mirror of
https://github.com/dolphin-emu/dolphin.git
synced 2025-01-24 15:01:16 +01:00
95 lines
3.4 KiB
GLSL
95 lines
3.4 KiB
GLSL
uniform sampler2D samp8; // textures
|
|
uniform sampler2D samp9;
|
|
|
|
const int char_width = 8;
|
|
const int char_height = 13;
|
|
const int char_count = 95;
|
|
const int char_pixels = char_width*char_height;
|
|
const vec2 char_dim = vec2(char_width, char_height);
|
|
const vec2 font_scale = vec2(1.0/char_width/char_count, 1.0/char_height);
|
|
|
|
out vec4 ocol0;
|
|
in vec2 uv0;
|
|
|
|
uniform vec4 resolution;
|
|
|
|
void main()
|
|
{
|
|
vec2 char_pos = floor(uv0*resolution.xy/char_dim);
|
|
vec2 pixel_offset = floor(uv0*resolution.xy) - char_pos*char_dim;
|
|
|
|
float mindiff = char_width*char_height*100; // just a big number
|
|
float minc = 0.0;
|
|
vec4 mina = vec4(0.0, 0.0, 0.0, 0.0);
|
|
vec4 minb = vec4(0.0, 0.0, 0.0, 0.0);
|
|
|
|
for(int i=0; i<char_count; i++) {
|
|
vec4 ff = vec4(0.0, 0.0, 0.0, 0.0);
|
|
vec4 f = vec4(0.0, 0.0, 0.0, 0.0);
|
|
vec4 ft = vec4(0.0, 0.0, 0.0, 0.0);
|
|
vec4 t = vec4(0.0, 0.0, 0.0, 0.0);
|
|
vec4 tt = vec4(0.0, 0.0, 0.0, 0.0);
|
|
|
|
for(int x=0; x<char_width; x++) {
|
|
for(int y=0; y<char_height; y++) {
|
|
|
|
vec2 tex_pos = char_pos*char_dim + vec2(x,y) + 0.5;
|
|
vec4 tex = texture(samp9, tex_pos * resolution.zw);
|
|
|
|
vec2 font_pos = vec2(x+i*char_width, y) + 0.5;
|
|
vec4 font = texture(samp8, font_pos * font_scale);
|
|
|
|
// generates sum of texture and font and their squares
|
|
ff += font*font;
|
|
f += font;
|
|
ft += font*tex;
|
|
t += tex;
|
|
tt += tex*tex;
|
|
}
|
|
}
|
|
|
|
/*
|
|
The next lines are a bit harder, hf :-)
|
|
|
|
The idea is to find the perfect char with the perfect background color and the perfect font color.
|
|
As this is an equation with three unknowns, we can't just try all chars and color combinations.
|
|
|
|
As criterion how "perfect" the selection is, we compare the "mean squared error" of the resulted colors of all chars.
|
|
So, now the big issue: how to calculate the MSE without knowing the two colors ...
|
|
|
|
In the next steps, "a" is the font color, "b" is the background color, "f" is the font value at this pixel, "t" is the texture value
|
|
|
|
So the square error of one pixel is:
|
|
e = ( t - a⋅f - b⋅(1-f) ) ^ 2
|
|
|
|
In longer:
|
|
e = a^2⋅f^2 - 2⋅a⋅b⋅f^2 + 2⋅a⋅b⋅f - 2⋅a⋅f⋅t + b^2⋅f^2 - 2⋅b^2⋅f + b^2 + 2⋅b⋅f⋅t - 2⋅b⋅t + t^2
|
|
|
|
The sum of all errors is: (as shortcut, ff,f,ft,t,tt are now the sums like declared above, sum(1) is the count of pixels)
|
|
sum(e) = a^2⋅ff - 2⋅a^2⋅ff + 2⋅a⋅b⋅f - 2⋅a⋅ft + b^2⋅ff - 2⋅b^2⋅f + b^2⋅sum(1) + 2⋅b⋅ft - 2⋅b⋅t + tt
|
|
|
|
To find the minimum, we have to derive this by "a" and "b":
|
|
d/da sum(e) = 2⋅a⋅ff + 2⋅b⋅f - 2⋅b⋅ff - 2⋅ft
|
|
d/db sum(e) = 2⋅a⋅f - 2⋅a⋅ff - 4⋅b⋅f + 2⋅b⋅ff + 2⋅b⋅sum(1) + 2⋅ft - 2⋅t
|
|
|
|
So, both equations must be zero at minimum and there is only one solution.
|
|
*/
|
|
vec4 a = (f*ft - ff*t + f*t - ft*char_pixels) / (f*f - ff*char_pixels);
|
|
vec4 b = (f*ft - ff*t) / (f*f - ff*char_pixels);
|
|
|
|
vec4 diff = a*a*ff + 2.0*a*b*f - 2.0*a*b*ff - 2.0*a*ft + b*b *(-2.0*f + ff + char_pixels) + 2.0*b*ft - 2.0*b*t + tt;
|
|
float diff_f = dot(diff, vec4(1.0, 1.0, 1.0, 1.0));
|
|
|
|
if(diff_f < mindiff) {
|
|
mindiff = diff_f;
|
|
minc = i;
|
|
mina = a;
|
|
minb = b;
|
|
}
|
|
}
|
|
|
|
vec2 font_pos_res = vec2(minc*char_width, 0) + pixel_offset + 0.5;
|
|
|
|
vec4 col = texture(samp8, font_pos_res * font_scale);
|
|
ocol0 = mina * col + minb * (vec4(1.0,1.0,1.0,1.0) - col);
|
|
} |