dolphin/Source/Core/Core/DSP/DSPAnalyzer.cpp

172 lines
4.8 KiB
C++

// Copyright 2009 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include "Core/DSP/DSPAnalyzer.h"
#include <array>
#include <cstddef>
#include "Common/Logging/Log.h"
#include "Core/DSP/DSPMemoryMap.h"
#include "Core/DSP/DSPTables.h"
namespace DSP
{
namespace Analyzer
{
namespace
{
constexpr size_t ISPACE = 65536;
// Holds data about all instructions in RAM.
std::array<u8, ISPACE> code_flags;
// Good candidates for idle skipping is mail wait loops. If we're time slicing
// between the main CPU and the DSP, if the DSP runs into one of these, it might
// as well give up its time slice immediately, after executing once.
// Max signature length is 6. A 0 in a signature is ignored.
constexpr size_t NUM_IDLE_SIGS = 8;
constexpr size_t MAX_IDLE_SIG_SIZE = 6;
// 0xFFFF means ignore.
constexpr u16 idle_skip_sigs[NUM_IDLE_SIGS][MAX_IDLE_SIG_SIZE + 1] = {
// From AX:
{0x26fc, // LRS $30, @DMBH
0x02c0, 0x8000, // ANDCF $30, #0x8000
0x029d, 0xFFFF, // JLZ 0x027a
0, 0}, // RET
{0x27fc, // LRS $31, @DMBH
0x03c0, 0x8000, // ANDCF $31, #0x8000
0x029d, 0xFFFF, // JLZ 0x027a
0, 0}, // RET
{0x26fe, // LRS $30, @CMBH
0x02c0, 0x8000, // ANDCF $30, #0x8000
0x029c, 0xFFFF, // JLNZ 0x0280
0, 0}, // RET
{0x27fe, // LRS $31, @CMBH
0x03c0, 0x8000, // ANDCF $31, #0x8000
0x029c, 0xFFFF, // JLNZ 0x0280
0, 0}, // RET
{0x26fc, // LRS $AC0.M, @DMBH
0x02a0, 0x8000, // ANDF $AC0.M, #0x8000
0x029c, 0xFFFF, // JLNZ 0x????
0, 0},
{0x27fc, // LRS $AC1.M, @DMBH
0x03a0, 0x8000, // ANDF $AC1.M, #0x8000
0x029c, 0xFFFF, // JLNZ 0x????
0, 0},
// From Zelda:
{0x00de, 0xFFFE, // LR $AC0.M, @CMBH
0x02c0, 0x8000, // ANDCF $AC0.M, #0x8000
0x029c, 0xFFFF, // JLNZ 0x05cf
0},
// From Zelda - experimental
{0x00da, 0x0352, // LR $AX0.H, @0x0352
0x8600, // TSTAXH $AX0.H
0x0295, 0xFFFF, // JZ 0x????
0, 0}};
void Reset()
{
code_flags.fill(0);
}
void AnalyzeRange(u16 start_addr, u16 end_addr)
{
// First we run an extremely simplified version of a disassembler to find
// where all instructions start.
// This may not be 100% accurate in case of jump tables!
// It could get desynced, which would be bad. We'll see if that's an issue.
u16 last_arithmetic = 0;
for (u16 addr = start_addr; addr < end_addr;)
{
UDSPInstruction inst = dsp_imem_read(addr);
const DSPOPCTemplate* opcode = GetOpTemplate(inst);
if (!opcode)
{
addr++;
continue;
}
code_flags[addr] |= CODE_START_OF_INST;
// Look for loops.
if ((inst & 0xffe0) == 0x0060 || (inst & 0xff00) == 0x1100)
{
// BLOOP, BLOOPI
u16 loop_end = dsp_imem_read(addr + 1);
code_flags[addr] |= CODE_LOOP_START;
code_flags[loop_end] |= CODE_LOOP_END;
}
else if ((inst & 0xffe0) == 0x0040 || (inst & 0xff00) == 0x1000)
{
// LOOP, LOOPI
code_flags[addr] |= CODE_LOOP_START;
code_flags[static_cast<u16>(addr + 1u)] |= CODE_LOOP_END;
}
// Mark the last arithmetic/multiplier instruction before a branch.
// We must update the SR reg at these instructions
if (opcode->updates_sr)
{
last_arithmetic = addr;
}
if (opcode->branch && !opcode->uncond_branch)
{
code_flags[last_arithmetic] |= CODE_UPDATE_SR;
}
// If an instruction potentially raises exceptions, mark the following
// instruction as needing to check for exceptions
if (opcode->opcode == 0x00c0 || opcode->opcode == 0x1800 || opcode->opcode == 0x1880 ||
opcode->opcode == 0x1900 || opcode->opcode == 0x1980 || opcode->opcode == 0x2000 ||
opcode->extended)
code_flags[static_cast<u16>(addr + opcode->size)] |= CODE_CHECK_INT;
addr += opcode->size;
}
// Next, we'll scan for potential idle skips.
for (size_t s = 0; s < NUM_IDLE_SIGS; s++)
{
for (u16 addr = start_addr; addr < end_addr; addr++)
{
bool found = false;
for (size_t i = 0; i < MAX_IDLE_SIG_SIZE + 1; i++)
{
if (idle_skip_sigs[s][i] == 0)
found = true;
if (idle_skip_sigs[s][i] == 0xFFFF)
continue;
if (idle_skip_sigs[s][i] != dsp_imem_read(static_cast<u16>(addr + i)))
break;
}
if (found)
{
INFO_LOG(DSPLLE, "Idle skip location found at %02x (sigNum:%zu)", addr, s + 1);
code_flags[addr] |= CODE_IDLE_SKIP;
}
}
}
INFO_LOG(DSPLLE, "Finished analysis.");
}
} // Anonymous namespace
void Analyze()
{
Reset();
AnalyzeRange(0x0000, 0x1000); // IRAM
AnalyzeRange(0x8000, 0x9000); // IROM
}
u8 GetCodeFlags(u16 address)
{
return code_flags[address];
}
} // namespace Analyzer
} // namespace DSP