid EFB copies:
|
|
// 1a) Whenever this function gets called, encode the requested EFB data to RAM (like EFB to RAM)
|
|
// 1b) Set type to TCET_EC_DYNAMIC for all texture cache entries in the destination address range.
|
|
// If EFB copy caching is enabled, further checks will (try to) prevent redundant EFB copies.
|
|
// 2) Check if a texture cache entry for the specified dstAddr already exists (i.e. if an EFB copy was triggered to that address before):
|
|
// 2a) Entry doesn't exist:
|
|
// - Also copy the requested EFB data to a texture object in VRAM (like EFB to texture)
|
|
// - Create a texture cache entry for the target (type = TCET_EC_VRAM)
|
|
// - Store a hash of the encoded RAM data in the texcache entry.
|
|
// 2b) Entry exists AND type is TCET_EC_VRAM:
|
|
// - Like case 2a, but reuse the old texcache entry instead of creating a new one.
|
|
// 2c) Entry exists AND type is TCET_EC_DYNAMIC:
|
|
// - Only encode the texture to RAM (like EFB to RAM) and store a hash of the encoded data in the existing texcache entry.
|
|
// - Do NOT copy the requested EFB data to a VRAM object. Reason: the texture is dynamic, i.e. the CPU is modifying it. Storing a VRAM copy is useless, because we'd always end up deleting it and reloading the data from RAM anyway.
|
|
// 3) If the EFB copy gets used as a texture, compare the source RAM hash with the hash you stored when encoding the EFB data to RAM.
|
|
// 3a) If the two hashes match AND type is TCET_EC_VRAM, reuse the VRAM copy you created
|
|
// 3b) If the two hashes differ AND type is TCET_EC_VRAM, screw your existing VRAM copy. Set type to TCET_EC_DYNAMIC.
|
|
// Redecode the source RAM data to a VRAM object. The entry basically behaves like a normal texture now.
|
|
// 3c) If type is TCET_EC_DYNAMIC, treat the EFB copy like a normal texture.
|
|
// Advantage: Non-dynamic EFB copies can be visually enhanced like with EFB to texture.
|
|
// Compatibility is as good as EFB to RAM.
|
|
// Disadvantage: Slower than EFB to texture and often even slower than EFB to RAM.
|
|
// EFB copy cache depends on accurate texture hashing being enabled. However, with accurate hashing you end up being as slow as without a copy cache anyway.
|
|
//
|
|
// Disadvantage of all methods: Calling this function requires the GPU to perform a pipeline flush which stalls any further CPU processing.
|
|
//
|
|
// For historical reasons, Dolphin doesn't actually implement "pure" EFB to RAM emulation, but only EFB to texture and hybrid EFB copies.
|
|
|
|
float colmat[28] = {0};
|
|
float *const fConstAdd = colmat + 16;
|
|
float *const ColorMask = colmat + 20;
|
|
ColorMask[0] = ColorMask[1] = ColorMask[2] = ColorMask[3] = 255.0f;
|
|
ColorMask[4] = ColorMask[5] = ColorMask[6] = ColorMask[7] = 1.0f / 255.0f;
|
|
unsigned int cbufid = -1;
|
|
bool efbHasAlpha = bpmem.zcontrol.pixel_format == PEControl::RGBA6_Z24;
|
|
|
|
if (srcFormat == PEControl::Z24)
|
|
{
|
|
switch (dstFormat)
|
|
{
|
|
case 0: // Z4
|
|
colmat[3] = colmat[7] = colmat[11] = colmat[15] = 1.0f;
|
|
cbufid = 0;
|
|
break;
|
|
case 1: // Z8
|
|
case 8: // Z8
|
|
colmat[0] = colmat[4] = colmat[8] = colmat[12] = 1.0f;
|
|
cbufid = 1;
|
|
break;
|
|
|
|
case 3: // Z16
|
|
colmat[1] = colmat[5] = colmat[9] = colmat[12] = 1.0f;
|
|
cbufid = 2;
|
|
break;
|
|
|
|
case 11: // Z16 (reverse order)
|
|
colmat[0] = colmat[4] = colmat[8] = colmat[13] = 1.0f;
|
|
cbufid = 3;
|
|
break;
|
|
|
|
case 6: // Z24X8
|
|
colmat[0] = colmat[5] = colmat[10] = 1.0f;
|
|
cbufid = 4;
|
|
break;
|
|
|
|
case 9: // Z8M
|
|
colmat[1] = colmat[5] = colmat[9] = colmat[13] = 1.0f;
|
|
cbufid = 5;
|
|
break;
|
|
|
|
case 10: // Z8L
|
|
colmat[2] = colmat[6] = colmat[10] = colmat[14] = 1.0f;
|
|
cbufid = 6;
|
|
break;
|
|
|
|
case 12: // Z16L - copy lower 16 depth bits
|
|
// expected to be used as an IA8 texture (upper 8 bits stored as intensity, lower 8 bits stored as alpha)
|
|
// Used e.g. in Zelda: Skyward Sword
|
|
colmat[1] = colmat[5] = colmat[9] = colmat[14] = 1.0f;
|
|
cbufid = 7;
|
|
break;
|
|
|
|
default:
|
|
ERROR_LOG(VIDEO, "Unknown copy zbuf format: 0x%x", dstFormat);
|
|
colmat[2] = colmat[5] = colmat[8] = 1.0f;
|
|
cbufid = 8;
|
|
break;
|
|
}
|
|
}
|
|
else if (isIntensity)
|
|
{
|
|
fConstAdd[0] = fConstAdd[1] = fConstAdd[2] = 16.0f / 255.0f;
|
|
switch (dstFormat)
|
|
{
|
|
case 0: // I4
|
|
case 1: // I8
|
|
case 2: // IA4
|
|
case 3: // IA8
|
|
case 8: // I8
|
|
// TODO - verify these coefficients
|
|
colmat[0] = 0.257f; colmat[1] = 0.504f; colmat[2] = 0.098f;
|
|
colmat[4] = 0.257f; colmat[5] = 0.504f; colmat[6] = 0.098f;
|
|
colmat[8] = 0.257f; colmat[9] = 0.504f; colmat[10] = 0.098f;
|
|
|
|
if (dstFormat < 2 || dstFormat == 8)
|
|
{
|
|
colmat[12] = 0.257f; colmat[13] = 0.504f; colmat[14] = 0.098f;
|
|
fConstAdd[3] = 16.0f / 255.0f;
|
|
if (dstFormat == 0)
|
|
{
|
|
ColorMask[0] = ColorMask[1] = ColorMask[2] = 15.0f;
|
|
ColorMask[4] = ColorMask[5] = ColorMask[6] = 1.0f / 15.0f;
|
|
cbufid = 9;
|
|
}
|
|
else
|
|
{
|
|
cbufid = 10;
|
|
}
|
|
}
|
|
else// alpha
|
|
{
|
|
colmat[15] = 1;
|
|
if (dstFormat == 2)
|
|
{
|
|
ColorMask[0] = ColorMask[1] = ColorMask[2] = ColorMask[3] = 15.0f;
|
|
ColorMask[4] = ColorMask[5] = ColorMask[6] = ColorMask[7] = 1.0f / 15.0f;
|
|
cbufid = 11;
|
|
}
|
|
else
|
|
{
|
|
cbufid = 12;
|
|
}
|
|
|
|
}
|
|
break;
|
|
|
|
default:
|
|
ERROR_LOG(VIDEO, "Unknown copy intensity format: 0x%x", dstFormat);
|
|
colmat[0] = colmat[5] = colmat[10] = colmat[15] = 1.0f;
|
|
cbufid = 13;
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
switch (dstFormat)
|
|
{
|
|
case 0: // R4
|
|
colmat[0] = colmat[4] = colmat[8] = colmat[12] = 1;
|
|
ColorMask[0] = 15.0f;
|
|
ColorMask[4] = 1.0f / 15.0f;
|
|
cbufid = 14;
|
|
break;
|
|
case 1: // R8
|
|
case 8: // R8
|
|
colmat[0] = colmat[4] = colmat[8] = colmat[12] = 1;
|
|
cbufid = 15;
|
|
break;
|
|
|
|
case 2: // RA4
|
|
colmat[0] = colmat[4] = colmat[8] = colmat[15] = 1.0f;
|
|
ColorMask[0] = ColorMask[3] = 15.0f;
|
|
ColorMask[4] = ColorMask[7] = 1.0f / 15.0f;
|
|
|
|
cbufid = 16;
|
|
if (!efbHasAlpha)
|
|
{
|
|
ColorMask[3] = 0.0f;
|
|
fConstAdd[3] = 1.0f;
|
|
cbufid = 17;
|
|
}
|
|
break;
|
|
case 3: // RA8
|
|
colmat[0] = colmat[4] = colmat[8] = colmat[15] = 1.0f;
|
|
|
|
cbufid = 18;
|
|
if (!efbHasAlpha)
|
|
{
|
|
ColorMask[3] = 0.0f;
|
|
fConstAdd[3] = 1.0f;
|
|
cbufid = 19;
|
|
}
|
|
break;
|
|
|
|
case 7: // A8
|
|
colmat[3] = colmat[7] = colmat[11] = colmat[15] = 1.0f;
|
|
|
|
cbufid = 20;
|
|
if (!efbHasAlpha)
|
|
{
|
|
ColorMask[3] = 0.0f;
|
|
fConstAdd[0] = 1.0f;
|
|
fConstAdd[1] = 1.0f;
|
|
fConstAdd[2] = 1.0f;
|
|
fConstAdd[3] = 1.0f;
|
|
cbufid = 21;
|
|
}
|
|
break;
|
|
|
|
case 9: // G8
|
|
colmat[1] = colmat[5] = colmat[9] = colmat[13] = 1.0f;
|
|
cbufid = 22;
|
|
break;
|
|
case 10: // B8
|
|
colmat[2] = colmat[6] = colmat[10] = colmat[14] = 1.0f;
|
|
cbufid = 23;
|
|
break;
|
|
|
|
case 11: // RG8
|
|
colmat[0] = colmat[4] = colmat[8] = colmat[13] = 1.0f;
|
|
cbufid = 24;
|
|
break;
|
|
|
|
case 12: // GB8
|
|
colmat[1] = colmat[5] = colmat[9] = colmat[14] = 1.0f;
|
|
cbufid = 25;
|
|
break;
|
|
|
|
case 4: // RGB565
|
|
colmat[0] = colmat[5] = colmat[10] = 1.0f;
|
|
ColorMask[0] = ColorMask[2] = 31.0f;
|
|
ColorMask[4] = ColorMask[6] = 1.0f / 31.0f;
|
|
ColorMask[1] = 63.0f;
|
|
ColorMask[5] = 1.0f / 63.0f;
|
|
fConstAdd[3] = 1.0f; // set alpha to 1
|
|
cbufid = 26;
|
|
break;
|
|
|
|
case 5: // RGB5A3
|
|
colmat[0] = colmat[5] = colmat[10] = colmat[15] = 1.0f;
|
|
ColorMask[0] = ColorMask[1] = ColorMask[2] = 31.0f;
|
|
ColorMask[4] = ColorMask[5] = ColorMask[6] = 1.0f / 31.0f;
|
|
ColorMask[3] = 7.0f;
|
|
ColorMask[7] = 1.0f / 7.0f;
|
|
|
|
cbufid = 27;
|
|
if (!efbHasAlpha)
|
|
{
|
|
ColorMask[3] = 0.0f;
|
|
fConstAdd[3] = 1.0f;
|
|
cbufid = 28;
|
|
}
|
|
break;
|
|
case 6: // RGBA8
|
|
colmat[0] = colmat[5] = colmat[10] = colmat[15] = 1.0f;
|
|
|
|
cbufid = 29;
|
|
if (!efbHasAlpha)
|
|
{
|
|
ColorMask[3] = 0.0f;
|
|
fConstAdd[3] = 1.0f;
|
|
cbufid = 30;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
ERROR_LOG(VIDEO, "Unknown copy color format: 0x%x", dstFormat);
|
|
colmat[0] = colmat[5] = colmat[10] = colmat[15] = 1.0f;
|
|
cbufid = 31;
|
|
break;
|
|
}
|
|
}
|
|
|
|
const unsigned int tex_w = scaleByHalf ? srcRect.GetWidth() / 2 : srcRect.GetWidth();
|
|
const unsigned int tex_h = scaleByHalf ? srcRect.GetHeight() / 2 : srcRect.GetHeight();
|
|
|
|
unsigned int scaled_tex_w = g_ActiveConfig.bCopyEFBScaled ? Renderer::EFBToScaledX(tex_w) : tex_w;
|
|
unsigned int scaled_tex_h = g_ActiveConfig.bCopyEFBScaled ? Renderer::EFBToScaledY(tex_h) : tex_h;
|
|
|
|
// remove all texture cache entries at dstAddr
|
|
std::pair<TexCache::iterator, TexCache::iterator> iter_range = textures_by_address.equal_range((u64)dstAddr);
|
|
TexCache::iterator iter = iter_range.first;
|
|
while (iter != iter_range.second)
|
|
{
|
|
iter = RemoveTextureFromCache(iter);
|
|
}
|
|
|
|
// create the texture
|
|
TCacheEntryConfig config;
|
|
config.rendertarget = true;
|
|
config.width = scaled_tex_w;
|
|
config.height = scaled_tex_h;
|
|
config.layers = FramebufferManagerBase::GetEFBLayers();
|
|
|
|
TCacheEntryBase* entry = AllocateTexture(config);
|
|
|
|
// TODO: Using the wrong dstFormat, dumb...
|
|
entry->SetGeneralParameters(dstAddr, 0, dstFormat);
|
|
entry->SetDimensions(tex_w, tex_h, 1);
|
|
entry->SetHashes(TEXHASH_INVALID);
|
|
|
|
entry->frameCount = FRAMECOUNT_INVALID;
|
|
entry->is_efb_copy = true;
|
|
entry->is_custom_tex = false;
|
|
|
|
entry->FromRenderTarget(dstAddr, dstFormat, srcFormat, srcRect, isIntensity, scaleByHalf, cbufid, colmat);
|
|
|
|
if (g_ActiveConfig.bDumpEFBTarget)
|
|
{
|
|
static int count = 0;
|
|
entry->Save(StringFromFormat("%sefb_frame_%i.png", File::GetUserPath(D_DUMPTEXTURES_IDX).c_str(),
|
|
count++), 0);
|
|
}
|
|
|
|
textures_by_address.insert(TexCache::value_type((u64)dstAddr, entry));
|
|
}
|
|
|
|
TextureCache::TCacheEntryBase* TextureCache::AllocateTexture(const TCacheEntryConfig& config)
|
|
{
|
|
TexPool::iterator iter = texture_pool.find(config);
|
|
TextureCache::TCacheEntryBase* entry;
|
|
if (iter != texture_pool.end())
|
|
{
|
|
entry = iter->second;
|
|
texture_pool.erase(iter);
|
|
}
|
|
else
|
|
{
|
|
entry = g_texture_cache->CreateTexture(config);
|
|
INCSTAT(stats.numTexturesCreated);
|
|
}
|
|
|
|
entry->textures_by_hash_iter = textures_by_address.end();
|
|
return entry;
|
|
}
|
|
|
|
TextureCache::TexCache::iterator TextureCache::RemoveTextureFromCache(TexCache::iterator iter)
|
|
{
|
|
if (iter->second->textures_by_hash_iter != textures_by_address.end())
|
|
{
|
|
textures_by_hash.erase(iter->second->textures_by_hash_iter);
|
|
iter->second->textures_by_hash_iter = textures_by_address.end();
|
|
}
|
|
|
|
FreeTexture(iter->second);
|
|
return textures_by_address.erase(iter);
|
|
}
|
|
|
|
void TextureCache::FreeTexture(TCacheEntryBase* entry)
|
|
{
|
|
entry->frameCount = FRAMECOUNT_INVALID;
|
|
texture_pool.insert(TexPool::value_type(entry->config, entry));
|
|
}
|