Rachel Bryk 7c2c4662a7 Disable Vsync while holding tab to disable the frame limit, and allow toggling vsync while emulation is running in OGL.
D3D9 still doesn't support changing vsync while emulation is running.

Fixes issue 6111.
2013-03-18 20:42:18 -04:00

1604 lines
45 KiB
C++

// Copyright (C) 2003 Dolphin Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official SVN repository and contact information can be found at
// http://code.google.com/p/dolphin-emu/
#include "Globals.h"
#include "Thread.h"
#include "Atomic.h"
#include <vector>
#include <cmath>
#include <cstdio>
#include "GLUtil.h"
#include "WxUtils.h"
#include "FileUtil.h"
#ifdef _WIN32
#include <mmsystem.h>
#endif
#include "CommonPaths.h"
#include "VideoConfig.h"
#include "Statistics.h"
#include "ImageWrite.h"
#include "PixelEngine.h"
#include "Render.h"
#include "OpcodeDecoding.h"
#include "BPStructs.h"
#include "TextureCache.h"
#include "RasterFont.h"
#include "VertexShaderGen.h"
#include "DLCache.h"
#include "PixelShaderManager.h"
#include "ProgramShaderCache.h"
#include "VertexShaderManager.h"
#include "VertexLoaderManager.h"
#include "VertexLoader.h"
#include "PostProcessing.h"
#include "TextureConverter.h"
#include "OnScreenDisplay.h"
#include "Timer.h"
#include "StringUtil.h"
#include "FramebufferManager.h"
#include "Fifo.h"
#include "Debugger.h"
#include "Core.h"
#include "Movie.h"
#include "Host.h"
#include "BPFunctions.h"
#include "FPSCounter.h"
#include "ConfigManager.h"
#include "VertexManager.h"
#include "SamplerCache.h"
#include "StreamBuffer.h"
#include "main.h" // Local
#ifdef _WIN32
#include "EmuWindow.h"
#endif
#if defined _WIN32 || defined HAVE_LIBAV
#include "AVIDump.h"
#endif
#if defined(HAVE_WX) && HAVE_WX
#include <wx/image.h>
#endif
void VideoConfig::UpdateProjectionHack()
{
::UpdateProjectionHack(g_Config.iPhackvalue, g_Config.sPhackvalue);
}
#if defined(HAVE_WX) && HAVE_WX
// Screenshot thread struct
typedef struct
{
int W, H;
std::string filename;
wxImage *img;
} ScrStrct;
#endif
int OSDInternalW, OSDInternalH;
namespace OGL
{
// Declarations and definitions
// ----------------------------
static int s_fps = 0;
static GLuint s_ShowEFBCopyRegions_VBO = 0;
static GLuint s_ShowEFBCopyRegions_VAO = 0;
static SHADER s_ShowEFBCopyRegions;
static RasterFont* s_pfont = NULL;
// 1 for no MSAA. Use s_MSAASamples > 1 to check for MSAA.
static int s_MSAASamples = 1;
static int s_MSAACoverageSamples = 0;
static int s_LastMultisampleMode = 0;
static bool s_bHaveCoverageMSAA = false;
static u32 s_blendMode;
#if defined(HAVE_WX) && HAVE_WX
static std::thread scrshotThread;
#endif
// EFB cache related
static const u32 EFB_CACHE_RECT_SIZE = 64; // Cache 64x64 blocks.
static const u32 EFB_CACHE_WIDTH = (EFB_WIDTH + EFB_CACHE_RECT_SIZE - 1) / EFB_CACHE_RECT_SIZE; // round up
static const u32 EFB_CACHE_HEIGHT = (EFB_HEIGHT + EFB_CACHE_RECT_SIZE - 1) / EFB_CACHE_RECT_SIZE;
static bool s_efbCacheValid[2][EFB_CACHE_WIDTH * EFB_CACHE_HEIGHT];
static std::vector<u32> s_efbCache[2][EFB_CACHE_WIDTH * EFB_CACHE_HEIGHT]; // 2 for PEEK_Z and PEEK_COLOR
int GetNumMSAASamples(int MSAAMode)
{
int samples, maxSamples;
switch (MSAAMode)
{
case MULTISAMPLE_OFF:
samples = 1;
break;
case MULTISAMPLE_2X:
samples = 2;
break;
case MULTISAMPLE_4X:
case MULTISAMPLE_CSAA_8X:
case MULTISAMPLE_CSAA_16X:
samples = 4;
break;
case MULTISAMPLE_8X:
case MULTISAMPLE_CSAA_8XQ:
case MULTISAMPLE_CSAA_16XQ:
samples = 8;
break;
default:
samples = 1;
}
glGetIntegerv(GL_MAX_SAMPLES, &maxSamples);
if(samples <= maxSamples) return samples;
ERROR_LOG(VIDEO, "MSAA Bug: %d samples selected, but only %d supported by gpu.", samples, maxSamples);
return maxSamples;
}
int GetNumMSAACoverageSamples(int MSAAMode)
{
int samples;
switch (g_ActiveConfig.iMultisampleMode)
{
case MULTISAMPLE_CSAA_8X:
case MULTISAMPLE_CSAA_8XQ:
samples = 8;
break;
case MULTISAMPLE_CSAA_16X:
case MULTISAMPLE_CSAA_16XQ:
samples = 16;
break;
default:
samples = 0;
}
if(s_bHaveCoverageMSAA || samples == 0) return samples;
ERROR_LOG(VIDEO, "MSAA Bug: CSAA selected, but not supported by gpu.");
return 0;
}
// Init functions
Renderer::Renderer()
{
OSDInternalW = 0;
OSDInternalH = 0;
s_fps=0;
s_ShowEFBCopyRegions_VBO = 0;
s_blendMode = 0;
InitFPSCounter();
const char* gl_vendor = (const char*)glGetString(GL_VENDOR);
const char* gl_renderer = (const char*)glGetString(GL_RENDERER);
const char* gl_version = (const char*)glGetString(GL_VERSION);
OSD::AddMessage(StringFromFormat("Video Info: %s, %s, %s",
gl_vendor,
gl_renderer,
gl_version).c_str(), 5000);
bool bSuccess = true;
GLint numvertexattribs = 0;
glGetIntegerv(GL_MAX_VERTEX_ATTRIBS, &numvertexattribs);
if (numvertexattribs < 16)
{
ERROR_LOG(VIDEO, "GPU: OGL ERROR: Number of attributes %d not enough.\n"
"GPU: Does your video card support OpenGL 2.x?",
numvertexattribs);
bSuccess = false;
}
// Init extension support.
#ifdef __APPLE__
glewExperimental = 1;
#endif
if (glewInit() != GLEW_OK)
{
ERROR_LOG(VIDEO, "glewInit() failed! Does your video card support OpenGL 2.x?");
return; // TODO: fail
}
if (!GLEW_EXT_secondary_color)
{
ERROR_LOG(VIDEO, "GPU: OGL ERROR: Need GL_EXT_secondary_color.\n"
"GPU: Does your video card support OpenGL 2.x?");
bSuccess = false;
}
if (!GLEW_ARB_framebuffer_object)
{
ERROR_LOG(VIDEO, "GPU: ERROR: Need GL_ARB_framebufer_object for multiple render targets.\n"
"GPU: Does your video card support OpenGL 3.0?");
bSuccess = false;
}
if (!GLEW_ARB_vertex_array_object)
{
ERROR_LOG(VIDEO, "GPU: OGL ERROR: Need GL_ARB_vertex_array_object.\n"
"GPU: Does your video card support OpenGL 3.0?");
bSuccess = false;
}
if (!GLEW_ARB_map_buffer_range)
{
ERROR_LOG(VIDEO, "GPU: OGL ERROR: Need GL_ARB_map_buffer_range.\n"
"GPU: Does your video card support OpenGL 3.0?");
bSuccess = false;
}
if (!GLEW_ARB_sampler_objects && bSuccess)
{
ERROR_LOG(VIDEO, "GPU: OGL ERROR: Need GL_ARB_sampler_objects."
"GPU: Does your video card support OpenGL 3.2?"
"Please report this issue, then there will be a workaround");
bSuccess = false;
}
s_bHaveCoverageMSAA = GLEW_NV_framebuffer_multisample_coverage;
g_Config.backend_info.bSupportsDualSourceBlend = GLEW_ARB_blend_func_extended;
g_Config.backend_info.bSupportsGLSLUBO = GLEW_ARB_uniform_buffer_object;
g_Config.backend_info.bSupportsGLPinnedMemory = GLEW_AMD_pinned_memory;
g_Config.backend_info.bSupportsGLSync = GLEW_ARB_sync;
g_Config.backend_info.bSupportsGLSLCache = GLEW_ARB_get_program_binary;
g_Config.backend_info.bSupportsGLBaseVertex = GLEW_ARB_draw_elements_base_vertex;
if(g_Config.backend_info.bSupportsGLSLUBO && (
// hd3000 get corruption, hd4000 also and a big slowdown
!strcmp(gl_vendor, "Intel Open Source Technology Center") && (!strcmp(gl_version, "3.0 Mesa 9.0.0") || !strcmp(gl_version, "3.0 Mesa 9.0.1") || !strcmp(gl_version, "3.0 Mesa 9.0.2") || !strcmp(gl_version, "3.0 Mesa 9.0.3") || !strcmp(gl_version, "3.0 Mesa 9.1.0") )
)) {
g_Config.backend_info.bSupportsGLSLUBO = false;
ERROR_LOG(VIDEO, "buggy driver detected. Disable UBO");
}
#ifndef _WIN32
if(g_Config.backend_info.bSupportsGLPinnedMemory && !strcmp(gl_vendor, "Advanced Micro Devices, Inc.")) {
g_Config.backend_info.bSupportsGLPinnedMemory = false;
ERROR_LOG(VIDEO, "some fglrx versions have broken pinned memory support, so it's disabled for fglrx");
}
#endif
UpdateActiveConfig();
OSD::AddMessage(StringFromFormat("Missing Extensions: %s%s%s%s%s%s",
g_ActiveConfig.backend_info.bSupportsDualSourceBlend ? "" : "DualSourceBlend ",
g_ActiveConfig.backend_info.bSupportsGLSLUBO ? "" : "UniformBuffer ",
g_ActiveConfig.backend_info.bSupportsGLPinnedMemory ? "" : "PinnedMemory ",
g_ActiveConfig.backend_info.bSupportsGLSLCache ? "" : "ShaderCache ",
g_ActiveConfig.backend_info.bSupportsGLBaseVertex ? "" : "BaseVertex ",
g_ActiveConfig.backend_info.bSupportsGLSync ? "" : "Sync "
).c_str(), 5000);
if (!bSuccess)
return; // TODO: fail
s_LastMultisampleMode = g_ActiveConfig.iMultisampleMode;
s_MSAASamples = GetNumMSAASamples(s_LastMultisampleMode);
s_MSAACoverageSamples = GetNumMSAACoverageSamples(s_LastMultisampleMode);
// Decide frambuffer size
s_backbuffer_width = (int)GLInterface->GetBackBufferWidth();
s_backbuffer_height = (int)GLInterface->GetBackBufferHeight();
// Handle VSync on/off
int swapInterval = g_ActiveConfig.IsVSync() ? 1 : 0;
GLInterface->SwapInterval(swapInterval);
// check the max texture width and height
GLint max_texture_size;
glGetIntegerv(GL_MAX_TEXTURE_SIZE, (GLint *)&max_texture_size);
if (max_texture_size < 1024)
ERROR_LOG(VIDEO, "GL_MAX_TEXTURE_SIZE too small at %i - must be at least 1024.",
max_texture_size);
if (GL_REPORT_ERROR() != GL_NO_ERROR)
bSuccess = false;
if (!GLEW_ARB_texture_non_power_of_two)
WARN_LOG(VIDEO, "ARB_texture_non_power_of_two not supported.");
// TODO: Move these somewhere else?
FramebufferManagerBase::SetLastXfbWidth(MAX_XFB_WIDTH);
FramebufferManagerBase::SetLastXfbHeight(MAX_XFB_HEIGHT);
UpdateDrawRectangle(s_backbuffer_width, s_backbuffer_height);
s_LastEFBScale = g_ActiveConfig.iEFBScale;
CalculateTargetSize(s_backbuffer_width, s_backbuffer_height);
// Because of the fixed framebuffer size we need to disable the resolution
// options while running
g_Config.bRunning = true;
if (GL_REPORT_ERROR() != GL_NO_ERROR)
bSuccess = false;
// Initialize the FramebufferManager
g_framebuffer_manager = new FramebufferManager(s_target_width, s_target_height,
s_MSAASamples, s_MSAACoverageSamples);
if (GL_REPORT_ERROR() != GL_NO_ERROR)
bSuccess = false;
glStencilFunc(GL_ALWAYS, 0, 0);
glBlendFunc(GL_ONE, GL_ONE);
glViewport(0, 0, GetTargetWidth(), GetTargetHeight()); // Reset The Current Viewport
glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
glClearDepth(1.0f);
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LEQUAL);
glPixelStorei(GL_UNPACK_ALIGNMENT, 4); // 4-byte pixel alignment
glDisable(GL_STENCIL_TEST);
glEnable(GL_SCISSOR_TEST);
glScissor(0, 0, GetTargetWidth(), GetTargetHeight());
glBlendColor(0, 0, 0, 0.5f);
glClearDepth(1.0f);
UpdateActiveConfig();
}
Renderer::~Renderer()
{
#if defined(HAVE_WX) && HAVE_WX
if (scrshotThread.joinable())
scrshotThread.join();
#endif
delete g_framebuffer_manager;
}
void Renderer::Shutdown()
{
g_Config.bRunning = false;
UpdateActiveConfig();
glDeleteBuffers(1, &s_ShowEFBCopyRegions_VBO);
glDeleteVertexArrays(1, &s_ShowEFBCopyRegions_VAO);
s_ShowEFBCopyRegions_VBO = 0;
delete s_pfont;
s_pfont = 0;
s_ShowEFBCopyRegions.Destroy();
}
void Renderer::Init()
{
s_pfont = new RasterFont();
ProgramShaderCache::CompileShader(s_ShowEFBCopyRegions,
"in vec2 rawpos;\n"
"in vec3 color0;\n"
"out vec4 c;\n"
"void main(void) {\n"
" gl_Position = vec4(rawpos,0,1);\n"
" c = vec4(color0, 1.0);\n"
"}\n",
"in vec4 c;\n"
"out vec4 ocol0;\n"
"void main(void) {\n"
" ocol0 = c;\n"
"}\n");
// creating buffers
glGenBuffers(1, &s_ShowEFBCopyRegions_VBO);
glGenVertexArrays(1, &s_ShowEFBCopyRegions_VAO);
glBindBuffer(GL_ARRAY_BUFFER, s_ShowEFBCopyRegions_VBO);
glBindVertexArray( s_ShowEFBCopyRegions_VAO );
glEnableVertexAttribArray(SHADER_POSITION_ATTRIB);
glVertexAttribPointer(SHADER_POSITION_ATTRIB, 2, GL_FLOAT, 0, sizeof(GLfloat)*5, NULL);
glEnableVertexAttribArray(SHADER_COLOR0_ATTRIB);
glVertexAttribPointer(SHADER_COLOR0_ATTRIB, 3, GL_FLOAT, 0, sizeof(GLfloat)*5, (GLfloat*)NULL+2);
}
// Create On-Screen-Messages
void Renderer::DrawDebugInfo()
{
// Reset viewport for drawing text
glViewport(0, 0, GLInterface->GetBackBufferWidth(), GLInterface->GetBackBufferHeight());
// Draw various messages on the screen, like FPS, statistics, etc.
char debugtext_buffer[8192];
char *p = debugtext_buffer;
p[0] = 0;
if (g_ActiveConfig.bShowFPS)
p+=sprintf(p, "FPS: %d\n", s_fps);
if (SConfig::GetInstance().m_ShowLag)
p+=sprintf(p, "Lag: %llu\n", Movie::g_currentLagCount);
if (g_ActiveConfig.bShowInputDisplay)
p+=sprintf(p, "%s", Movie::GetInputDisplay().c_str());
if (g_ActiveConfig.bShowEFBCopyRegions)
{
// Store Line Size
GLfloat lSize;
glGetFloatv(GL_LINE_WIDTH, &lSize);
// Set Line Size
glLineWidth(3.0f);
// 2*Coords + 3*Color
glBindBuffer(GL_ARRAY_BUFFER, s_ShowEFBCopyRegions_VBO);
glBufferData(GL_ARRAY_BUFFER, stats.efb_regions.size() * sizeof(GLfloat) * (2+3)*2*6, NULL, GL_STREAM_DRAW);
GLfloat *Vertices = (GLfloat*)glMapBuffer(GL_ARRAY_BUFFER, GL_WRITE_ONLY);
// Draw EFB copy regions rectangles
int a = 0;
GLfloat color[3] = {0.0f, 1.0f, 1.0f};
for (std::vector<EFBRectangle>::const_iterator it = stats.efb_regions.begin();
it != stats.efb_regions.end(); ++it)
{
GLfloat halfWidth = EFB_WIDTH / 2.0f;
GLfloat halfHeight = EFB_HEIGHT / 2.0f;
GLfloat x = (GLfloat) -1.0f + ((GLfloat)it->left / halfWidth);
GLfloat y = (GLfloat) 1.0f - ((GLfloat)it->top / halfHeight);
GLfloat x2 = (GLfloat) -1.0f + ((GLfloat)it->right / halfWidth);
GLfloat y2 = (GLfloat) 1.0f - ((GLfloat)it->bottom / halfHeight);
Vertices[a++] = x;
Vertices[a++] = y;
Vertices[a++] = color[0];
Vertices[a++] = color[1];
Vertices[a++] = color[2];
Vertices[a++] = x2;
Vertices[a++] = y;
Vertices[a++] = color[0];
Vertices[a++] = color[1];
Vertices[a++] = color[2];
Vertices[a++] = x2;
Vertices[a++] = y;
Vertices[a++] = color[0];
Vertices[a++] = color[1];
Vertices[a++] = color[2];
Vertices[a++] = x2;
Vertices[a++] = y2;
Vertices[a++] = color[0];
Vertices[a++] = color[1];
Vertices[a++] = color[2];
Vertices[a++] = x2;
Vertices[a++] = y2;
Vertices[a++] = color[0];
Vertices[a++] = color[1];
Vertices[a++] = color[2];
Vertices[a++] = x;
Vertices[a++] = y2;
Vertices[a++] = color[0];
Vertices[a++] = color[1];
Vertices[a++] = color[2];
Vertices[a++] = x;
Vertices[a++] = y2;
Vertices[a++] = color[0];
Vertices[a++] = color[1];
Vertices[a++] = color[2];
Vertices[a++] = x;
Vertices[a++] = y;
Vertices[a++] = color[0];
Vertices[a++] = color[1];
Vertices[a++] = color[2];
Vertices[a++] = x;
Vertices[a++] = y;
Vertices[a++] = color[0];
Vertices[a++] = color[1];
Vertices[a++] = color[2];
Vertices[a++] = x2;
Vertices[a++] = y2;
Vertices[a++] = color[0];
Vertices[a++] = color[1];
Vertices[a++] = color[2];
Vertices[a++] = x2;
Vertices[a++] = y;
Vertices[a++] = color[0];
Vertices[a++] = color[1];
Vertices[a++] = color[2];
Vertices[a++] = x;
Vertices[a++] = y2;
Vertices[a++] = color[0];
Vertices[a++] = color[1];
Vertices[a++] = color[2];
// TO DO: build something nicer here
GLfloat temp = color[0];
color[0] = color[1];
color[1] = color[2];
color[2] = temp;
}
glUnmapBuffer(GL_ARRAY_BUFFER);
s_ShowEFBCopyRegions.Bind();
glBindVertexArray( s_ShowEFBCopyRegions_VAO );
glDrawArrays(GL_LINES, 0, stats.efb_regions.size() * 2*6);
// Restore Line Size
glLineWidth(lSize);
// Clear stored regions
stats.efb_regions.clear();
}
if (g_ActiveConfig.bOverlayStats)
p = Statistics::ToString(p);
if (g_ActiveConfig.bOverlayProjStats)
p = Statistics::ToStringProj(p);
// Render a shadow, and then the text.
if (p != debugtext_buffer)
{
Renderer::RenderText(debugtext_buffer, 21, 21, 0xDD000000);
Renderer::RenderText(debugtext_buffer, 20, 20, 0xFF00FFFF);
}
}
void Renderer::RenderText(const char *text, int left, int top, u32 color)
{
const int nBackbufferWidth = (int)GLInterface->GetBackBufferWidth();
const int nBackbufferHeight = (int)GLInterface->GetBackBufferHeight();
s_pfont->printMultilineText(text,
left * 2.0f / (float)nBackbufferWidth - 1,
1 - top * 2.0f / (float)nBackbufferHeight,
0, nBackbufferWidth, nBackbufferHeight, color);
GL_REPORT_ERRORD();
}
TargetRectangle Renderer::ConvertEFBRectangle(const EFBRectangle& rc)
{
TargetRectangle result;
result.left = EFBToScaledX(rc.left);
result.top = EFBToScaledY(EFB_HEIGHT - rc.top);
result.right = EFBToScaledX(rc.right);
result.bottom = EFBToScaledY(EFB_HEIGHT - rc.bottom);
return result;
}
// Function: This function handles the OpenGL glScissor() function
// ----------------------------
// Call browser: OpcodeDecoding.cpp ExecuteDisplayList > Decode() > LoadBPReg()
// case 0x52 > SetScissorRect()
// ----------------------------
// bpmem.scissorTL.x, y = 342x342
// bpmem.scissorBR.x, y = 981x821
// Renderer::GetTargetHeight() = the fixed ini file setting
// donkopunchstania - it appears scissorBR is the bottom right pixel inside the scissor box
// therefore the width and height are (scissorBR + 1) - scissorTL
void Renderer::SetScissorRect(const TargetRectangle& rc)
{
glScissor(rc.left, rc.bottom, rc.GetWidth(), rc.GetHeight());
}
void Renderer::SetColorMask()
{
// Only enable alpha channel if it's supported by the current EFB format
GLenum ColorMask = GL_FALSE, AlphaMask = GL_FALSE;
if (bpmem.alpha_test.TestResult() != AlphaTest::FAIL)
{
if (bpmem.blendmode.colorupdate)
ColorMask = GL_TRUE;
if (bpmem.blendmode.alphaupdate && (bpmem.zcontrol.pixel_format == PIXELFMT_RGBA6_Z24))
AlphaMask = GL_TRUE;
}
glColorMask(ColorMask, ColorMask, ColorMask, AlphaMask);
}
void ClearEFBCache()
{
for (u32 i = 0; i < EFB_CACHE_WIDTH * EFB_CACHE_HEIGHT; ++i)
s_efbCacheValid[0][i] = false;
for (u32 i = 0; i < EFB_CACHE_WIDTH * EFB_CACHE_HEIGHT; ++i)
s_efbCacheValid[1][i] = false;
}
void Renderer::UpdateEFBCache(EFBAccessType type, u32 cacheRectIdx, const EFBRectangle& efbPixelRc, const TargetRectangle& targetPixelRc, const u32* data)
{
u32 cacheType = (type == PEEK_Z ? 0 : 1);
if (!s_efbCache[cacheType][cacheRectIdx].size())
s_efbCache[cacheType][cacheRectIdx].resize(EFB_CACHE_RECT_SIZE * EFB_CACHE_RECT_SIZE);
u32 targetPixelRcWidth = targetPixelRc.right - targetPixelRc.left;
u32 efbPixelRcHeight = efbPixelRc.bottom - efbPixelRc.top;
u32 efbPixelRcWidth = efbPixelRc.right - efbPixelRc.left;
for (u32 yCache = 0; yCache < efbPixelRcHeight; ++yCache)
{
u32 yEFB = efbPixelRc.top + yCache;
u32 yPixel = (EFBToScaledY(EFB_HEIGHT - yEFB) + EFBToScaledY(EFB_HEIGHT - yEFB - 1)) / 2;
u32 yData = yPixel - targetPixelRc.bottom;
for (u32 xCache = 0; xCache < efbPixelRcWidth; ++xCache)
{
u32 xEFB = efbPixelRc.left + xCache;
u32 xPixel = (EFBToScaledX(xEFB) + EFBToScaledX(xEFB + 1)) / 2;
u32 xData = xPixel - targetPixelRc.left;
s_efbCache[cacheType][cacheRectIdx][yCache * EFB_CACHE_RECT_SIZE + xCache] = data[yData * targetPixelRcWidth + xData];
}
}
s_efbCacheValid[cacheType][cacheRectIdx] = true;
}
// This function allows the CPU to directly access the EFB.
// There are EFB peeks (which will read the color or depth of a pixel)
// and EFB pokes (which will change the color or depth of a pixel).
//
// The behavior of EFB peeks can only be modified by:
// - GX_PokeAlphaRead
// The behavior of EFB pokes can be modified by:
// - GX_PokeAlphaMode (TODO)
// - GX_PokeAlphaUpdate (TODO)
// - GX_PokeBlendMode (TODO)
// - GX_PokeColorUpdate (TODO)
// - GX_PokeDither (TODO)
// - GX_PokeDstAlpha (TODO)
// - GX_PokeZMode (TODO)
u32 Renderer::AccessEFB(EFBAccessType type, u32 x, u32 y, u32 poke_data)
{
if (!g_ActiveConfig.bEFBAccessEnable)
return 0;
u32 cacheRectIdx = (y / EFB_CACHE_RECT_SIZE) * EFB_CACHE_WIDTH
+ (x / EFB_CACHE_RECT_SIZE);
// Get the rectangular target region containing the EFB pixel
EFBRectangle efbPixelRc;
efbPixelRc.left = (x / EFB_CACHE_RECT_SIZE) * EFB_CACHE_RECT_SIZE;
efbPixelRc.top = (y / EFB_CACHE_RECT_SIZE) * EFB_CACHE_RECT_SIZE;
efbPixelRc.right = std::min(efbPixelRc.left + EFB_CACHE_RECT_SIZE, (u32)EFB_WIDTH);
efbPixelRc.bottom = std::min(efbPixelRc.top + EFB_CACHE_RECT_SIZE, (u32)EFB_HEIGHT);
TargetRectangle targetPixelRc = ConvertEFBRectangle(efbPixelRc);
u32 targetPixelRcWidth = targetPixelRc.right - targetPixelRc.left;
u32 targetPixelRcHeight = targetPixelRc.top - targetPixelRc.bottom;
// TODO (FIX) : currently, AA path is broken/offset and doesn't return the correct pixel
switch (type)
{
case PEEK_Z:
{
u32 z;
if (!s_efbCacheValid[0][cacheRectIdx])
{
if (s_MSAASamples > 1)
{
// Resolve our rectangle.
FramebufferManager::GetEFBDepthTexture(efbPixelRc);
glBindFramebuffer(GL_READ_FRAMEBUFFER, FramebufferManager::GetResolvedFramebuffer());
}
u32* depthMap = new u32[targetPixelRcWidth * targetPixelRcHeight];
glReadPixels(targetPixelRc.left, targetPixelRc.bottom, targetPixelRcWidth, targetPixelRcHeight,
GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, depthMap);
GL_REPORT_ERRORD();
UpdateEFBCache(type, cacheRectIdx, efbPixelRc, targetPixelRc, depthMap);
delete[] depthMap;
}
u32 xRect = x % EFB_CACHE_RECT_SIZE;
u32 yRect = y % EFB_CACHE_RECT_SIZE;
z = s_efbCache[0][cacheRectIdx][yRect * EFB_CACHE_RECT_SIZE + xRect];
// Scale the 32-bit value returned by glReadPixels to a 24-bit
// value (GC uses a 24-bit Z-buffer).
// TODO: in RE0 this value is often off by one, which causes lighting to disappear
if(bpmem.zcontrol.pixel_format == PIXELFMT_RGB565_Z16)
{
// if Z is in 16 bit format you must return a 16 bit integer
z = z >> 16;
}
else
{
z = z >> 8;
}
return z;
}
case PEEK_COLOR: // GXPeekARGB
{
// Although it may sound strange, this really is A8R8G8B8 and not RGBA or 24-bit...
// Tested in Killer 7, the first 8bits represent the alpha value which is used to
// determine if we're aiming at an enemy (0x80 / 0x88) or not (0x70)
// Wind Waker is also using it for the pictograph to determine the color of each pixel
u32 color;
if (!s_efbCacheValid[1][cacheRectIdx])
{
if (s_MSAASamples > 1)
{
// Resolve our rectangle.
FramebufferManager::GetEFBColorTexture(efbPixelRc);
glBindFramebuffer(GL_READ_FRAMEBUFFER, FramebufferManager::GetResolvedFramebuffer());
}
u32* colorMap = new u32[targetPixelRcWidth * targetPixelRcHeight];
glReadPixels(targetPixelRc.left, targetPixelRc.bottom, targetPixelRcWidth, targetPixelRcHeight,
GL_BGRA, GL_UNSIGNED_INT_8_8_8_8_REV, colorMap);
GL_REPORT_ERRORD();
UpdateEFBCache(type, cacheRectIdx, efbPixelRc, targetPixelRc, colorMap);
delete[] colorMap;
}
u32 xRect = x % EFB_CACHE_RECT_SIZE;
u32 yRect = y % EFB_CACHE_RECT_SIZE;
color = s_efbCache[1][cacheRectIdx][yRect * EFB_CACHE_RECT_SIZE + xRect];
// check what to do with the alpha channel (GX_PokeAlphaRead)
PixelEngine::UPEAlphaReadReg alpha_read_mode;
PixelEngine::Read16((u16&)alpha_read_mode, PE_ALPHAREAD);
if (bpmem.zcontrol.pixel_format == PIXELFMT_RGBA6_Z24)
{
color = RGBA8ToRGBA6ToRGBA8(color);
}
else if (bpmem.zcontrol.pixel_format == PIXELFMT_RGB565_Z16)
{
color = RGBA8ToRGB565ToRGBA8(color);
}
if(bpmem.zcontrol.pixel_format != PIXELFMT_RGBA6_Z24)
{
color |= 0xFF000000;
}
if(alpha_read_mode.ReadMode == 2) return color; // GX_READ_NONE
else if(alpha_read_mode.ReadMode == 1) return (color | 0xFF000000); // GX_READ_FF
else /*if(alpha_read_mode.ReadMode == 0)*/ return (color & 0x00FFFFFF); // GX_READ_00
}
case POKE_COLOR:
case POKE_Z:
// TODO: Implement. One way is to draw a tiny pixel-sized rectangle at
// the exact location. Note: EFB pokes are susceptible to Z-buffering
// and perhaps blending.
//WARN_LOG(VIDEOINTERFACE, "This is probably some kind of software rendering");
break;
default:
break;
}
return 0;
}
// Called from VertexShaderManager
void Renderer::UpdateViewport(Matrix44& vpCorrection)
{
// reversed gxsetviewport(xorig, yorig, width, height, nearz, farz)
// [0] = width/2
// [1] = height/2
// [2] = 16777215 * (farz - nearz)
// [3] = xorig + width/2 + 342
// [4] = yorig + height/2 + 342
// [5] = 16777215 * farz
int scissorXOff = bpmem.scissorOffset.x * 2;
int scissorYOff = bpmem.scissorOffset.y * 2;
// TODO: ceil, floor or just cast to int?
int X = EFBToScaledX((int)ceil(xfregs.viewport.xOrig - xfregs.viewport.wd - (float)scissorXOff));
int Y = EFBToScaledY((int)ceil((float)EFB_HEIGHT - xfregs.viewport.yOrig + xfregs.viewport.ht + (float)scissorYOff));
int Width = EFBToScaledX((int)ceil(2.0f * xfregs.viewport.wd));
int Height = EFBToScaledY((int)ceil(-2.0f * xfregs.viewport.ht));
double GLNear = (xfregs.viewport.farZ - xfregs.viewport.zRange) / 16777216.0f;
double GLFar = xfregs.viewport.farZ / 16777216.0f;
if (Width < 0)
{
X += Width;
Width *= -1;
}
if (Height < 0)
{
Y += Height;
Height *= -1;
}
// OpenGL does not require any viewport correct
Matrix44::LoadIdentity(vpCorrection);
// Update the view port
glViewport(X, Y, Width, Height);
glDepthRange(GLNear, GLFar);
}
void Renderer::ClearScreen(const EFBRectangle& rc, bool colorEnable, bool alphaEnable, bool zEnable, u32 color, u32 z)
{
ResetAPIState();
// color
GLboolean const
color_mask = colorEnable ? GL_TRUE : GL_FALSE,
alpha_mask = alphaEnable ? GL_TRUE : GL_FALSE;
glColorMask(color_mask, color_mask, color_mask, alpha_mask);
glClearColor(
float((color >> 16) & 0xFF) / 255.0f,
float((color >> 8) & 0xFF) / 255.0f,
float((color >> 0) & 0xFF) / 255.0f,
float((color >> 24) & 0xFF) / 255.0f);
// depth
glDepthMask(zEnable ? GL_TRUE : GL_FALSE);
glClearDepth(float(z & 0xFFFFFF) / float(0xFFFFFF));
// Update rect for clearing the picture
glEnable(GL_SCISSOR_TEST);
TargetRectangle const targetRc = ConvertEFBRectangle(rc);
glScissor(targetRc.left, targetRc.bottom, targetRc.GetWidth(), targetRc.GetHeight());
// glColorMask/glDepthMask/glScissor affect glClear (glViewport does not)
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
RestoreAPIState();
ClearEFBCache();
}
void Renderer::ReinterpretPixelData(unsigned int convtype)
{
// TODO
}
void Renderer::SetBlendMode(bool forceUpdate)
{
// Our render target always uses an alpha channel, so we need to override the blend functions to assume a destination alpha of 1 if the render target isn't supposed to have an alpha channel
// Example: D3DBLEND_DESTALPHA needs to be D3DBLEND_ONE since the result without an alpha channel is assumed to always be 1.
bool target_has_alpha = bpmem.zcontrol.pixel_format == PIXELFMT_RGBA6_Z24;
bool useDstAlpha = !g_ActiveConfig.bDstAlphaPass && bpmem.dstalpha.enable && bpmem.blendmode.alphaupdate && target_has_alpha;
bool useDualSource = useDstAlpha && g_ActiveConfig.backend_info.bSupportsDualSourceBlend;
const GLenum glSrcFactors[8] =
{
GL_ZERO,
GL_ONE,
GL_DST_COLOR,
GL_ONE_MINUS_DST_COLOR,
GL_SRC_ALPHA,
GL_ONE_MINUS_SRC_ALPHA, // NOTE: If dual-source blending is enabled, use SRC1_ALPHA
(target_has_alpha) ? GL_DST_ALPHA : (GLenum)GL_ONE,
(target_has_alpha) ? GL_ONE_MINUS_DST_ALPHA : (GLenum)GL_ZERO
};
const GLenum glDestFactors[8] =
{
GL_ZERO,
GL_ONE,
GL_SRC_COLOR,
GL_ONE_MINUS_SRC_COLOR,
GL_SRC_ALPHA,
GL_ONE_MINUS_SRC_ALPHA, // NOTE: If dual-source blending is enabled, use SRC1_ALPHA
(target_has_alpha) ? GL_DST_ALPHA : (GLenum)GL_ONE,
(target_has_alpha) ? GL_ONE_MINUS_DST_ALPHA : (GLenum)GL_ZERO
};
// blend mode bit mask
// 0 - blend enable
// 1 - dst alpha enabled
// 2 - reverse subtract enable (else add)
// 3-5 - srcRGB function
// 6-8 - dstRGB function
u32 newval = useDualSource << 1;
newval |= bpmem.blendmode.subtract << 2;
if (bpmem.blendmode.subtract)
newval |= 0x0049; // enable blending src 1 dst 1
else if (bpmem.blendmode.blendenable)
{
newval |= 1; // enable blending
newval |= bpmem.blendmode.srcfactor << 3;
newval |= bpmem.blendmode.dstfactor << 6;
}
u32 changes = forceUpdate ? 0xFFFFFFFF : newval ^ s_blendMode;
if (changes & 1)
// blend enable change
(newval & 1) ? glEnable(GL_BLEND) : glDisable(GL_BLEND);
if (changes & 4)
{
// subtract enable change
GLenum equation = newval & 4 ? GL_FUNC_REVERSE_SUBTRACT : GL_FUNC_ADD;
GLenum equationAlpha = useDualSource ? GL_FUNC_ADD : equation;
glBlendEquationSeparate(equation, equationAlpha);
}
if (changes & 0x1FA)
{
GLenum srcFactor = glSrcFactors[(newval >> 3) & 7];
GLenum dstFactor = glDestFactors[(newval >> 6) & 7];
GLenum srcFactorAlpha = srcFactor;
GLenum dstFactorAlpha = dstFactor;
if (useDualSource)
{
srcFactorAlpha = GL_ONE;
dstFactorAlpha = GL_ZERO;
if (srcFactor == GL_SRC_ALPHA)
srcFactor = GL_SRC1_ALPHA;
else if (srcFactor == GL_ONE_MINUS_SRC_ALPHA)
srcFactor = GL_ONE_MINUS_SRC1_ALPHA;
if (dstFactor == GL_SRC_ALPHA)
dstFactor = GL_SRC1_ALPHA;
else if (dstFactor == GL_ONE_MINUS_SRC_ALPHA)
dstFactor = GL_ONE_MINUS_SRC1_ALPHA;
}
// blend RGB change
glBlendFuncSeparate(srcFactor, dstFactor, srcFactorAlpha, dstFactorAlpha);
}
s_blendMode = newval;
}
void DumpFrame(const std::vector<u8>& data, int w, int h)
{
#if defined(HAVE_LIBAV) || defined(_WIN32)
if (g_ActiveConfig.bDumpFrames && !data.empty())
{
AVIDump::AddFrame(&data[0], w, h);
}
#endif
}
// This function has the final picture. We adjust the aspect ratio here.
void Renderer::Swap(u32 xfbAddr, FieldType field, u32 fbWidth, u32 fbHeight,const EFBRectangle& rc,float Gamma)
{
static int w = 0, h = 0;
if (g_bSkipCurrentFrame || (!XFBWrited && !g_ActiveConfig.RealXFBEnabled()) || !fbWidth || !fbHeight)
{
DumpFrame(frame_data, w, h);
Core::Callback_VideoCopiedToXFB(false);
return;
}
if (field == FIELD_LOWER) xfbAddr -= fbWidth * 2;
u32 xfbCount = 0;
const XFBSourceBase* const* xfbSourceList = FramebufferManager::GetXFBSource(xfbAddr, fbWidth, fbHeight, xfbCount);
if (g_ActiveConfig.VirtualXFBEnabled() && (!xfbSourceList || xfbCount == 0))
{
DumpFrame(frame_data, w, h);
Core::Callback_VideoCopiedToXFB(false);
return;
}
ResetAPIState();
PostProcessing::Update(s_backbuffer_width, s_backbuffer_height);
UpdateDrawRectangle(s_backbuffer_width, s_backbuffer_height);
TargetRectangle flipped_trc = GetTargetRectangle();
// Flip top and bottom for some reason; TODO: Fix the code to suck less?
int tmp = flipped_trc.top;
flipped_trc.top = flipped_trc.bottom;
flipped_trc.bottom = tmp;
GL_REPORT_ERRORD();
// Copy the framebuffer to screen.
const XFBSourceBase* xfbSource = NULL;
if(g_ActiveConfig.bUseXFB)
{
// Render to the real/postprocessing buffer now.
PostProcessing::BindTargetFramebuffer();
// draw each xfb source
glBindFramebuffer(GL_READ_FRAMEBUFFER, FramebufferManager::GetXFBFramebuffer());
for (u32 i = 0; i < xfbCount; ++i)
{
xfbSource = xfbSourceList[i];
MathUtil::Rectangle<float> drawRc;
if (g_ActiveConfig.bUseRealXFB)
{
drawRc.top = flipped_trc.top;
drawRc.bottom = flipped_trc.bottom;
drawRc.left = flipped_trc.left;
drawRc.right = flipped_trc.right;
}
else
{
// use virtual xfb with offset
int xfbHeight = xfbSource->srcHeight;
int xfbWidth = xfbSource->srcWidth;
int hOffset = ((s32)xfbSource->srcAddr - (s32)xfbAddr) / ((s32)fbWidth * 2);
drawRc.top = flipped_trc.bottom + (hOffset + xfbHeight) * flipped_trc.GetHeight() / fbHeight;
drawRc.bottom = flipped_trc.bottom + hOffset * flipped_trc.GetHeight() / fbHeight;
drawRc.left = flipped_trc.left + (flipped_trc.GetWidth() - xfbWidth * flipped_trc.GetWidth() / fbWidth)/2;
drawRc.right = flipped_trc.left + (flipped_trc.GetWidth() + xfbWidth * flipped_trc.GetWidth() / fbWidth)/2;
// The following code disables auto stretch. Kept for reference.
// scale draw area for a 1 to 1 pixel mapping with the draw target
//float vScale = (float)fbHeight / (float)flipped_trc.GetHeight();
//float hScale = (float)fbWidth / (float)flipped_trc.GetWidth();
//drawRc.top *= vScale;
//drawRc.bottom *= vScale;
//drawRc.left *= hScale;
//drawRc.right *= hScale;
}
// Tell the OSD Menu about the current internal resolution
OSDInternalW = xfbSource->sourceRc.GetWidth(); OSDInternalH = xfbSource->sourceRc.GetHeight();
MathUtil::Rectangle<float> sourceRc;
sourceRc.left = xfbSource->sourceRc.left;
sourceRc.right = xfbSource->sourceRc.right;
sourceRc.top = xfbSource->sourceRc.top;
sourceRc.bottom = xfbSource->sourceRc.bottom;
xfbSource->Draw(sourceRc, drawRc, 0, 0);
}
}
else
{
TargetRectangle targetRc = ConvertEFBRectangle(rc);
// for msaa mode, we must resolve the efb content to non-msaa
FramebufferManager::ResolveAndGetRenderTarget(rc);
// Render to the real/postprocessing buffer now. (resolve have changed this in msaa mode)
PostProcessing::BindTargetFramebuffer();
// always the non-msaa fbo
GLuint fb = s_MSAASamples>1?FramebufferManager::GetResolvedFramebuffer():FramebufferManager::GetEFBFramebuffer();
glBindFramebuffer(GL_READ_FRAMEBUFFER, fb);
glBlitFramebuffer(targetRc.left, targetRc.bottom, targetRc.right, targetRc.top,
flipped_trc.left, flipped_trc.bottom, flipped_trc.right, flipped_trc.top,
GL_COLOR_BUFFER_BIT, GL_LINEAR);
}
PostProcessing::BlitToScreen();
glBindFramebuffer(GL_READ_FRAMEBUFFER, 0);
// Save screenshot
if (s_bScreenshot)
{
std::lock_guard<std::mutex> lk(s_criticalScreenshot);
SaveScreenshot(s_sScreenshotName, flipped_trc);
// Reset settings
s_sScreenshotName.clear();
s_bScreenshot = false;
}
// Frame dumps are handled a little differently in Windows
#if defined _WIN32 || defined HAVE_LIBAV
if (g_ActiveConfig.bDumpFrames)
{
std::lock_guard<std::mutex> lk(s_criticalScreenshot);
if (frame_data.empty() || w != flipped_trc.GetWidth() ||
h != flipped_trc.GetHeight())
{
w = flipped_trc.GetWidth();
h = flipped_trc.GetHeight();
frame_data.resize(3 * w * h);
}
glPixelStorei(GL_PACK_ALIGNMENT, 1);
glReadPixels(flipped_trc.left, flipped_trc.bottom, w, h, GL_BGR, GL_UNSIGNED_BYTE, &frame_data[0]);
if (GL_REPORT_ERROR() == GL_NO_ERROR && w > 0 && h > 0)
{
if (!bLastFrameDumped)
{
#ifdef _WIN32
bAVIDumping = AVIDump::Start(EmuWindow::GetParentWnd(), w, h);
#else
bAVIDumping = AVIDump::Start(w, h);
#endif
if (!bAVIDumping)
OSD::AddMessage("AVIDump Start failed", 2000);
else
{
OSD::AddMessage(StringFromFormat(
"Dumping Frames to \"%sframedump0.avi\" (%dx%d RGB24)",
File::GetUserPath(D_DUMPFRAMES_IDX).c_str(), w, h).c_str(), 2000);
}
}
if (bAVIDumping)
{
#ifndef _WIN32
FlipImageData(&frame_data[0], w, h);
#endif
AVIDump::AddFrame(&frame_data[0], w, h);
}
bLastFrameDumped = true;
}
else
NOTICE_LOG(VIDEO, "Error reading framebuffer");
}
else
{
if (bLastFrameDumped && bAVIDumping)
{
std::vector<u8>().swap(frame_data);
w = h = 0;
AVIDump::Stop();
bAVIDumping = false;
OSD::AddMessage("Stop dumping frames", 2000);
}
bLastFrameDumped = false;
}
#else
if (g_ActiveConfig.bDumpFrames)
{
std::lock_guard<std::mutex> lk(s_criticalScreenshot);
std::string movie_file_name;
w = GetTargetRectangle().GetWidth();
h = GetTargetRectangle().GetHeight();
frame_data.resize(3 * w * h);
glPixelStorei(GL_PACK_ALIGNMENT, 1);
glReadPixels(GetTargetRectangle().left, GetTargetRectangle().bottom, w, h, GL_BGR, GL_UNSIGNED_BYTE, &frame_data[0]);
if (GL_REPORT_ERROR() == GL_NO_ERROR)
{
if (!bLastFrameDumped)
{
movie_file_name = File::GetUserPath(D_DUMPFRAMES_IDX) + "framedump.raw";
pFrameDump.Open(movie_file_name, "wb");
if (!pFrameDump)
OSD::AddMessage("Error opening framedump.raw for writing.", 2000);
else
{
OSD::AddMessage(StringFromFormat("Dumping Frames to \"%s\" (%dx%d RGB24)", movie_file_name.c_str(), w, h).c_str(), 2000);
}
}
if (pFrameDump)
{
FlipImageData(&frame_data[0], w, h);
pFrameDump.WriteBytes(&frame_data[0], w * 3 * h);
pFrameDump.Flush();
}
bLastFrameDumped = true;
}
}
else
{
if (bLastFrameDumped)
pFrameDump.Close();
bLastFrameDumped = false;
}
#endif
// Finish up the current frame, print some stats
SetWindowSize(fbWidth, fbHeight);
GLInterface->Update(); // just updates the render window position and the backbuffer size
bool xfbchanged = false;
if (FramebufferManagerBase::LastXfbWidth() != fbWidth || FramebufferManagerBase::LastXfbHeight() != fbHeight)
{
xfbchanged = true;
unsigned int const last_w = (fbWidth < 1 || fbWidth > MAX_XFB_WIDTH) ? MAX_XFB_WIDTH : fbWidth;
unsigned int const last_h = (fbHeight < 1 || fbHeight > MAX_XFB_HEIGHT) ? MAX_XFB_HEIGHT : fbHeight;
FramebufferManagerBase::SetLastXfbWidth(last_w);
FramebufferManagerBase::SetLastXfbHeight(last_h);
}
bool WindowResized = false;
int W = (int)GLInterface->GetBackBufferWidth();
int H = (int)GLInterface->GetBackBufferHeight();
if (W != s_backbuffer_width || H != s_backbuffer_height || s_LastEFBScale != g_ActiveConfig.iEFBScale)
{
WindowResized = true;
s_backbuffer_width = W;
s_backbuffer_height = H;
s_LastEFBScale = g_ActiveConfig.iEFBScale;
}
if (xfbchanged || WindowResized || (s_LastMultisampleMode != g_ActiveConfig.iMultisampleMode))
{
UpdateDrawRectangle(s_backbuffer_width, s_backbuffer_height);
if (CalculateTargetSize(s_backbuffer_width, s_backbuffer_height) || s_LastMultisampleMode != g_ActiveConfig.iMultisampleMode)
{
s_LastMultisampleMode = g_ActiveConfig.iMultisampleMode;
s_MSAASamples = GetNumMSAASamples(s_LastMultisampleMode);
s_MSAACoverageSamples = GetNumMSAACoverageSamples(s_LastMultisampleMode);
delete g_framebuffer_manager;
g_framebuffer_manager = new FramebufferManager(s_target_width, s_target_height,
s_MSAASamples, s_MSAACoverageSamples);
}
}
if (XFBWrited)
s_fps = UpdateFPSCounter();
// ---------------------------------------------------------------------
GL_REPORT_ERRORD();
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
DrawDebugInfo();
DrawDebugText();
GL_REPORT_ERRORD();
OSD::DrawMessages();
GL_REPORT_ERRORD();
// Copy the rendered frame to the real window
GLInterface->Swap();
GL_REPORT_ERRORD();
// Clear framebuffer
if(!g_ActiveConfig.bAnaglyphStereo)
{
glClearColor(0, 0, 0, 0);
glClear(GL_COLOR_BUFFER_BIT);
}
GL_REPORT_ERRORD();
GLInterface->SwapInterval(g_ActiveConfig.IsVSync() ? 1 : 0);
// Clean out old stuff from caches. It's not worth it to clean out the shader caches.
DLCache::ProgressiveCleanup();
TextureCache::Cleanup();
frameCount++;
GFX_DEBUGGER_PAUSE_AT(NEXT_FRAME, true);
// Begin new frame
// Set default viewport and scissor, for the clear to work correctly
// New frame
stats.ResetFrame();
// Render to the framebuffer.
FramebufferManager::SetFramebuffer(0);
GL_REPORT_ERRORD();
RestoreAPIState();
GL_REPORT_ERRORD();
g_Config.iSaveTargetId = 0;
UpdateActiveConfig();
TextureCache::OnConfigChanged(g_ActiveConfig);
// For testing zbuffer targets.
// Renderer::SetZBufferRender();
// SaveTexture("tex.tga", GL_TEXTURE_RECTANGLE_ARB, s_FakeZTarget,
// GetTargetWidth(), GetTargetHeight());
Core::Callback_VideoCopiedToXFB(XFBWrited || (g_ActiveConfig.bUseXFB && g_ActiveConfig.bUseRealXFB));
XFBWrited = false;
// Invalidate EFB cache
ClearEFBCache();
}
// ALWAYS call RestoreAPIState for each ResetAPIState call you're doing
void Renderer::ResetAPIState()
{
// Gets us to a reasonably sane state where it's possible to do things like
// image copies with textured quads, etc.
glDisable(GL_SCISSOR_TEST);
glDisable(GL_DEPTH_TEST);
glDisable(GL_CULL_FACE);
glDisable(GL_BLEND);
glDepthMask(GL_FALSE);
glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
}
void Renderer::RestoreAPIState()
{
// Gets us back into a more game-like state.
glEnable(GL_SCISSOR_TEST);
SetGenerationMode();
BPFunctions::SetScissor();
SetColorMask();
SetDepthMode();
SetBlendMode(true);
VertexShaderManager::SetViewportChanged();
glPolygonMode(GL_FRONT_AND_BACK, g_ActiveConfig.bWireFrame ? GL_LINE : GL_FILL);
VertexManager *vm = (OGL::VertexManager*)g_vertex_manager;
glBindBuffer(GL_ARRAY_BUFFER, vm->m_vertex_buffers);
vm->m_last_vao = 0;
TextureCache::SetStage();
}
void Renderer::SetGenerationMode()
{
// none, ccw, cw, ccw
if (bpmem.genMode.cullmode > 0)
{
glEnable(GL_CULL_FACE);
glFrontFace(bpmem.genMode.cullmode == 2 ? GL_CCW : GL_CW);
}
else
glDisable(GL_CULL_FACE);
}
void Renderer::SetDepthMode()
{
const GLenum glCmpFuncs[8] =
{
GL_NEVER,
GL_LESS,
GL_EQUAL,
GL_LEQUAL,
GL_GREATER,
GL_NOTEQUAL,
GL_GEQUAL,
GL_ALWAYS
};
if (bpmem.zmode.testenable)
{
glEnable(GL_DEPTH_TEST);
glDepthMask(bpmem.zmode.updateenable ? GL_TRUE : GL_FALSE);
glDepthFunc(glCmpFuncs[bpmem.zmode.func]);
}
else
{
// if the test is disabled write is disabled too
// TODO: When PE performance metrics are being emulated via occlusion queries, we should (probably?) enable depth test with depth function ALWAYS here
glDisable(GL_DEPTH_TEST);
glDepthMask(GL_FALSE);
}
}
void Renderer::SetLogicOpMode()
{
const GLenum glLogicOpCodes[16] =
{
GL_CLEAR,
GL_AND,
GL_AND_REVERSE,
GL_COPY,
GL_AND_INVERTED,
GL_NOOP,
GL_XOR,
GL_OR,
GL_NOR,
GL_EQUIV,
GL_INVERT,
GL_OR_REVERSE,
GL_COPY_INVERTED,
GL_OR_INVERTED,
GL_NAND,
GL_SET
};
if (bpmem.blendmode.logicopenable)
{
glEnable(GL_COLOR_LOGIC_OP);
glLogicOp(glLogicOpCodes[bpmem.blendmode.logicmode]);
}
else
{
glDisable(GL_COLOR_LOGIC_OP);
}
}
void Renderer::SetDitherMode()
{
if (bpmem.blendmode.dither)
glEnable(GL_DITHER);
else
glDisable(GL_DITHER);
}
void Renderer::SetLineWidth()
{
float fratio = xfregs.viewport.wd != 0 ?
((float)Renderer::GetTargetWidth() / EFB_WIDTH) : 1.0f;
if (bpmem.lineptwidth.linesize > 0)
// scale by ratio of widths
glLineWidth((float)bpmem.lineptwidth.linesize * fratio / 6.0f);
if (bpmem.lineptwidth.pointsize > 0)
glPointSize((float)bpmem.lineptwidth.pointsize * fratio / 6.0f);
}
void Renderer::SetSamplerState(int stage, int texindex)
{
auto const& tex = bpmem.tex[texindex];
auto const& tm0 = tex.texMode0[stage];
auto const& tm1 = tex.texMode1[stage];
g_sampler_cache->SetSamplerState((texindex * 4) + stage, tm0, tm1);
}
void Renderer::SetInterlacingMode()
{
// TODO
}
void Renderer::FlipImageData(u8 *data, int w, int h)
{
// Flip image upside down. Damn OpenGL.
for (int y = 0; y < h / 2; y++)
{
for(int x = 0; x < w; x++)
{
std::swap(data[(y * w + x) * 3], data[((h - 1 - y) * w + x) * 3]);
std::swap(data[(y * w + x) * 3 + 1], data[((h - 1 - y) * w + x) * 3 + 1]);
std::swap(data[(y * w + x) * 3 + 2], data[((h - 1 - y) * w + x) * 3 + 2]);
}
}
}
}
// TODO: remove
extern bool g_aspect_wide;
#if defined(HAVE_WX) && HAVE_WX
void TakeScreenshot(ScrStrct* threadStruct)
{
// These will contain the final image size
float FloatW = (float)threadStruct->W;
float FloatH = (float)threadStruct->H;
// Handle aspect ratio for the final ScrStrct to look exactly like what's on screen.
if (g_ActiveConfig.iAspectRatio != ASPECT_STRETCH)
{
bool use16_9 = g_aspect_wide;
// Check for force-settings and override.
if (g_ActiveConfig.iAspectRatio == ASPECT_FORCE_16_9)
use16_9 = true;
else if (g_ActiveConfig.iAspectRatio == ASPECT_FORCE_4_3)
use16_9 = false;
float Ratio = (FloatW / FloatH) / (!use16_9 ? (4.0f / 3.0f) : (16.0f / 9.0f));
// If ratio > 1 the picture is too wide and we have to limit the width.
if (Ratio > 1)
FloatW /= Ratio;
// ratio == 1 or the image is too high, we have to limit the height.
else
FloatH *= Ratio;
// This is a bit expensive on high resolutions
threadStruct->img->Rescale((int)FloatW, (int)FloatH, wxIMAGE_QUALITY_HIGH);
}
// Save the screenshot and finally kill the wxImage object
// This is really expensive when saving to PNG, but not at all when using BMP
threadStruct->img->SaveFile(StrToWxStr(threadStruct->filename),
wxBITMAP_TYPE_PNG);
threadStruct->img->Destroy();
// Show success messages
OSD::AddMessage(StringFromFormat("Saved %i x %i %s", (int)FloatW, (int)FloatH,
threadStruct->filename.c_str()).c_str(), 2000);
delete threadStruct;
}
#endif
namespace OGL
{
bool Renderer::SaveScreenshot(const std::string &filename, const TargetRectangle &back_rc)
{
u32 W = back_rc.GetWidth();
u32 H = back_rc.GetHeight();
u8 *data = (u8 *)malloc((sizeof(u8) * 3 * W * H));
glPixelStorei(GL_PACK_ALIGNMENT, 1);
glReadPixels(back_rc.left, back_rc.bottom, W, H, GL_RGB, GL_UNSIGNED_BYTE, data);
// Show failure message
if (GL_REPORT_ERROR() != GL_NO_ERROR)
{
free(data);
OSD::AddMessage("Error capturing or saving screenshot.", 2000);
return false;
}
// Turn image upside down
FlipImageData(data, W, H);
#if defined(HAVE_WX) && HAVE_WX
// Create wxImage
wxImage *a = new wxImage(W, H, data);
if (scrshotThread.joinable())
scrshotThread.join();
ScrStrct *threadStruct = new ScrStrct;
threadStruct->filename = filename;
threadStruct->img = a;
threadStruct->H = H; threadStruct->W = W;
scrshotThread = std::thread(TakeScreenshot, threadStruct);
#ifdef _WIN32
SetThreadPriority(scrshotThread.native_handle(), THREAD_PRIORITY_BELOW_NORMAL);
#endif
bool result = true;
OSD::AddMessage("Saving Screenshot... ", 2000);
#else
bool result = SaveTGA(filename.c_str(), W, H, data);
free(data);
#endif
return result;
}
}