dolphin/Source/Plugins/Plugin_VideoOGL/Src/VertexShaderManager.cpp

889 lines
33 KiB
C++

// Copyright (C) 2003-2008 Dolphin Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official SVN repository and contact information can be found at
// http://code.google.com/p/dolphin-emu/
#include "Globals.h"
#include "Profiler.h"
#include "Config.h"
#include "GLUtil.h"
#include <Cg/cg.h>
#include <Cg/cgGL.h>
#include <math.h>
#include "Statistics.h"
#include "ImageWrite.h"
#include "Render.h"
#include "VertexShader.h"
#include "VertexShaderManager.h"
#include "VertexManager.h"
#include "VertexLoader.h"
#include "BPMemory.h"
#include "XFMemory.h"
VertexShaderMngr::VSCache VertexShaderMngr::vshaders;
VERTEXSHADER* VertexShaderMngr::pShaderLast = NULL;
float GC_ALIGNED16(g_fProjectionMatrix[16]);
extern int A, B;
extern float AR;
extern int nBackbufferWidth, nBackbufferHeight;
// Internal Variables
static int s_nMaxVertexInstructions;
static float s_fMaterials[16];
// track changes
static bool bTexMatricesChanged[2], bPosNormalMatrixChanged, bProjectionChanged, bViewportChanged;
static int nMaterialsChanged;
static int nTransformMatricesChanged[2]; // min,max
static int nNormalMatricesChanged[2]; // min,max
static int nPostTransformMatricesChanged[2]; // min,max
static int nLightsChanged[2]; // min,max
void VertexShaderMngr::SetVSConstant4f(int const_number, float f1, float f2, float f3, float f4) {
glProgramEnvParameter4fARB(GL_VERTEX_PROGRAM_ARB, const_number, f1, f2, f3, f4);
}
void VertexShaderMngr::SetVSConstant4fv(int const_number, const float *f) {
glProgramEnvParameter4fvARB(GL_VERTEX_PROGRAM_ARB, const_number, f);
}
void VertexShaderMngr::Init()
{
nTransformMatricesChanged[0] = nTransformMatricesChanged[1] = -1;
nNormalMatricesChanged[0] = nNormalMatricesChanged[1] = -1;
nPostTransformMatricesChanged[0] = nPostTransformMatricesChanged[1] = -1;
nLightsChanged[0] = nLightsChanged[1] = -1;
bTexMatricesChanged[0] = bTexMatricesChanged[1] = false;
bPosNormalMatrixChanged = bProjectionChanged = bViewportChanged = false;
nMaterialsChanged = 0;
memset(&xfregs, 0, sizeof(xfregs));
memset(xfmem, 0, sizeof(xfmem));
glGetProgramivARB(GL_VERTEX_PROGRAM_ARB, GL_MAX_PROGRAM_NATIVE_INSTRUCTIONS_ARB, (GLint *)&s_nMaxVertexInstructions);
}
void VertexShaderMngr::Shutdown()
{
for (VSCache::iterator iter = vshaders.begin(); iter != vshaders.end(); iter++)
iter->second.Destroy();
vshaders.clear();
}
float VertexShaderMngr::GetPixelAspectRatio() {
return xfregs.rawViewport[0] != 0 ? (float)Renderer::GetTargetWidth() / 640.0f : 1.0f;
}
VERTEXSHADER* VertexShaderMngr::GetShader(u32 components)
{
DVSTARTPROFILE();
VERTEXSHADERUID uid;
GetVertexShaderId(uid, components);
VSCache::iterator iter = vshaders.find(uid);
if (iter != vshaders.end()) {
iter->second.frameCount = frameCount;
VSCacheEntry &entry = iter->second;
if (&entry.shader != pShaderLast) {
pShaderLast = &entry.shader;
}
return pShaderLast;
}
VSCacheEntry& entry = vshaders[uid];
char *code = GenerateVertexShader(components, Renderer::GetZBufferTarget() != 0);
#if defined(_DEBUG) || defined(DEBUGFAST)
if (g_Config.iLog & CONF_SAVESHADERS && code) {
static int counter = 0;
char szTemp[MAX_PATH];
sprintf(szTemp, "%s/vs_%04i.txt", g_Config.texDumpPath, counter++);
SaveData(szTemp, code);
}
#endif
if (!code || !VertexShaderMngr::CompileVertexShader(entry.shader, code)) {
ERROR_LOG("failed to create vertex shader\n");
return NULL;
}
//Make an entry in the table
entry.frameCount=frameCount;
pShaderLast = &entry.shader;
INCSTAT(stats.numVertexShadersCreated);
SETSTAT(stats.numVertexShadersAlive,vshaders.size());
return pShaderLast;
}
void VertexShaderMngr::Cleanup()
{
VSCache::iterator iter=vshaders.begin();
while (iter != vshaders.end()) {
VSCacheEntry &entry = iter->second;
if (entry.frameCount < frameCount-200) {
entry.Destroy();
#ifdef _WIN32
iter = vshaders.erase(iter);
#else
vshaders.erase(iter++);
#endif
}
else {
++iter;
}
}
// static int frame = 0;
// if( frame++ > 30 ) {
// VSCache::iterator iter=vshaders.begin();
// while(iter!=vshaders.end()) {
// iter->second.Destroy();
// ++iter;
// }
// vshaders.clear();
// }
SETSTAT(stats.numPixelShadersAlive,vshaders.size());
}
bool VertexShaderMngr::CompileVertexShader(VERTEXSHADER& vs, const char* pstrprogram)
{
char stropt[64];
sprintf(stropt, "MaxLocalParams=256,MaxInstructions=%d", s_nMaxVertexInstructions);
const char *opts[] = {"-profileopts", stropt, "-O2", "-q", NULL};
CGprogram tempprog = cgCreateProgram(g_cgcontext, CG_SOURCE, pstrprogram, g_cgvProf, "main", opts);
if (!cgIsProgram(tempprog) || cgGetError() != CG_NO_ERROR) {
ERROR_LOG("Failed to load vs %s:\n", cgGetLastListing(g_cgcontext));
ERROR_LOG(pstrprogram);
return false;
}
//ERROR_LOG(pstrprogram);
//ERROR_LOG("id: %d\n", g_Config.iSaveTargetId);
char* pcompiledprog = (char*)cgGetProgramString(tempprog, CG_COMPILED_PROGRAM);
char* plocal = strstr(pcompiledprog, "program.local");
while (plocal != NULL) {
const char* penv = " program.env";
memcpy(plocal, penv, 13);
plocal = strstr(plocal+13, "program.local");
}
glGenProgramsARB(1, &vs.glprogid);
glBindProgramARB(GL_VERTEX_PROGRAM_ARB, vs.glprogid);
glProgramStringARB(GL_VERTEX_PROGRAM_ARB, GL_PROGRAM_FORMAT_ASCII_ARB, (GLsizei)strlen(pcompiledprog), pcompiledprog);
GLenum err = GL_NO_ERROR;
GL_REPORT_ERROR();
if( err != GL_NO_ERROR ) {
ERROR_LOG(pstrprogram);
ERROR_LOG(pcompiledprog);
}
cgDestroyProgram(tempprog);
// printf("Compiled vertex shader %i\n", vs.glprogid);
#ifdef _DEBUG
vs.strprog = pstrprogram;
#endif
return true;
}
const u16 s_mtrltable[16][2] = {{0, 0}, {0, 1}, {1, 1}, {0, 2},
{2, 1}, {0, 3}, {1, 2}, {0, 3},
{3, 1}, {0, 4}, {1, 3}, {0, 4},
{2, 2}, {0, 4}, {1, 3}, {0, 4}};
// =======================================================================================
// Syncs the shader constant buffers with xfmem
// ----------------
void VertexShaderMngr::SetConstants()
{
//nTransformMatricesChanged[0] = 0; nTransformMatricesChanged[1] = 256;
//nNormalMatricesChanged[0] = 0; nNormalMatricesChanged[1] = 96;
//nPostTransformMatricesChanged[0] = 0; nPostTransformMatricesChanged[1] = 256;
//nLightsChanged[0] = 0; nLightsChanged[1] = 0x80;
//bPosNormalMatrixChanged = true;
//bTexMatricesChanged[0] = bTexMatricesChanged[1] = true;
//bProjectionChanged = true;
// bPosNormalMatrixChanged = bTexMatricesChanged[0] = bTexMatricesChanged[1] = true;
// nMaterialsChanged = 15;
if (nTransformMatricesChanged[0] >= 0) {
int startn = nTransformMatricesChanged[0]/4;
int endn = (nTransformMatricesChanged[1]+3)/4;
const float* pstart = (const float*)&xfmem[startn*4];
for(int i = startn; i < endn; ++i, pstart += 4)
SetVSConstant4fv(C_TRANSFORMMATRICES+i, pstart);
nTransformMatricesChanged[0] = nTransformMatricesChanged[1] = -1;
}
if (nNormalMatricesChanged[0] >= 0) {
int startn = nNormalMatricesChanged[0]/3;
int endn = (nNormalMatricesChanged[1]+2)/3;
const float* pnstart = (const float*)&xfmem[XFMEM_NORMALMATRICES+3*startn];
for(int i = startn; i < endn; ++i, pnstart += 3)
SetVSConstant4fv(C_NORMALMATRICES+i, pnstart);
nNormalMatricesChanged[0] = nNormalMatricesChanged[1] = -1;
}
if (nPostTransformMatricesChanged[0] >= 0) {
int startn = nPostTransformMatricesChanged[0]/4;
int endn = (nPostTransformMatricesChanged[1]+3)/4;
const float* pstart = (const float*)&xfmem[XFMEM_POSTMATRICES + startn*4];
for(int i = startn; i < endn; ++i, pstart += 4)
SetVSConstant4fv(C_POSTTRANSFORMMATRICES + i, pstart);
}
if (nLightsChanged[0] >= 0) {
// lights don't have a 1 to 1 mapping, the color component needs to be converted to 4 floats
int istart = nLightsChanged[0] / 0x10;
int iend = (nLightsChanged[1] + 15) / 0x10;
const float* xfmemptr = (const float*)&xfmem[0x10*istart + XFMEM_LIGHTS];
for (int i = istart; i < iend; ++i) {
u32 color = *(const u32*)(xfmemptr + 3);
SetVSConstant4f(C_LIGHTS + 5*i,
((color >> 24) & 0xFF)/255.0f,
((color >> 16) & 0xFF)/255.0f,
((color >> 8) & 0xFF)/255.0f,
((color) & 0xFF)/255.0f);
xfmemptr += 4;
for (int j = 0; j < 4; ++j, xfmemptr += 3) {
if (j == 1 &&
fabs(xfmemptr[0]) < 0.00001f &&
fabs(xfmemptr[1]) < 0.00001f &&
fabs(xfmemptr[2]) < 0.00001f) {
// dist attenuation, make sure not equal to 0!!!
SetVSConstant4f(C_LIGHTS+5*i+j+1, 0.00001f, xfmemptr[1], xfmemptr[2], 0);
}
else
SetVSConstant4fv(C_LIGHTS+5*i+j+1, xfmemptr);
}
}
nLightsChanged[0] = nLightsChanged[1] = -1;
}
if (nMaterialsChanged) {
for (int i = 0; i < 4; ++i) {
if (nMaterialsChanged & (1 << i))
SetVSConstant4fv(C_MATERIALS + i, &s_fMaterials[4*i]);
}
nMaterialsChanged = 0;
}
if (bPosNormalMatrixChanged) {
bPosNormalMatrixChanged = false;
float* pos = (float*)xfmem + MatrixIndexA.PosNormalMtxIdx * 4;
float* norm = (float*)xfmem + XFMEM_NORMALMATRICES + 3 * (MatrixIndexA.PosNormalMtxIdx & 31);
SetVSConstant4fv(C_POSNORMALMATRIX, pos);
SetVSConstant4fv(C_POSNORMALMATRIX+1, pos+4);
SetVSConstant4fv(C_POSNORMALMATRIX+2, pos+8);
SetVSConstant4fv(C_POSNORMALMATRIX+3, norm);
SetVSConstant4fv(C_POSNORMALMATRIX+4, norm+3);
SetVSConstant4fv(C_POSNORMALMATRIX+5, norm+6);
}
if (bTexMatricesChanged[0]) {
bTexMatricesChanged[0] = false;
float* fptrs[] = {
(float*)xfmem + MatrixIndexA.Tex0MtxIdx * 4, (float*)xfmem + MatrixIndexA.Tex1MtxIdx * 4,
(float*)xfmem + MatrixIndexA.Tex2MtxIdx * 4, (float*)xfmem + MatrixIndexA.Tex3MtxIdx * 4
};
for (int i = 0; i < 4; ++i) {
SetVSConstant4fv(C_TEXMATRICES+3*i, fptrs[i]);
SetVSConstant4fv(C_TEXMATRICES+3*i+1, fptrs[i]+4);
SetVSConstant4fv(C_TEXMATRICES+3*i+2, fptrs[i]+8);
}
}
if (bTexMatricesChanged[1]) {
bTexMatricesChanged[1] = false;
float* fptrs[] = {(float*)xfmem + MatrixIndexB.Tex4MtxIdx * 4, (float*)xfmem + MatrixIndexB.Tex5MtxIdx * 4,
(float*)xfmem + MatrixIndexB.Tex6MtxIdx * 4, (float*)xfmem + MatrixIndexB.Tex7MtxIdx * 4 };
for (int i = 0; i < 4; ++i) {
SetVSConstant4fv(C_TEXMATRICES+3*i+12, fptrs[i]);
SetVSConstant4fv(C_TEXMATRICES+3*i+12+1, fptrs[i]+4);
SetVSConstant4fv(C_TEXMATRICES+3*i+12+2, fptrs[i]+8);
}
}
if (bViewportChanged) {
bViewportChanged = false;
// reversed gxsetviewport(xorig, yorig, width, height, nearz, farz)
// [0] = width/2
// [1] = height/2
// [2] = 16777215 * (farz-nearz)
// [3] = xorig + width/2 + 342
// [4] = yorig + height/2 + 342
// [5] = 16777215 * farz
/*INFO_LOG("view: topleft=(%f,%f), wh=(%f,%f), z=(%f,%f)\n",
rawViewport[3]-rawViewport[0]-342, rawViewport[4]+rawViewport[1]-342,
2 * rawViewport[0], 2 * rawViewport[1],
(rawViewport[5] - rawViewport[2]) / 16777215.0f, rawViewport[5] / 16777215.0f);*/
// Keep aspect ratio at 4:3
// rawViewport[0] = 320, rawViewport[1] = -240
int scissorXOff = bpmem.scissorOffset.x * 2 - 342;
int scissorYOff = bpmem.scissorOffset.y * 2 - 342;
float fourThree = 4.0f / 3.0f;
float ratio = AR / fourThree;
float wAdj, hAdj;
float actualRatiow, actualRatioh;
int overfl;
int xoffs = 0, yoffs = 0;
int wid, hei, actualWid, actualHei;
int winw = nBackbufferWidth;
int winh = nBackbufferHeight;
if (g_Config.bKeepAR)
{
// Check if height or width is the limiting factor
if (ratio > 1) // then we are to wide and have to limit the width
{
wAdj = ratio;
hAdj = 1;
wid = ceil(fabs(2 * xfregs.rawViewport[0]) / wAdj);
hei = ceil(fabs(2 * xfregs.rawViewport[1]) / hAdj);
actualWid = ceil((float)winw / ratio);
actualRatiow = (float)actualWid / (float)wid; // the picture versus the screen
overfl = (winw - actualWid) / actualRatiow;
xoffs = overfl / 2;
}
else // the window is to high, we have to limit the height
{
ratio = 1 / ratio;
wAdj = 1;
hAdj = ratio;
wid = ceil(fabs(2 * xfregs.rawViewport[0]) / wAdj);
hei = ceil(fabs(2 * xfregs.rawViewport[1]) / hAdj);
actualHei = ceil((float)winh / ratio);
actualRatioh = (float)actualHei / (float)hei; // the picture versus the screen
overfl = (winh - actualHei) / actualRatioh;
yoffs = overfl / 2;
}
}
else
{
wid = ceil(fabs(2 * xfregs.rawViewport[0]));
hei = ceil(fabs(2 * xfregs.rawViewport[1]));
}
if (g_Config.bStretchToFit)
{
glViewport(
(int)(xfregs.rawViewport[3]-xfregs.rawViewport[0]-342-scissorXOff) + xoffs,
Renderer::GetTargetHeight() - ((int)(xfregs.rawViewport[4]-xfregs.rawViewport[1]-342-scissorYOff)) + yoffs,
wid, // width
hei // height
);
}
else
{
glViewport((int)(xfregs.rawViewport[3]-xfregs.rawViewport[0]-342-scissorXOff) * MValueX,
Renderer::GetTargetHeight()-((int)(xfregs.rawViewport[4]-xfregs.rawViewport[1]-342-scissorYOff)) * MValueY,
abs((int)(2 * xfregs.rawViewport[0])) * MValueX, abs((int)(2 * xfregs.rawViewport[1])) * MValueY);
}
// Standard depth range
//glDepthRange(-(0.0f - (xfregs.rawViewport[5]-xfregs.rawViewport[2])/-16777215.0f), xfregs.rawViewport[5]/16777215.0f);
// Metroid Prime 1 & 2 likes this
//glDepthRange(-(0.0f - (xfregs.rawViewport[5]-xfregs.rawViewport[2])/16777215.0f), xfregs.rawViewport[5]/16777215.0f);
glDepthRange((g_Config.bInvertDepth ? -1 : 1) * -(0.0f - (xfregs.rawViewport[5]-xfregs.rawViewport[2])/16777215.0f), xfregs.rawViewport[5]/16777215.0f);
// FZero stage likes this (a sonic hack)
// glDepthRange(-(0.0f - (xfregs.rawViewport[5]-xfregs.rawViewport[2])/-16777215.0f), xfregs.rawViewport[5]/16777215.0f);
}
if (bProjectionChanged) {
bProjectionChanged = false;
if (xfregs.rawProjection[6] == 0) {
g_fProjectionMatrix[0] = xfregs.rawProjection[0];
g_fProjectionMatrix[1] = 0.0f;
g_fProjectionMatrix[2] = xfregs.rawProjection[1];
g_fProjectionMatrix[3] = 0;
g_fProjectionMatrix[4] = 0.0f;
g_fProjectionMatrix[5] = xfregs.rawProjection[2];
g_fProjectionMatrix[6] = xfregs.rawProjection[3];
g_fProjectionMatrix[7] = 0;
g_fProjectionMatrix[8] = 0.0f;
g_fProjectionMatrix[9] = 0.0f;
g_fProjectionMatrix[10] = xfregs.rawProjection[4];
g_fProjectionMatrix[11] = xfregs.rawProjection[5];
g_fProjectionMatrix[12] = 0.0f;
g_fProjectionMatrix[13] = 0.0f;
// donkopunchstania: GC GPU rounds differently?
// -(1 + epsilon) so objects are clipped as they are on the real HW
g_fProjectionMatrix[14] = -1.00000011921f;
g_fProjectionMatrix[15] = 0.0f;
}
else {
g_fProjectionMatrix[0] = xfregs.rawProjection[0];
g_fProjectionMatrix[1] = 0.0f;
g_fProjectionMatrix[2] = 0.0f;
g_fProjectionMatrix[3] = xfregs.rawProjection[1];
g_fProjectionMatrix[4] = 0.0f;
g_fProjectionMatrix[5] = xfregs.rawProjection[2];
g_fProjectionMatrix[6] = 0.0f;
g_fProjectionMatrix[7] = xfregs.rawProjection[3];
g_fProjectionMatrix[8] = 0.0f;
g_fProjectionMatrix[9] = 0.0f;
g_fProjectionMatrix[10] = xfregs.rawProjection[4];
g_fProjectionMatrix[11] = -(-1.0f - xfregs.rawProjection[5]);
g_fProjectionMatrix[12] = 0;
g_fProjectionMatrix[13] = 0;
g_fProjectionMatrix[14] = 0.0f;
g_fProjectionMatrix[15] = 1.0f;
}
PRIM_LOG("Projection: %f %f %f %f %f %f\n", xfregs.rawProjection[0], xfregs.rawProjection[1], xfregs.rawProjection[2], xfregs.rawProjection[3], xfregs.rawProjection[4], xfregs.rawProjection[5]);
SetVSConstant4fv(C_PROJECTION, &g_fProjectionMatrix[0]);
SetVSConstant4fv(C_PROJECTION+1, &g_fProjectionMatrix[4]);
SetVSConstant4fv(C_PROJECTION+2, &g_fProjectionMatrix[8]);
SetVSConstant4fv(C_PROJECTION+3, &g_fProjectionMatrix[12]);
}
}
void VertexShaderMngr::InvalidateXFRange(int start, int end)
{
if (((u32)start >= (u32)MatrixIndexA.PosNormalMtxIdx*4 &&
(u32)start < (u32)MatrixIndexA.PosNormalMtxIdx*4 + 12) ||
((u32)start >= XFMEM_NORMALMATRICES + ((u32)MatrixIndexA.PosNormalMtxIdx & 31)*3 &&
(u32)start < XFMEM_NORMALMATRICES + ((u32)MatrixIndexA.PosNormalMtxIdx & 31)*3 + 9)) {
bPosNormalMatrixChanged = true;
}
if (((u32)start >= (u32)MatrixIndexA.Tex0MtxIdx*4 && (u32)start < (u32)MatrixIndexA.Tex0MtxIdx*4+12) ||
((u32)start >= (u32)MatrixIndexA.Tex1MtxIdx*4 && (u32)start < (u32)MatrixIndexA.Tex1MtxIdx*4+12) ||
((u32)start >= (u32)MatrixIndexA.Tex2MtxIdx*4 && (u32)start < (u32)MatrixIndexA.Tex2MtxIdx*4+12) ||
((u32)start >= (u32)MatrixIndexA.Tex3MtxIdx*4 && (u32)start < (u32)MatrixIndexA.Tex3MtxIdx*4+12)) {
bTexMatricesChanged[0] = true;
}
if (((u32)start >= (u32)MatrixIndexB.Tex4MtxIdx*4 && (u32)start < (u32)MatrixIndexB.Tex4MtxIdx*4+12) ||
((u32)start >= (u32)MatrixIndexB.Tex5MtxIdx*4 && (u32)start < (u32)MatrixIndexB.Tex5MtxIdx*4+12) ||
((u32)start >= (u32)MatrixIndexB.Tex6MtxIdx*4 && (u32)start < (u32)MatrixIndexB.Tex6MtxIdx*4+12) ||
((u32)start >= (u32)MatrixIndexB.Tex7MtxIdx*4 && (u32)start < (u32)MatrixIndexB.Tex7MtxIdx*4+12)) {
bTexMatricesChanged[1] = true;
}
if (start < XFMEM_POSMATRICES_END) {
if (nTransformMatricesChanged[0] == -1) {
nTransformMatricesChanged[0] = start;
nTransformMatricesChanged[1] = end>XFMEM_POSMATRICES_END?XFMEM_POSMATRICES_END:end;
}
else {
if (nTransformMatricesChanged[0] > start) nTransformMatricesChanged[0] = start;
if (nTransformMatricesChanged[1] < end) nTransformMatricesChanged[1] = end>XFMEM_POSMATRICES_END?XFMEM_POSMATRICES_END:end;
}
}
if (start < XFMEM_NORMALMATRICES_END && end > XFMEM_NORMALMATRICES) {
int _start = start < XFMEM_NORMALMATRICES ? 0 : start-XFMEM_NORMALMATRICES;
int _end = end < XFMEM_NORMALMATRICES_END ? end-XFMEM_NORMALMATRICES : XFMEM_NORMALMATRICES_END-XFMEM_NORMALMATRICES;
if (nNormalMatricesChanged[0] == -1 ) {
nNormalMatricesChanged[0] = _start;
nNormalMatricesChanged[1] = _end;
}
else {
if (nNormalMatricesChanged[0] > _start) nNormalMatricesChanged[0] = _start;
if (nNormalMatricesChanged[1] < _end) nNormalMatricesChanged[1] = _end;
}
}
if (start < XFMEM_POSTMATRICES_END && end > XFMEM_POSTMATRICES) {
int _start = start < XFMEM_POSTMATRICES ? XFMEM_POSTMATRICES : start-XFMEM_POSTMATRICES;
int _end = end < XFMEM_POSTMATRICES_END ? end-XFMEM_POSTMATRICES : XFMEM_POSTMATRICES_END-XFMEM_POSTMATRICES;
if (nPostTransformMatricesChanged[0] == -1 ) {
nPostTransformMatricesChanged[0] = _start;
nPostTransformMatricesChanged[1] = _end;
}
else {
if (nPostTransformMatricesChanged[0] > _start) nPostTransformMatricesChanged[0] = _start;
if (nPostTransformMatricesChanged[1] < _end) nPostTransformMatricesChanged[1] = _end;
}
}
if (start < XFMEM_LIGHTS_END && end > XFMEM_LIGHTS) {
int _start = start < XFMEM_LIGHTS ? XFMEM_LIGHTS : start-XFMEM_LIGHTS;
int _end = end < XFMEM_LIGHTS_END ? end-XFMEM_LIGHTS : XFMEM_LIGHTS_END-XFMEM_LIGHTS;
if (nLightsChanged[0] == -1 ) {
nLightsChanged[0] = _start;
nLightsChanged[1] = _end;
}
else {
if (nLightsChanged[0] > _start) nLightsChanged[0] = _start;
if (nLightsChanged[1] < _end) nLightsChanged[1] = _end;
}
}
}
void VertexShaderMngr::SetTexMatrixChangedA(u32 Value)
{
if (MatrixIndexA.Hex != Value) {
VertexManager::Flush();
if (MatrixIndexA.PosNormalMtxIdx != (Value&0x3f))
bPosNormalMatrixChanged = true;
bTexMatricesChanged[0] = true;
MatrixIndexA.Hex = Value;
}
}
void VertexShaderMngr::SetTexMatrixChangedB(u32 Value)
{
if (MatrixIndexB.Hex != Value) {
VertexManager::Flush();
bTexMatricesChanged[1] = true;
MatrixIndexB.Hex = Value;
}
}
void VertexShaderMngr::SetViewport(float* _Viewport)
{
// Workaround for paper mario, yep this is bizarre.
for (size_t i = 0; i < ARRAYSIZE(xfregs.rawViewport); ++i) {
if (*(u32*)(_Viewport + i) == 0x7f800000) // invalid fp number
return;
}
memcpy(xfregs.rawViewport, _Viewport, sizeof(xfregs.rawViewport));
bViewportChanged = true;
}
void VertexShaderMngr::SetViewportChanged()
{
bViewportChanged = true;
}
void VertexShaderMngr::SetProjection(float* _pProjection, int constantIndex)
{
memcpy(xfregs.rawProjection, _pProjection, sizeof(xfregs.rawProjection));
bProjectionChanged = true;
}
float* VertexShaderMngr::GetPosNormalMat()
{
return (float*)xfmem + MatrixIndexA.PosNormalMtxIdx * 4;
}
// Mash together all the inputs that contribute to the code of a generated vertex shader into
// a unique identifier, basically containing all the bits. Yup, it's a lot ....
void VertexShaderMngr::GetVertexShaderId(VERTEXSHADERUID& vid, u32 components)
{
u32 zbufrender = (bpmem.ztex2.op == ZTEXTURE_ADD) || Renderer::GetZBufferTarget() != 0;
vid.values[0] = components |
(xfregs.numTexGens << 23) |
(xfregs.nNumChans << 27) |
((u32)xfregs.bEnableDualTexTransform << 29) |
(zbufrender << 30);
for (int i = 0; i < 2; ++i) {
vid.values[1+i] = xfregs.colChans[i].color.enablelighting ?
(u32)xfregs.colChans[i].color.hex :
(u32)xfregs.colChans[i].color.matsource;
vid.values[1+i] |= (xfregs.colChans[i].alpha.enablelighting ?
(u32)xfregs.colChans[i].alpha.hex :
(u32)xfregs.colChans[i].alpha.matsource) << 15;
}
// fog
vid.values[1] |= (((u32)bpmem.fog.c_proj_fsel.fsel & 3) << 30);
vid.values[2] |= (((u32)bpmem.fog.c_proj_fsel.fsel >> 2) << 30);
u32* pcurvalue = &vid.values[3];
for (int i = 0; i < xfregs.numTexGens; ++i) {
TexMtxInfo tinfo = xfregs.texcoords[i].texmtxinfo;
if (tinfo.texgentype != XF_TEXGEN_EMBOSS_MAP)
tinfo.hex &= 0x7ff;
if (tinfo.texgentype != XF_TEXGEN_REGULAR)
tinfo.projection = 0;
u32 val = ((tinfo.hex >> 1) & 0x1ffff);
if (xfregs.bEnableDualTexTransform && tinfo.texgentype == XF_TEXGEN_REGULAR) {
// rewrite normalization and post index
val |= ((u32)xfregs.texcoords[i].postmtxinfo.index << 17) | ((u32)xfregs.texcoords[i].postmtxinfo.normalize << 23);
}
switch (i & 3) {
case 0: pcurvalue[0] |= val; break;
case 1: pcurvalue[0] |= val << 24; pcurvalue[1] = val >> 8; ++pcurvalue; break;
case 2: pcurvalue[0] |= val << 16; pcurvalue[1] = val >> 16; ++pcurvalue; break;
case 3: pcurvalue[0] |= val << 8; ++pcurvalue; break;
}
}
}
// LoadXFReg 0x10
void LoadXFReg(u32 transferSize, u32 baseAddress, u32 *pData)
{
u32 address = baseAddress;
for (int i = 0; i < (int)transferSize; i++)
{
address = baseAddress + i;
// Setup a Matrix
if (address < 0x1000)
{
VertexManager::Flush();
VertexShaderMngr::InvalidateXFRange(address, address + transferSize);
//PRIM_LOG("xfmem write: 0x%x-0x%x\n", address, address+transferSize);
u32* p1 = &xfmem[address];
memcpy_gc(p1, &pData[i], transferSize*4);
i += transferSize;
}
else if (address<0x2000)
{
u32 data = pData[i];
switch (address)
{
case 0x1000: // error
break;
case 0x1001: // diagnostics
break;
case 0x1002: // internal state 0
break;
case 0x1003: // internal state 1
break;
case 0x1004: // xf_clock
break;
case 0x1005: // clipdisable
if (data & 1) { // disable clipping detection
}
if (data & 2) { // disable trivial rejection
}
if (data & 4) { // disable cpoly clipping acceleration
}
break;
case 0x1006: //SetGPMetric
break;
case 0x1008: //__GXXfVtxSpecs, wrote 0004
xfregs.hostinfo = *(INVTXSPEC*)&data;
break;
case 0x1009: //GXSetNumChans (no)
if ((u32)xfregs.nNumChans != (data&3)) {
VertexManager::Flush();
xfregs.nNumChans = data&3;
}
break;
case 0x100a: //GXSetChanAmbientcolor
if (xfregs.colChans[0].ambColor != data) {
VertexManager::Flush();
nMaterialsChanged |= 1;
xfregs.colChans[0].ambColor = data;
s_fMaterials[0] = ((data>>24)&0xFF)/255.0f;
s_fMaterials[1] = ((data>>16)&0xFF)/255.0f;
s_fMaterials[2] = ((data>>8)&0xFF)/255.0f;
s_fMaterials[3] = ((data)&0xFF)/255.0f;
}
break;
case 0x100b: //GXSetChanAmbientcolor
if (xfregs.colChans[1].ambColor != data) {
VertexManager::Flush();
nMaterialsChanged |= 2;
xfregs.colChans[1].ambColor = data;
s_fMaterials[4] = ((data>>24)&0xFF)/255.0f;
s_fMaterials[5] = ((data>>16)&0xFF)/255.0f;
s_fMaterials[6] = ((data>>8)&0xFF)/255.0f;
s_fMaterials[7] = ((data)&0xFF)/255.0f;
}
break;
case 0x100c: //GXSetChanMatcolor (rgba)
if (xfregs.colChans[0].matColor != data) {
VertexManager::Flush();
nMaterialsChanged |= 4;
xfregs.colChans[0].matColor = data;
s_fMaterials[8] = ((data>>24)&0xFF)/255.0f;
s_fMaterials[9] = ((data>>16)&0xFF)/255.0f;
s_fMaterials[10] = ((data>>8)&0xFF)/255.0f;
s_fMaterials[11] = ((data)&0xFF)/255.0f;
}
break;
case 0x100d: //GXSetChanMatcolor (rgba)
if (xfregs.colChans[1].matColor != data) {
VertexManager::Flush();
nMaterialsChanged |= 8;
xfregs.colChans[1].matColor = data;
s_fMaterials[12] = ((data>>24)&0xFF)/255.0f;
s_fMaterials[13] = ((data>>16)&0xFF)/255.0f;
s_fMaterials[14] = ((data>>8)&0xFF)/255.0f;
s_fMaterials[15] = ((data)&0xFF)/255.0f;
}
break;
case 0x100e: // color0
if (xfregs.colChans[0].color.hex != (data&0x7fff) ) {
VertexManager::Flush();
xfregs.colChans[0].color.hex = data;
}
break;
case 0x100f: // color1
if (xfregs.colChans[1].color.hex != (data&0x7fff) ) {
VertexManager::Flush();
xfregs.colChans[1].color.hex = data;
}
break;
case 0x1010: // alpha0
if (xfregs.colChans[0].alpha.hex != (data&0x7fff) ) {
VertexManager::Flush();
xfregs.colChans[0].alpha.hex = data;
}
break;
case 0x1011: // alpha1
if (xfregs.colChans[1].alpha.hex != (data&0x7fff) ) {
VertexManager::Flush();
xfregs.colChans[1].alpha.hex = data;
}
break;
case 0x1012: // dual tex transform
if (xfregs.bEnableDualTexTransform != (data&1)) {
VertexManager::Flush();
xfregs.bEnableDualTexTransform = data&1;
}
break;
case 0x1013:
case 0x1014:
case 0x1015:
case 0x1016:
case 0x1017:
DEBUG_LOG("xf addr: %x=%x\n", address, data);
break;
case 0x1018:
//_assert_msg_(GX_XF, 0, "XF matrixindex0");
VertexShaderMngr::SetTexMatrixChangedA(data); //?
break;
case 0x1019:
//_assert_msg_(GX_XF, 0, "XF matrixindex1");
VertexShaderMngr::SetTexMatrixChangedB(data); //?
break;
case 0x101a:
VertexManager::Flush();
VertexShaderMngr::SetViewport((float*)&pData[i]);
i += 6;
break;
case 0x101c: // paper mario writes 16777216.0f, 1677721.75
break;
case 0x101f: // paper mario writes 16777216.0f, 5033165.0f
break;
case 0x1020:
VertexManager::Flush();
VertexShaderMngr::SetProjection((float*)&pData[i]);
i += 7;
return;
case 0x103f: // GXSetNumTexGens
if ((u32)xfregs.numTexGens != data) {
VertexManager::Flush();
xfregs.numTexGens = data;
}
break;
case 0x1040: xfregs.texcoords[0].texmtxinfo.hex = data; break;
case 0x1041: xfregs.texcoords[1].texmtxinfo.hex = data; break;
case 0x1042: xfregs.texcoords[2].texmtxinfo.hex = data; break;
case 0x1043: xfregs.texcoords[3].texmtxinfo.hex = data; break;
case 0x1044: xfregs.texcoords[4].texmtxinfo.hex = data; break;
case 0x1045: xfregs.texcoords[5].texmtxinfo.hex = data; break;
case 0x1046: xfregs.texcoords[6].texmtxinfo.hex = data; break;
case 0x1047: xfregs.texcoords[7].texmtxinfo.hex = data; break;
case 0x1048:
case 0x1049:
case 0x104a:
case 0x104b:
case 0x104c:
case 0x104d:
case 0x104e:
case 0x104f:
DEBUG_LOG("xf addr: %x=%x\n", address, data);
break;
case 0x1050: xfregs.texcoords[0].postmtxinfo.hex = data; break;
case 0x1051: xfregs.texcoords[1].postmtxinfo.hex = data; break;
case 0x1052: xfregs.texcoords[2].postmtxinfo.hex = data; break;
case 0x1053: xfregs.texcoords[3].postmtxinfo.hex = data; break;
case 0x1054: xfregs.texcoords[4].postmtxinfo.hex = data; break;
case 0x1055: xfregs.texcoords[5].postmtxinfo.hex = data; break;
case 0x1056: xfregs.texcoords[6].postmtxinfo.hex = data; break;
case 0x1057: xfregs.texcoords[7].postmtxinfo.hex = data; break;
default:
DEBUG_LOG("xf addr: %x=%x\n", address, data);
break;
}
}
else if (address >= 0x4000)
{
// MessageBox(NULL, "1", "1", MB_OK);
//4010 __GXSetGenMode
}
}
}
// TODO - verify that it is correct. Seems to work, though.
void LoadIndexedXF(u32 val, int array)
{
int index = val >> 16;
int address = val & 0xFFF; //check mask
int size = ((val >> 12) & 0xF) + 1;
//load stuff from array to address in xf mem
VertexManager::Flush();
VertexShaderMngr::InvalidateXFRange(address, address+size);
//PRIM_LOG("xfmem iwrite: 0x%x-0x%x\n", address, address+size);
for (int i = 0; i < size; i++)
xfmem[address + i] = Memory_Read_U32(arraybases[array] + arraystrides[array]*index + i*4);
}